Shortest Spanning Tree (Prim algorithm)

procedure SHORTEST SPANNING_TREE:
begin
Wi (o) B =
comment: b(v) = vertex € W : w(v,b(v)) = gelivg{w(v,r)};
for each v € V' \ {v;} do b(v) := vy;
while W # V do
begin
findo e V\W :w(v,b(®)) = min {w(v,b(v))};
veV\W

W :=WuU{v}; E':= E'"U{(7,b(0))};
for each v € V'\ W do
if w(v,v) < w(v,b(v)) then b(v) =T
end
end.

Shortest Paths (Dijkstra algorithm)

procedure SHORTEST PATHS:
begin
S = {s}; Us) :=0; p(s) :==D;
comment: S = set of the vertices reached by a shortest path;
comment: {(v) = length of the shortest path from s to v that only
passes through vertices € S

comment: p(v) = predecessor of v in the path of length ¢(v);
for each v € V' \ {s} do

begin
l(v) == w(s,v);
p(v) :=s

end;

while S # V do

begin

findv e V\S :4(T) = min {{(v)};
veV\S

S:=Su{v};

for each v € V'\ S do
if ((v) + w(v,v) < {(v) then

begin
() :==L(v) + w(T,v);
p(v) =7

end

end
end.



Maximum Flow (Ford-Fulkerson algorithm)

procedure MAX FLOW:
begin
for i :=1tondo for j:=1tondo¢;:=0;
comment: Vertex labels: a vertex can be in 3 states:
1. unlabeled,
2. labeled (if it belongs the vertex set V; that contains s) and non-ezplored,
3. labeled and explored (if the arcs emanating from it have been scanned);
comment: Meaning of the vertex labels: the label of a vertex v; has the structure:
[+, 0] & & can be increased, or
[—vr,0] & & can be decreased,
where 6 = maximum additional flow that can be sent from s to v;.
opt := false;
while opt = false do
begin
label s with [+s, 4+00];
repeat
let v; be a vertex labeled [+uvy, d(v;)] and non-explored;
for each unlabeled v; € {vy € V : (v;,v;) € A and &, < g} do
label v; with [+v;, min(6(v;), ¢;; — &j)];
for each unlabeled v; € {vy € V' : (vg,v;) € A and &; > 0} do
label v; with [—v;, min(8(v;), )]s
mark v; as explored
until ¢ is labeled or no further vertex can be labeled;
if ¢t is unlabeled then opt := true

else
begin
0 =0(t); x:=1t,
repeat
if the label of x is [+y, 6(x)] then &, == £, + 0*
else (i.e., [—y,0(2)]) &y = &y — 0™
xi=y
until x = s;
cancel all labels
end
end;

comment: Minimum cut: (V; = {v; € V : v; is labeled }, Vo =V \ V})
end.



Critical Path (CPM algorithm)

procedure CPM:
begin
comment: Step 1. Number the vertices so that ¢ < j V arc (v, v;) € A4;

add to G fictitious vertices vy and v,,1, and the corresponding arcs;
B = A,

k = 0;
while ¥k <n+1 do
begin

select a non-numbered vertex v : {(v;,v) € B} =;
number v as vg;
B := B\ {(v,v;) € B};
k=k+1
end;
comment: Step 2. Determine the makespan = length of the longest path;
comment: T'MIN, = minimum time instant at which event v, can occur
without violating the precedence relationships;
TMINy := 0;
for k:=1ton+1do
TMIN, := max {TMIN;+ d(v;,vg)};

2:(vi, v )EA
comment: T'MAX, = maximum time instant at which event v, can occur
without delaying the project completion time, TMIN,,1;
TMAXH_H = TM-[NTL+17
for k :=n downto 0 do
TMAXy:= min {TMAX,; —d(vg,v;)}

i:(vg,v;)€EA
comment: Step 3. Determine the basic parameters for each activity a, = (v;, v;):
EST(ay) = earliest time instant at which a;, can start;
LST(ap) = latest time instant at which a;, can start;
S(ay) = slack time between earliest and latest start time;
for each a; = (v;,v;) € A do
begin
EST(ay) = TMIN;;
LST(ap) = TMAX; — d(v;,v));
S(ah) = LST(ah) — EST(ah)
end;
comment: a critical activity is an activity a, : LST(a) = EST (ap);
comment: a critical path is a path from vy to v,,+; composed by critical activities
end.



