
Shortest Spanning Tree (Prim algorithm)

procedure SHORTEST SPANNING TREE:
begin

W := {v1}; E ′ := h�;
comment: b(v) = vertex ∈ W : w(v, b(v)) = min

r∈W
{w(v, r)};

for each v ∈ V \ {v1} do b(v) := v1;
while W 6= V do

begin
find v ∈ V \W : w(v, b(v)) = min

v∈V \W
{w(v, b(v))};

W := W ∪ {v}; E ′ := E ′ ∪ {(v, b(v))};
for each v ∈ V \W do

if w(v, v) < w(v, b(v)) then b(v) := v
end

end.

Shortest Paths (Dijkstra algorithm)

procedure SHORTEST PATHS:
begin

S := {s}; `(s) := 0; p(s) := h�;

comment: S = set of the vertices reached by a shortest path;
comment: `(v) = length of the shortest path from s to v that only

passes through vertices ∈ S;
comment: p(v) = predecessor of v in the path of length `(v);
for each v ∈ V \ {s} do

begin
`(v) := w(s, v);
p(v) := s

end;
while S 6= V do

begin
find v ∈ V \ S : `(v) = min

v∈V \S
{`(v)};

S := S ∪ {v};
for each v ∈ V \ S do

if `(v) + w(v, v) < `(v) then

begin
`(v) := `(v) + w(v, v);
p(v) := v

end
end

end.



Maximum Flow (Ford-Fulkerson algorithm)

procedure MAX FLOW:
begin

for i := 1 to n do for j := 1 to n do ξij := 0;
comment: Vertex labels: a vertex can be in 3 states:

1. unlabeled;
2. labeled (if it belongs the vertex set V1 that contains s) and non-explored;
3. labeled and explored (if the arcs emanating from it have been scanned);

comment: Meaning of the vertex labels: the label of a vertex vi has the structure:{
[+vk, δ] ⇔ ξki can be increased, or
[−vk, δ] ⇔ ξik can be decreased,

where δ = maximum additional flow that can be sent from s to vi.
opt := false;
while opt = false do

begin
label s with [+s,+∞];
repeat

let vi be a vertex labeled [±vk, δ(vi)] and non-explored;
for each unlabeled vj ∈ {vk ∈ V : (vi, vk) ∈ A and ξik < qik} do

label vj with [+vi,min(δ(vi), qij − ξij)];
for each unlabeled vj ∈ {vk ∈ V : (vk, vi) ∈ A and ξki > 0} do

label vj with [−vi,min(δ(vi), ξji)];
mark vi as explored

until t is labeled or no further vertex can be labeled;
if t is unlabeled then opt := true
else

begin
δ∗ := δ(t); x := t;
repeat

if the label of x is [+y, δ(x)] then ξyx := ξyx + δ∗

else (i.e., [−y, δ(x)]) ξxy := ξxy − δ∗;
x := y

until x = s;
cancel all labels

end
end;

comment: Minimum cut: (V1 = {vj ∈ V : vj is labeled }, V2 = V \ V1)
end.



Critical Path (CPM algorithm)

procedure CPM:
begin

comment: Step 1. Number the vertices so that i < j ∀ arc (vi, vj) ∈ A;
add to G fictitious vertices v0 and vn+1, and the corresponding arcs;
B := A;
k := 0;
while k ≤ n+ 1 do

begin
select a non-numbered vertex v : {(vi, v) ∈ B} = h�;
number v as vk;
B := B \ {(v, vi) ∈ B};
k := k + 1

end;
comment: Step 2. Determine the makespan = length of the longest path;
comment: TMINk = minimum time instant at which event vk can occur

without violating the precedence relationships;
TMIN0 := 0;
for k := 1 to n+ 1 do

TMINk := max
i:(vi,vk)∈A

{TMINi + d(vi, vk)};

comment: TMAXk = maximum time instant at which event vk can occur
without delaying the project completion time, TMINn+1;

TMAXn+1 := TMINn+1;
for k := n downto 0 do

TMAXk := min
i:(vk,vi)∈A

{TMAXi − d(vk, vi)}

comment: Step 3. Determine the basic parameters for each activity ah = (vi, vj):
EST(ah) = earliest time instant at which ah can start;
LST(ah) = latest time instant at which ah can start;
S(ah) = slack time between earliest and latest start time;

for each ah = (vi, vj) ∈ A do
begin

EST (ah) = TMINi;
LST (ah) = TMAXj − d(vi, vj);
S(ah) = LST (ah)− EST (ah)

end;
comment: a critical activity is an activity ah : LST (ah) = EST (ah);
comment: a critical path is a path from v0 to vn+1 composed by critical activities

end.


