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INTRODUCTION 
 
 

• “Tough” combinatorial problems have been around for a 
long   time and some have attracted a lot of interest 
(e.g.: Traveling Salesman Problem) 

 
•  Early 70's: complexity theory 
 
       NP-hard problems →

                ↓ 

Little hope of solving efficiently many important problems 

                ↓ 
What can be done in practical contexts when  

solutions are needed? 

                ↓ 

    USE HEURISTIC TECHNIQUES 
 
 

•   constructive heuristics (e.g. “greedy”) 
 

•    iterative improvement methods 
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CLASSICAL LOCAL IMPROVEMENT 
HEURISTICS 

Key idea:    
 
• In most combinatorial problems, one would expect good 

solutions to share similar structures. 
 
• Indeed, the best solutions should be obtainable by 

slightly modifying good ones, and so on… 
 

 

THUS:    

• Start with a (feasible) initial solution. 

• Apply a sequence of local modifications to the current 
solution as long as these produce                       
improvements in the value of the objective function 
(monotone evolution of the objective). 

 
These methods are the basic (and earlier) trajectory 
based search methods. 
 
They are usually called “local search” or “neighbourhood 
search” methods. 
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PROBLEMS AND LIMITATIONS 

• These methods stop when they encounter a local 
optimum (w.r.t. to the allowed modifications). 

• Solution quality (and CPU times) depends on the 
“richness” of the set of transformations considered at 
each iteration of the heuristic. 

• Another key factor is the definition of the set of solutions 
explored by the algorithm. 

 
 
 



 6

THE CLASSICAL VEHICLE ROUTING PROBLEM 
 

Problem data : 
• Graph G = (V, A) 
• Vertices : a depot + customers 
• Arcs : possible movements (with travel times) 
• A fleet of of m identical vehicles of capacity Q is based 

at the depot. 
• With each customer vertex vi are associated a demand 

qi and a service time ti.   
• With each arc (vi, vj) of A are associated a cost cij and a 

travel time tij.   
 
 
The CVRP consists in finding a set of routes such that: 

1. Each route begins and ends at the depot; 
2. Each customer is visited exactly once by exactly 

one route; 
3. The total demand of the customers assigned to 

each route does not exceed Q; 
4. The total duration of each route (including travel and 

service times) does not exceed a specified value L; 
5. The total cost of the routes is minimized. 

Feasible solution : a partition of the customers into m 
groups, each of total demand no larger than Q, that are 
sequenced to yield routes of duration no larger than L. 
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ANOTHER REFERENCE PROBLEM 
THE CAPACITATED PLANT LOCATION PROBLEM 

 
Problem data : 

• I = { customers with demands di }  

• J = { possible location of plants }  

• fj = fixed cost of “opening” the plant at j 

• Kj = capacity of plant j 

• cij = unit transportation cost from site j to customer i  

 

Objective : 
minimize the total cost  
(fixed costs for open plants + transportation costs) 



MATHEMATICAL FORMULATION OF THE CPLP 
 

Variables 

xij :   quantity shipped from site j to customer i (i ε I, j ε J) 
(flow variables)  

yj :   a 0-1 variable indicating the plant at j is open (j ε J) 
(location variables) 

 

 

 

(CPLP)           Minimize  z = 
ijij

JjIiJj
jj xcyf ∑∑∑

∈∈∈
+

 

 

 subject to   
Iidx iij

Jj
∈=∑

∈
,

                  
JjyKx jj

Ii
ij ∈≤∑

∈
,

                     JjIixij ∈∈≥ ,,0  

                     { } Jjyj ∈∈ ,1,0  
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PROPERTIES OF THE CPLP (1) 

For any vector ỹ of location variables, optimal (w.r.t. to this 
plant configuration) flow values x(ỹ) can be retrieved by 
solving the associated transportation problem: 

(TP)           Minimize  z(ỹ) = 
ijij

JjIi
xc∑∑

∈∈
 

 

 subject to  
Iidx iij

Jj
∈=∑

∈
,

                  
JjyKx jj

Ii
ij ∈≤∑

∈
,~

 

                     JjIixij ∈∈≥ ,,0  

 
If  ỹ = y*, the optimal solution to the original CPLP problem 
is given by (y*, x(y*)). 
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PROPERTIES OF THE CPLP (2) 

An optimal solution of the original CPLP problem can 
always be found at an extreme point of the polyhedron of 
feasible flow vectors defined by the constraints: 
 
  

                 
Iidx iij

Jj
∈=∑

∈
,

                  
JjKx j

Ii
ij ∈≤∑

∈
,

                   JjIixij ∈∈≥ ,,0  

 

Reason :  

• The CPLP can be interpreted as a fixed-charge 
problem defined in the space of the flow variables.   

• This fixed-charge problem has a concave objective 
function that always admits an extreme point minimum.   

 

The optimal values for the location variables can easily be 
obtained from the optimal flow vector by setting yj equal to 
1 if  and to 0 otherwise. ,0>∑

∈
ij

Ii
x
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SEARCH SPACES 

 
• Simply the space of all possible solutions that can be 

considered (visited) during the search. 

• Could be the set of all feasible solutions to the problem 
at hand, with each point in the search space 
corresponding to a solution satisfying all the specified 
constraints. 

• While this definition of the search space might seem 
quite natural and straightforward, it is not so in many 
settings, as we shall see later in a few illustrative 
examples. 
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NEIGHBOURHOODS 

 
• At each iteration of LS, the local transformations that can 

be applied to the current solution, denoted S, define a 
set of neighbouring solutions in the search space, 
denoted N(S) (the neighbourhood of S). 

• N(S) = {solutions obtained by applying a single local 
modification to S}. 

• In general, for any specific problem at hand, there are 
many more possible (and even, attractive) 
neighbourhood structures than search space definitions. 



 14

EXAMPLES OF SEARCH SPACES AND 
NEIGHBOURHOODS 

Two illustrative problems: 

• Vehicle routing problem (VRP) 

• Capacitated plant location problem (CPLP) 
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CLASSICAL VEHICLE ROUTING PROBLEM 

• G = (V, A), a graph.   

• One of the vertices represents the depot.  

• The other vertices customers that need to be serviced. 

• With each customer vertex vi are associated a demand qi 
and a service time ti. 

• With each arc (vi, vj) of A are associated a cost cij and a 
travel time tij. 

• m identical vehicles of capacity Q are based at the depot.       

The CVRP consists in finding a set of routes such that: 
 
• Each route begins and ends at the depot; 

• Each customer is visited exactly once by exactly one 
route; 

• The total demand of the customers assigned to each 
route does not exceed Q; 

• The total duration of each route (including travel and 
service times) does not exceed a specified value L; 

• The total cost of the routes is minimized. 
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SEARCH SPACES AND NEIGHBOURHOODS 
FOR THE CVRP 

Search space: 

• Set of feasible routes.   

• Allow routes with capacity violations.  

• Allow routes with duration violations. 

 
Neighbourhoods: 
 
• Moving a single customer from its route. 

• Insertion can be performed simply or in a complex 
fashion (e.g., GENI insertions). 

• Swap customers. 

• Simultaneous movement of customers to different routes 
and swapping of customers between routes 
(λ-interchange of Osman 1993). 

• Coordinated movements of customers from one route to 
another (ejection chains). 

• Swapping of sequences of several customers between 
routes (Cross-exchange of Taillard et al.  1997). 
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CAPACITATED PLANT LOCATION 
PROBLEM (CPLP) 
• Set of customers I with demands di, i ε I. 

• Set J of “potential sites” for plants. 

• For each site j ε J, the fixed cost of “opening” the plant at 
j is fj and its capacity is Kj. 

• cij: cost of transporting one unit of the product from site j 
to customer i. 

The objective is to minimize the total cost, i.e., the sum of 
the fixed costs for open plants and the transportation costs.     

 
 
 

 



CPLP: MATHEMATICAL FORMULATION 

(CPLP)    Minimize  z = ijij
JjIiJj

jj xcyf ∑∑∑
∈∈∈

+  

 

 subject to    Iidx iij
Jj

∈=∑
∈

,

 

    JjyKx jj
Ji

ij ∈≤∑
∈

,

 
      JjIixij ∈∈≥ ,,0  
 
       { } Jjyj ∈∈ ,1,0  
 
 
 
Formulation variables: 
 
• xij (i ε I, j ε J): quantity shipped from site j to customer i  

• yj (j ε J): 0-1 variable indicating whether or not the plant 
at site j is open or closed. 
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Remark 1.  For any vector ỹ of location variables, optimal 
(w.r.t. to this plant configuration) values for the flow 
variables x(ỹ) can be retrieved by solving the associated 
transportation problem: 
 

(TP)   Minimize  z(ỹ) = ijij
JjIi

xc∑∑
∈∈

 

 

 subject to  Iidx iij
Jj

∈=∑
∈

,  

 

   JjyKx jj
Ji

ij ∈≤∑
∈

,~
 

 
    JjIixij ∈∈≥ ,,0  
 
If  ỹ = y*, the optimal location vector, the optimal solution to 
the original CPLP problem is simply given by (y*, x(y*)). 
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Remark 2.  An optimal solution of the original CPLP 
problem can always be found at an extreme point of the 
polyhedron of feasible flow vectors defined by the 
constraints: 
  

    Iidx iij
Jj

∈=∑
∈

,

 

   JjKx j
Ji

ij ∈≤∑
∈

,

 
        JjIixij ∈∈≥ ,,0  

    

 

This property follows from the fact that the CPLP can be 
interpreted as a fixed-charge problem defined in the space 
of the flow variables.  This fixed-charge problem has a 
concave objective function that always admits an extreme 
point minimum.  The optimal values for the location 
variables can easily be obtained from the optimal flow 

vector by setting yj equal to 1 if ,0>∑
∈

ij
Ii

x  and to 0 
otherwise. 
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SEARCH SPACES AND NEIGHBOURHOODS 
FOR THE CPLP 

Search space: 

1) Full feasible space defined by all variables. 

2) Space defined by location variables. 

3) Set of extreme points of the set of feasible flow vectors. 

 
 
Neighbourhoods: 
 
• Depend upon the search space chosen. 

• For 2), one can use “Add/Drop” and/or “Swap” 
neighbourhoods. 

• For 3), moves defined by the application of pivots to the 
linear programming formulation of the transportation 
problem, since each pivot operation moves the current 
solution to an adjacent extreme point. 



A TEMPLATE FOR LOCAL SEARCH 

To maximize )(Sf  over some domain 

Define:  S,  current solution,  

         f *,  value of the best-known solution,  

         S*,  this solution,  

               )(SN , the "neigbourhood" of S (solutions obtained from S 
by a single transformation).  

 
 
Initialization 
Choose (construct) an initial solution  0S
 

Set S:= 0S  , f * := f ( 0S )  , S* := 0S . 
 

 
Search 
While local optimum not reached do 
 

●   

)(
maxarg:

SNS
S

∈′
∈  [f(S’)]; 

●   if *)( fSf 〉 , then SSSff == :*,)(:* . 
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MAIN CLASSES OF LOCAL SEARCH 
METHODS 
 
Simple Local Search 
• The simplest of all LS approaches  
• Consists in constructing a single initial solution and 

improving it using a single neighbourhood structure until 
a local optimum is encountered.   

• Two variants of simple LS: 
− “Best improvement”  
− “First improvement” 

Multi-start Local Search 
• A simple extension to the simple LS scheme  
• Several (usually randomly generated) initial solutions  
• Apply to each of them this simple scheme, thus 

obtaining several local optima from which the best is 
selected and returned as the heuristic solution. 
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SIMULATED ANNEALING 

• Kirkpatrick, Gelatt and Vecchi (1983) 
• Based on an analogy with the cooling of material in a 

heat bath. 
• Metropolis’ algorithm (1953) 
• Solutions <—> Configurations of particles 
• Objective function <—> Energy of system 
• Can be interpreted as a controlled random walk in the 

space of solutions: 
– Improving moves are always accepted; 
– Deteriorating moves are accepted with a 

probability that depends on the amount of the 
deterioration and on the temperature (a parameter 
that decreases with time). 

• Extensions/generalizations: deterministic annealing, 
threshold acceptance methods. 

• Local search methods in which deterioration of the 
objective up to a threshold is accepted. 

• As in SA, the threshold decreases as the algorithm 
progresses. 
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VARIABLE NEIGHBOURHOOD SEARCH 

• Introduced, by Hansen and Mladenović in 1997.  

• Use, instead of a single neighbourhood, several of these 
in pre-defined sequences.  

• Over time VNS has yielded several variants of different 
complexity.  

• The simplest one, called Variable Neighbourhood (VND), 
is clearly the multi-neighbourhood extension of LS.   

• In VND, one first performs LS using the first 
neighbourhood structure until a local optimum is 
encountered; the search is then continued using the 
second neighbourhood structure until a local optimum 
(w.r.t. to that structure) is encountered, at which point, it 
switches to the third neighbourhood structure, and so on 
in a circular fashion.   

• VND will eventually stop, but only in a point which is a 
local optimum for each of the considered neighbourhood 
structures. 
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THE TABU SEARCH APPROACH 

 
• Glover (1977, 1986) 

• Hansen (1986: steepest ascent/mildest descent) 

• A metaheuristic that controls an inner heuristic designed 
for the specific problem that is to be solved. 

• Artificial intelligence concepts: maintain a history of the 
search in a number of memories. 

• Basic principle: allow non-improving moves to 
overcome local optimal (i.e. keep on transforming the 
current solution...). 

• PROBLEM: How can CYCLING be avoided??? 

� SOLUTION: Keep a HISTORY of the searching process 
and prohibit «comebacks» to previous 
solutions (tabu  moves). 
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TABUS 

● A short-term memory of the search (in general, only a fixed 
amount of information is recorded).  

● Several possibilities:  
 

- a list of the last solutions encountered (expensive, and not 
frequently used); 

 
- a list of the last modifications performed on current solutions; 

reverse modifications are then prohibited 
      (the most common type of tabus); 
 

- a list of key characteristics of the solutions or of the 
transformations 

       (sometimes more efficient) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EXAMPLES OF TABUS 
 

Consider the situation where one is solving the TSP with 2-
opt as inner heuristic. 

 
The basic set of transformations at each step consists of 
moves obtained by removing two edges [ ]),(),,( lkji ; and 
replacing them with edges [ ]),(),,¨( ljki . 

 
Possible tabus 
 
 
●   Forbid tours themselves. 
 
●   Forbid reverse transformations [ ]),(),,( ljki   → [ ]),(),,( lkji  

for a few iterations. 
 
●   Forbid any transformation involving either ),( ki  or ),( lj  
for some time. 
 
●    ... 
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MORE ON TABUS 

 

●   Multiple tabu lists can be used and have proved quite 
useful in many contexts. 

 
●   “Straightforward” tabus can be implemented as circular 

lists of fixed length.  

 
●   Fixed-length tabus cannot always prevent cycling: many 

authors have proposed schemes to vary tabu list length 
during execution (Skorin-Kapov, Taillard).  

 
●   Another solution: random tabu tags, the duration of a 

tabu status is a random variable generated when the 
tabu is created.  

 
●  Yet another solution: randomly activated tabus, at 

each iteration, a random number is generated 
indicating how far to look back in the tabu list (which is 
otherwise managed like a fixed-length list).  
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ASPIRATION CRITERIA 

 

●   Tabus are sometimes too “powerful”: 

 

     - attractive moves are prohibited, even when there is no 
danger of cycling; 

 

     - they can lead to overall stagnation of the searching process. 

 
 

●   Aspiration criteria are algorithmic devices that cancel tabus in 
some circumstances.  

 
 

●   The simplest aspiration criterion consists in allowing a move if it 
results in a solution with objective value better than that of the 
best-known solution.  

 

●   Much more complicated criteria have been proposed and 
implemented in some applications.  

 

KEY RULE : If cycling cannot occur, you may disregard tabus



SIMPLE TABU SEARCH 
To maximize )(Sf  over some domain 

Define:  S,  current solution,  

         f *,  value of the best-known solution,  

         S*,  this solution,  

         T,  the tabu list,  
 
               )(SN , the "neigbourhood" of S (solutions obtained from S 

by a single transformation), 
 
               )(SN ,  "admissible" subset of )(SN  (non-tabu or allowed 

by aspiration).  
 
Initialization 
Choose (construct) an initial solution  0S
 

Set S:= 0S  , f * := f ( 0S )  , S* := 0S , T :=∅  
 

Search 
While termination criterion not satisfied do 
 

●   

)(
maxarg:

SNS
S

∈′
∈  [f(S’)]; 

●   if *)( fSf 〉 , then ;:*,)(:* SSSff ==  

●   record tabu for the current move in T (delete oldest tabu if 
necessary). 

 31



 32

TERMINATION CRITERIA 
 

• In theory, the search could go on for ever (unless the optimal 
value of the problem is known beforehand).  

• In practice, the search has to be stopped at some point: 

     -   after a fixed number of iterations (or a fixed amount of CPU 
time), 

 

     -  after some number of iterations without an improvement in 
the best objective value (probably the most commonly used 
criterion), 

 
     -  when the objective reaches a pre-specified threshold value. 

 

• In complex tabu search schemes, the search will usually be 
stopped after completing a sequence of phases, the duration of 
each phase being determined by one of the above criteria.  



PROBABILISTIC TABU SEARCH 

In “regular” simple tabu search, one must evaluate the objective 
for every element in the neighbourhood )(SN of the current 
solution. 

 
Instead of considering the whole set )(SN , one may restrict its 
attention to a random sample )()( SNSN ⊂′ . 

 

Advantages : 
 
 

• In most applications, a smaller computational effort, since one 
only evaluates the objective for );(SNS ′∈′  

• The random choice of )(SN ′  acts as an anti-cycling choice 
       shorter tabu lists can be used. →

 
Disadvantage : the best solution may be missed. 
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SEARCH INTENSIFICATION 

Idea : To explore more thoroughly portions of the search space 
that seem “promising” 

 
 

●   From times to times, the normal searching process is stopped 
and an intensification phase is executed. 

 

●   Often based on some kind of intermediate-term memory 
→  recency memory records the number of iterations that   

“elements” have been present in the current solution. 

 

●   Often restarted from the best-known solution. 

 
●   Possible techniques: 

 

    -  “freezing” (fixing) “good” elements in the current solution; 
 

    -  changing (increasing) sample size in probabilistic TS; 
 
      -  switching to a different inner heuristic or modifying the 

parameters driving it. 
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SEARCH DIVERSIFICATION 
 
●   In many cases, the normal searching process tends to spend 

most of its time in a restricted portion of the search space. 
Good solutions may be obtained, but one may still be far from 
the optimum. 

      Diversification : a mechanism to “force” the search into 
previously unexplored areas. 

 
 

●   Usually based on some form of long-term memory . 

     frequency memory records the number of times each 
“element” has appeared in the solution. 

→

 

●   Most common techniques: 

     -  restart diversification : force a few “unfrequent” elements 
in the solution and restart the search from the new current 
solution thus obtained; 

 
       -  continuous diversification : in the evaluation of moves, 

bias the objective by adding a small term related to 
element frequencies; 

 

        -  strategic oscillation : (see next transparency). 
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HANDLING CONSTRAINTS 

 

●   In many instances, accounting for all problem constraints in the 
definition of the search space severely restricts the search 
process and leads to mediocre solutions. 

     →  constraint relaxation is often effective! 
 
 

●   “Wider” search space which is often easier to handle 
       simpler neighbourhoods can be used. →
 
●   Constraint violations are added to the objective as a weighted 

penalty term. 
 

●   But, how can one find “good” weights? 
 
     →  self-adjusting penalties can be used 
 
 

      -   weights are adjusted dynamically based on the recent 
history of the search 

 

 +  increase weights when only infeasible solutions are  
encountered, 

 
      + decrease weights if the opposite occurs. 
 
 
 

Strategic oscillation : changing weights to induce diversification. 
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SURROGATE AND AUXILIARY OBJECTIVES 

 

• In some problems, the true objective function is 
extremely costly to evaluate (e.g., MIP, with the search 
space restricted to integer variables; stochastic 
programming;...). 

    The evaluation of moves becomes prohibitive (even if 
sampling is used). 

→

 
 
• Solution: evaluate neighbours using a surrogate   

objective function 
 
        -  correlated to the true objective, 
 
        -  less demanding computationally, 
 
        -  the value of the true objective is computed only for 

the chosen move or for a subset of promising 
candidates. 

 
• In some problems, most neighbours have the same 

objective value. How can one choose the next move 
among them? 

By using an auxiliary objective function measuring a 
desirable attribute of solutions.  
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RECENT TRENDS IN TABU SEARCH 
(AND OTHER LOCAL SEARCH 

APPROACHES) 
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PARALLEL VARIANTS 

Parallel processing opens up great opportunities for 
new developments in tabu search. 

 
 
• Low-level parallelization 

Using parallel processing to speed up computationally 
demanding steps of “standard” tabu search. 

 
• High-level parallelization 

Run several search threads in parallel to obtain more 
information and come up with better solutions 

       (parallel search threads can also be used on sequential  
architectures). 

These techniques have already been used with very good 
results. 
 
 
Taxonomy paper by Crainic, Toulouse and Gendreau 
(1997). 
 
Book edited by E. Alba (2005). 
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HYBRIDS  

Using local or tabu search in combination with other 
optimization techniques. 
 
 
• In branch-and-bound, to compute bounds. 
 
• In conjunction with genetic algorithms or ant colony 

optimization. 
 
• Alternately with other LS or TS methods. 
 
• In conjunction with Constraint Logic Programming 

techniques. 

 

Currently, the most successful methods. 

Two general schemes: 

• “unified” architectures (a single algorithm combining 
components of several methods), 

• “parallel hybrids” (running concurrently “pure” 
implementations of two or more algorithms).  
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USING INFORMATION IN A DIFFERENT WAY 

●   Reactive Tabu Search 
      -   Battiti and Tecchiolli (1992, 1994) 
 
●   Path relinking, Scatter search 
     -   Glover (1994, 1995) 

     -   Glover and Laguna (1997) 
 
●   Candidate list and elite solutions 
      -   see Glover and Laguna (1997) 
 
●   Hashing and Chunking 
      -   Woodruff and Zemel (1993) 

      -   Carlton and Barnes (1995) 

      -   Woodruff (1996) 
 
●   Vocabulary building 
      -   Glover (1992) 

      -   Glover and Laguna (1993) 

      -   Rochat and Taillard (1995) 

      -   Kelly and Xu (1995) 

      -   Lopez, Carter and Gendreau (1998) 
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NEW APPLICATION AREAS 

• Integer and mixed-integer programming 

• Continuous optimization problems 
 
     - with extreme point solutions 
          +   concave programming 
          +   fixed-charge problems 
         
          -   with “general” solution structure 

• Continuous, multi-criteria optimization 

• Stochastic programming problems 
especially those with a large number of possible 
realizations (intractable using standard approaches) 

• Real-time decision problems 
 

-  LS methods almost possess the “Anytime” property; 

    -  Solutions can often be adjusted in real time to new 
information.       
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IN-DEPTH PERFORMANCE ANALYSIS 
 
 
 

• New area launched about 5 years ago by Jean-Paul 
Watson and his co-authors. 

 
• The focus is not on developing new methods, but in 

modelling and understanding the behaviour of existing 
methods. 
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LOCAL SEARCH OPERATORS 
IN ROUTING 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



 

 

 

 

 

 A    jA   i

Ij+1
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A    jA   i

Ij+1

 

 

 

 

 

 

 

2-opt exchange operator 

Edges (i, i+1) and (j, j+1) are replaced by edges (i, j) and 

(i+1, j+1), thus reversing the direction of customers 

between i+1 and j.  



 

 

 

 

A    j
A   i

I -1i

A    j

A   i

Ij+1

Ii-1

A   i+1
A   i+1

 

Or-opt operator  

Customers i and i+1 are relocated to be served between 

two customers j and j+1 instead of customers i-1 and i+2. 

This is performed by replacing 3 edges (i-1, i),  (i+1, i+2) 

and (j, j+1) by the edges (i-1, i+2), (j, i) and (i+1, j+1), 

preserving the orientation of the route. 
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A    j

Ij+1

A    j

A   i Ij+1A   i

 
 
 
 
 
2-opt* operator 

The customers served after customer i on the upper route 

are reinserted to be served after customer j on the lower 

route and customers after j on the lower route are moved 

to be served on the upper route after customer i. This is 

performed by replacing edges (i, i+1) and (j, j+1) with 

edges (i, j+1) and (j, i+1).  
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A    j

A   i

Ij+1

i-1

A    j

A   i

Ij+1

i-1

 

 

 

Relocate operator 

Edges (i-1, i), (i, i+1) and (j, j+1) are replaced by (i-1, i+1), 

(j, i) and (i, j+1), i.e., customer i from the origin route is 

placed into the destination route. 
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A    j

Ij+1 Ij+1

A   i

A    j
A   i

i-1

j-1 j-1
 
 
  
 
Exchange operator 

Edges (i-1, i), (i, i+1), (j-1, j) and (j, j+1) are replaced by (i-

1, j), (j, i+1), (j-1, i) and (i, j+1), i.e., two customers from 

different routes are simultaneously placed into the other 

routes. 
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A    j

Il+1

A   i

i-1

j-1

A    j

A   i

i-1

I k

I l

Il+1

I l

I k

 
 
 
 
CROSS-exchange 

Segments (i, k) on the upper route and (j, l) on the lower 

route are simultaneously reinserted into the lower and 

upper routes, respectively. This is performed by replacing 

edges (i-1, i), (k, k+1), (j-1, j) and (l, l+1) by edges (i-1, j), (l, 

k+1), (j-1, i) and (k, l+1). Note that the orientation of both 

routes is preserved. 
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j+1) and (k-1, k) and by 

locating the path {j+1,…, k-1}. 

 

GENI-exchange operator 

Customer i on the upper route is inserted into the lower 

route between the customers j and k closest to it by adding 

the edges (j, i) and (i, k). Since j and k are not consecutive, 

one has to reorder the lower route. Here the feasible tour is 

obtained by deleting edges (j, 

re
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Cyclic transfer operator  

The basic idea is to transfer simultaneously the customers 

denoted by white circles in cyclical manner between the 

routes. More precisely here customers a and c in route 1, f 

and j in route 2 and o and p in route 4 are simultaneously 

transferred to routes 2, 4, and 1 respectively, and route 3 

remains untouched. 
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LOCAL SEARCH METHODS FOR THE VRP 



 54

 
 
EARLY METHODS 

 
SIMULATED ANNEALING 
 
• Robusté et al. (1990): 

− Complex neighbourhood (swap + Or-opt + …) 
− Only tested on four instances 

 
• Alfa et al. (1991): 

− Route-first, cluster second heuristic for the initial 
solution 

− 3-opt neighbourhood 
− Not competitive 

 
• Osman (1993): 

− λ-interchange neighbourhood (includes swaps and 
relocate for subsets of size ≤ λ) 

− Special cooling schedule 
− Generally produces good, but not exceptional 

results 
 
• Van Breedam (1995): 

− Tested several variants of SA 
− Could not match results produced with Tabu 

Search 
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EARLY METHODS (2) 

 
TABU SEARCH 
 
• Willard (1989): 

− Solution represented as a giant tour by replication 
of the depot 

− Neighbourhood based on 2- and 3-opt moves 
− Does not seem competitive 

 
 
• Pureza and França (1991): 

− (Relocate + swap) neighbourhood  
− Preserve feasibility 
− Did not produce exceptionally good results 
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MEDIEVAL METHODS 
 

TABU SEARCH 
 
• Osman (1993): 

− λ-interchange neighbourhood with λ = 2 
− Variants with “best accept” and “first improvement” 

rules  
− Generally produces excellent, but not the best 

results 
 

• Taillard (1993): 
− λ-interchange neighbourhood 
− Feasible solutions 
− Decomposition into smaller subproblems that are 

modified during the execution of the algorithm 
− Suitable for parallel implementations 
− Continuous diversification 
− Excellent computational results, but unknown CPU 

times 
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MEDIEVAL METHODS (2) 

 
TABU SEARCH 
 
• TABUROUTE (Gendreau, Hertz, Laporte  1994) 

− GENI neighbourhoods 
− Moves in infeasible space with self-adjusting 

penalties 
− Continuous diversification 
− Random tabu tags 
− Excellent computational results 
 

• Rochat and Taillard (1995): 
− Introduces the concept of adaptive memory (pool 

of elite solutions used to reconstruct solutions for 
intensification/diversification purposes) 

− Outstanding computational results on both the VRP 
and the VRPTW 

 
• Rego and Roucairol (1996) 

− Based on ejection chains (cyclic transfer 
neighbourhood) 

− Parallel implementation 
− Generally produces excellent, but not the best 

results 
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MEDIEVAL METHODS (3) 

 
DETERMINISTIC  ANNEALING 
 
• Golden et al. (1998): 

− Applied record-to-record travel to 20 large 
instances 

− Produces better results than Xu and Kelly’s tabu 
search heuristic for 11 instances out of 20 

− Much faster than Xu and Kelly’s heuristic 
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RECENT METHODS 

 
TABU SEARCH 
 
• Granular Tabu Search (Toth and Vigo  2003) 

− Removes from the graph long edges unlikely to 
belong to the optimal solution 

− Typically keep between 10 to 20% of the original 
edges 

− The sparsification parameter can be adjusted 
dynamically to yield intensification or diversification 

− Edge-exchange neighbourhood  
− Excellent results (see tables later) 

 
• Unified Tabu Search (Cordeau et al. 1997, 2001, 2004) 

− Similar in many ways to TABUROUTE 
− A single initial solution is considered 
− Additional diversification is used by moving the 

depot arbitrarily at some points 
− Can be applied to many variants of the VRP 
− Excellent computational results 
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RECENT METHODS 
 
 
DETERMINISTIC  ANNEALING 
 
• Li et al. (2004): 

− Combines record-to-record principles with a 
variable-length neighbour list whose principle is 
similar to Granular Tabu Search 

− Neighbourhood based on intra-route and inter-
route 2-opt moves 

− Excellent results 
 
 
VERY LARGE NEIGHBORHOOD SEARCH 
 
• Ergun et al. (2003): 

− Descent mechanism 
− The method considers at each iteration a 

composite neighbourhood involving changes to 
several routes as in ejection chains or the cyclic 
transfer neighbourhood 

− Changes to individual routes are based on 2-opt, 
swap and relocate moves. 

− The set f moves to be performed at each iteration 
is obtained by solving a shortest path problem. 

− Excellent results  
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Table 1.1. Computational results for the Christofides et al. (1979) instances

GTS Li, Golden and USTA VLNS Prins (2004)
Toth and Vigo (2003) Wasil (2004) Cordeau et al. (2001) Ergun et al. (2003)

Instance n Type1 Value % Minutes2 Value3 % Value4 % Minutes5 Value6 % Minutes7 Value % Minutes8

1 50 C 524.61 0.00 0.81 524.61 0.00 524.61 0.00 2.32 524.61 0.00 23.13 524.61 0.00 0.01
2 75 C 838.60 0.40 2.21 836.18 0.11 835.28 0.00 14.78 835.43 0.02 33.93 835.26 0.00 0.77
3 100 C 828.56 0.29 2.39 827.39 0.15 826.14 0.00 11.67 827.46 0.16 21.30 826.14 0.00 0.46
4 150 C 1033.21 0.47 4.51 1045.36 1.65 1032.68 0.41 26.66 1036.24 0.76 24.45 1031.63 0.31 5.50
5 199 C 1318.25 2.09 7.50 1303.47 0.94 1315.76 1.90 57.68 1307.33 1.24 57.25 1300.23 0.69 19.10
6 50 C, D 555.43 0.00 0.86 555.43 0.00 3.03 555.43 0.00 3.50 555.43 0.00 0.01
7 75 C, D 920.72 1.21 2.75 909.68 0.00 7.41 910.04 0.04 36.53 912.30 0.29 1.42
8 100 C, D 869.48 0.41 2.90 865.95 0.00 10.93 865.94 0.00 12.43 865.94 0.00 0.37
9 150 C, D 1173.12 0.91 5.67 1167.85 0.46 51.66 1164.88 0.20 42.47 1164.25 0.15 7.25

10 199 C, D 1435.74 2.86 9.11 1416.84 1.50 106.28 1404.36 0.61 28.32 1420.20 1.74 26.83
11 120 C 1042.87 0.07 3.18 1042.11 0.00 1073.47 3.01 11.67 1042.11 0.00 69.13 1042.11 0.00 0.30
12 100 C 819.56 0.00 1.10 819.56 0.00 819.56 0.00 9.02 819.56 0.00 5.98 819.56 0.00 0.05
13 120 C, D 1545.51 0.28 9.34 1549.25 0.53 21.00 1544.99 0.25 39.73 1542.97 0.12 10.44
14 100 C, D 866.37 0.00 1.41 866.37 0.00 10.53 866.37 0.00 6.55 866.37 0.00 0.09

Average 0.64 3.84 0.41 0.56 24.62 0.23 28.91 0.24 5.19

1. C: Capacity restrictions; D: Route length restrictions.
2. Pentium (200 MHz).
3. Best variant (α = 0.4) .
4. Results of recent computational experiments (see Section 3.3); the average % deviation in Cordeau et al. (2001) is 0.69.
5. Pentium IV (2GHz).
6. Best of five runs.
7. Time for reaching the best value for the first time (Pentium III, 733 MHz).
8. GHz PC (75 MFlops).
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Table 1.1. (continued). Computational results for the Christofides et al. (1979) instances

Bone Route (Tarantitis AGES best AGES fast Berger and
and Kiranoudis (2002)) Mester and Bräysy (2004) Mester and Bräysy (2004) Barkaoui (2004)

Instance n Type1 Value % Minutes9 Value10 % Minutes11 Value10 % Minutes11 Value % Minutes12 Best

1 50 C 524.61 0.00 0.11 524.61 0.00 0.01 524.61 0.00 0.01 524.61 0.00 2.00 524.61

2 75 C 835.26 0.00 4.56 835.26 0.00 0.26 835.26 0.00 0.26 835.26 0.00 14.33 835.26

3 100 C 826.14 0.00 7.66 826.14 0.00 0.05 826.14 0.00 0.05 827.39 0.15 27.90 826.14

4 150 C 1030.88 0.24 9.13 1028.42 0.00 0.47 1028.42 0.00 0.47 1036.16 0.75 48.98 1028.42

5 199 C 1314.11 1.77 16.97 1291.29 0.00 101.93 1294.25 0.23 0.50 1324.06 2.54 55.41 1291.29

6 50 C, D 555.43 0.00 0.10 555.43 0.00 0.02 555.43 0.00 0.02 555.43 0.00 2.33 555.43

7 75 C, D 909.68 0.00 0.92 909.68 0.00 0.43 909.68 0.00 0.43 909.68 0.00 10.50 909.68

8 100 C, D 865.94 0.00 4.28 865.94 0.00 0.44 865.94 0.00 0.44 868.32 0.27 5.05 865.94

9 150 C, D 1163.19 0.06 5.83 1162.55 0.00 1.22 1164.54 0.17 0.50 1169.15 0.57 17.88 1162.55

10 199 C, D 1408.82 0.93 14.32 1401.12 0.41 2.45 1404.67 0.42 0.45 1418.79 1.64 43.86 1395.85

11 120 C 1042.11 0.00 0.21 1042.11 0.00 0.05 1042.11 0.00 0.05 1043.11 0.10 22.43 1042.11

12 100 C 819.56 0.00 0.10 819.56 0.00 0.01 819.56 0.00 0.01 819.56 0.00 7.21 819.56

13 120 C, D 1544.01 0.19 8.75 1541.14 0.00 0.63 1543.26 0.14 0.47 1553.12 0.78 34.91 1541.14

14 100 C, D 866.37 0.00 0.10 866.37 0.00 0.08 866.37 0.00 0.08 866.37 0.00 4.73 866.37

Average 0.23 5.22 0.03 7.72 0.07 0.27 0.49 21.25

9. Pentium II (400 MHz).
10. For C instances, see Mester and Bräysy (2004). Otherwise, see Mester (2004).
11. Pentium IV (2 GHz).
12. Pentium (400 MHz).
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Table 1.2. Computational results for the Golden et al. (1998) instances

GTS Li, Golden and USTA VLNS Prins (2004)
Toth and Vigo (2003) Wasil (2004) Cordeau et al. (2001) Ergun et al. (2003)

Instance Type1 Value % Minutes2 Value3 % Value4 % Minutes5 Value6 % Minutes7 Value % Minutes8

1 240 C 5736.15 1.93 4.98 5666.42 0.69 5681.97 0.97 10.29 5741.79 2.03 134.95 5646.63 0.34 32.42
2 320 C 8553.03 1.24 8.28 8469.32 0.25 8657.36 2.48 35.39 8917.41 5.56 150.83 8447.92 0.00 77.92
3 400 C 11402.75 3.32 12.94 11145.80 0.99 11037.40 0.01 55.39 12106.64 9.70 15.67 11036.22 0.00 120.83
4 480 C 14910.62 9.44 15.13 13758.08 0.98 13740.60 0.85 83.19 15316.69 12.42 106.50 13624.52 0.00 187.60
5 200 C 6697.53 3.66 2.38 6478.09 0.26 6756.44 4.57 5.13 6570.28 1.69 15.50 6460.98 0.00 1.04
6 280 C 8963.32 6.54 4.65 8539.61 1.51 8537.17 1.48 18.64 8836.25 5.03 81.98 8412.80 0.00 9.97
7 360 C 10547.44 3.45 11.66 10289.72 0.92 10267.40 0.70 25.60 11116.68 9.03 85.00 10195.59 0.00 39.05
8 440 C 12036.24 3.20 11.08 11920.52 2.20 11869.50 1.77 71.44 12634.17 8.32 33.95 11828.78 1.42 88.30
9 255 C,D 593.35 1.71 11.67 588.25 0.83 587.39 0.69 37.26 587.89 0.77 49.20 591.54 1.40 14.32

10 323 C,D 751.66 1.30 15.83 749.49 1.01 752.76 1.45 51.11 749.85 1.05 125.05 751.41 1.26 36.58
11 399 C,D 936.04 1.92 33.12 925.91 0.81 929.07 1.16 41.54 932.74 1.56 171.05 933.04 1.59 78.50
12 483 C,D 1147.14 3.61 42.90 1128.03 1.88 1119.52 1.11 157.01 1134.63 2.48 388.62 1133.79 2.40 30.87
13 252 C,D 868.80 1.13 11.43 865.20 0.71 875.88 1.95 34.83 870.90 1.37 235.13 875.16 1.87 15.30
14 320 C,D 1096.18 1.38 14.51 1097.78 1.52 1102.03 1.92 21.56 1097.11 1.46 31.17 1086.24 0.46 34.07
15 396 C,D 1369.44 1.80 18.45 1361.41 1.20 1363.76 1.38 57.64 1367.15 1.63 65.30 1367.37 1.65 110.48
16 480 C,D 1652.32 1.83 23.07 1635.58 0.79 1647.06 1.50 129.50 1643.00 1.25 31.58 1650.94 1.74 130.97
17 240 C,D 711.07 0.46 14.29 711.74 0.56 710.93 0.44 18.03 716.46 1.22 223.62 710.42 0.37 5.86
18 300 C,D 1016.83 1.81 21.45 1010.32 1.16 1014.62 1.59 67.11 1023.32 2.46 299.23 1014.80 1.61 39.33
19 360 C,D 1400.96 2.49 30.06 1382.59 1.15 1383.79 1.24 66.21 1404.84 2.78 393.03 1376.49 0.70 74.25
20 420 C,D 1915.83 5.20 43.05 1850.92 1.63 1854.24 1.82 135.29 1883.33 3.41 121.62 1846.55 1.39 210.42

Average 2.87 17.55 1.05 1.45 56.11 3.76 137.95 0.91 66.90

1. C: Capacity restrictions; D: Route length restrictions.
2. Pentium (200 MHz).
3. Best variant (α = 0.01) .
4. Results of recent computational experiments (see Section 3.3).
5. Pentium IV (2GHz).
6. Best of two runs.
7. Time for reaching the best value for the first time (Pentium III, 733 MHz).
8. GHz PC (75 MFlops).
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Table 1.2. (continued). Computational results for the Golden et al. (1998) instances

Bone Route (Tarantitis AGES best AGES fast D-Ants
and Kiranoudis (2002)) Mester and Bräysy (2004) Mester and Bräysy (2004) Reimann et al. (2004)

Instance Type Value % Minutes9 Value10 % Minutes11 Value10 % Minutes11 Value12 % Minutes13 Best

1 240 C 5676.97 0.88 27.86 5627.54 0.00 8.73 5644.00 0.30 0.70 5644.02 0.29 62.52 5627.54

2 320 C 8512.64 0.77 55.62 8447.92 0.00 46.66 8468.00 0.24 0.20 8449.12 0.01 57.67 8447.92

3 400 C 11199.72 1.48 59.21 11036.22 0.00 40.55 11146.00 0.99 0.70 11036.22 0.00 21.92 11036.22

4 480 C 13637.53 0.10 47.63 13624.52 0.00 470.00 13704.52 0.59 2.50 13699.11 0.55 119.12 13624.52

5 200 C 6460.98 0.00 11.34 6460.98 0.00 0.17 6466.00 0.08 0.50 6460.98 0.00 0.87 6460.98

6 280 C 8429.28 0.20 12.54 8412.88 0.00 75.22 8539.61 1.51 0.10 8412.90 0.00 5.72 8412.80

7 360 C 10216.50 0.21 42.50 10195.56 0.00 2.55 10240.42 0.44 0.85 10195.59 0.00 14.03 10195.56

8 440 C 11936.16 2.34 79.69 11663.55 0.00 34.30 11918.75 2.19 0.27 11828.78 1.42 35.30 11663.55

9 255 C,D 583.39 0.00 8.33 588.25 0.83 0.80 586.87 0.60 21.52 583.39

10 323 C,D 742.03 0.00 6.00 752.92 1.39 0.43 750.77 1.25 17.48 742.03

11 399 C,D 918.45 0.00 110.00 925.94 0.82 1.10 927.27 0.96 96.88 918.45

12 483 C,D 1107.19 0.00 600.00 1128.67 1.94 1.50 1140.87 3.04 61.38 1107.19

13 252 C,D 859.11 0.00 10.25 865.20 0.71 0.18 865.07 0.69 87.20 859.11

14 320 C,D 1081.31 0.00 1.22 1097.68 1.51 0.28 1093.77 1.15 25.85 1081.31

15 396 C,D 1345.23 0.00 7.17 1354.76 0.71 0.26 1358.21 0.96 23.80 1345.23

16 480 C,D 1622.69 0.00 20.00 1634.99 0.76 1.15 1635.16 0.77 39.90 1622.69

17 240 C,D 707.79 0.00 0.75 710.22 0.34 0.16 708.76 0.14 68.50 707.79

18 300 C,D 998.73 0.00 2.50 1009.53 1.08 0.18 998.83 0.01 42.73 998.73

19 360 C,D 1366.86 0.00 6.00 1381.88 1.10 0.25 1367.20 0.02 112.80 1366.86

20 420 C,D 1821.15 0.00 8.40 1840.57 1.03 0.55 1822.94 0.10 71.42 1821.15

Average 0.74 42.05 0.00 72.94 0.93 0.63 0.60 49.33

9. Pentium II (400 MHz).
10. For C instances, see Mester and Bräysy (2004). Otherwise, see Mester (2004).
11. Pentium IV (2GHz).
12. Best value obtained in several experiments.
13. Pentium (900 MHz).
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LOCAL SEARCH METHODS FOR THE VRPTW 
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TABU SEARCH FOR VRPTW 

• Initial solution: typically created with some cheapest 
insertion heuristic. 

• Improvement using local search with one or more 
neighborhood structures and the best-accept strategy. 
Most of the neighborhoods used are well known. 

• To reduce the complexity of the search, some authors 
propose special strategies for limiting the 
neighborhood.  

• To cross the barriers of the search space, created by 
time window constraints, some authors allow 
infeasibilities during the search. The violations of 
constraints are penalized in the cost function and the 
parameter values regarding each type of violation are 
adjusted dynamically. 

• Since the number of routes is often considered as the 
primary objective, some authors use different explicit 
strategies for reducing the number of routes. 

• Most of the proposed tabu searches use specialized 
diversification and intensification strategies to guide 
the search (e.g., “adaptive memory”, Rochat and 
Taillard, 1995). 

• Several authors report using various post-optimization 
techniques. 
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THE MAIN FEATURES OF TABU SEARCH 
HEURISTICS FOR VRPTW 
 
 
 
 
 
 
Authors Year Initial 

solution 
Neighborhood
Operators 

Route 
min. 

Notes 

Garcia et 
al. 

1994 Solomon’s 
I1 heuristic 

2-opt*, Or-opt Yes Neighborhood 
restricted to 
arcs close in 
distance 

Rochat et 
al. 

1995 Modification 
of 
Solomon’s 
I1, 2-opt 

2-opt, relocate No Adaptive 
memory 

Carlton 1995 Insertion 
heuristic 

relocate No Reactive tabu 
search 

Potvin et 
al. 

1996 Solomon’s 
I1 heuristic 

2-opt*, Or-opt Yes Neighborhood 
restricted to 
arcs close in 
distance 

Taillard et 
al. 

1997 Solomon’s 
I1 heuristic 

CROSS No Soft time 
windows, 
adaptive 
memory 

Badeau 
et al. 

1997 Solomon’s 
I1 heuristic 

CROSS No Soft time 
windows, 
adaptive 
memory 

Chiang et 
al 

1997 Modification 
of Russell 
(1995) 

λ-interchange No Reactive tabu 
search 

De 
Backer et 

1997 Savings 
heuristic 

exchange, 
relocate, 

No Constraint 
programming 
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al. 2-opt*, 2-opt, Or-
opt 

used to check 
feasibility of 
moves 

Brandão 1999 Insertion 
heuristic 

relocate, 
exchange, GENI 

No Neighborhood
s restricted to 
arcs close in 
distance 

Schulze 
et al. 

1999 Solomon’s 
I1, parallel 
I1 and 
savings 
heuristic   

Ejection chains,  
Or-opt 

Yes Generated 
routes stored 
in a pool 

Tan et al. 2000 Insertion 
heuristic of 
Thangiah 
(1994) 

λ-interchange, 2-
opt* 

No              –––––
–– 

Lau et al. 2000 Insertion 
heuristic 

exchange, 
relocate 

No Constraint 
based 
diversification 

Cordeau 
et al. 

2001 Modification 
of Sweep 
heuristic 

relocate, GENI No              –––––
–– 

Lau et al. 2002 Relocation 
from a 
holding list 

exchange, 
relocate 

Yes Holding list for 
unrouted 
nodes, limit for 
number of 
routes 
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PERFORMANCE OF TABU SEARCH 
HEURISTICS FOR THE VRPTW 

 

Average results with respect to Solomon’s  benchmarks. 

The notations CNV and CTD in the rightmost column 

indicate the cumulative number of vehicles and cumulative 

total distance over all 56 test problems. 

 
Authors R1 R2 C1 C2 RC1 RC2 CNV/CTD
Garcia et al. 
(1994) 

12.92 
1317.7 

3.09 
1222.6

10.00
877.1

3.00 
602.3

12.88 
1473.5

3.75 
1527.0 

436 
65977 

Rochat et al. 
(1995) 

12.25 
12085 

2.91 
961.72

10.00
828.4

3.00 
589.9

11.88 
1377.4

3.38 
1119.6 

415 
57231 

Potvin et al. 
(1996) 

12.50 
1294.5 

3.09 
1154.4

10.00
850.2

3.00 
594.6

12.63 
1456.3

3.38 
1404.8 

426 
63530 

Taillard et al. 
(1997) 

12.17 
1209.3 

2.82 
980.27

10.00
828.4

3.00 
589.9

11.50 
1389.2

3.38 
1117.4 

410 
57523 

Chiang et al. 
(1997) 

12.17 
1204.2 

2.73 
986.32

10.00
828.4

3.00 
591.4

11.88 
1397.4

3.25 
1229.5 

411 
58502 

De Backer et al. 
(1997) 

14.17 
1214.9 

5.27 
930.18

10.00
829.8

3.25 
604.8

14.25 
1385.1

6.25 
1100.0 

508 
56998 

Brandão (1999) 12.58 
1205 

3.18 
995 

10.00
829 

3.00 
591 

12.13 
1371 

3.50 
1250 

425 
58562 

Schulze et al. 
(1999) 

12.25 
1239.1 

2.82 
1066.7

10.00
828.9

3.00 
589.9

11.75 
1409.3

3.38 
1286.0 

414 
60346 

Tan et al. (2000) 
 

13.83 
1266.4 

3.82 
1080.2

10.00
870.9

3.25 
634.8

13.63 
1458.2

4.25 
1293.4 

467 
62008 

Lau et al. (2000) 14.00 
1211.5 

3.55 
960.43

10.00
832.1

3.00 
612.2

13.63 
1385.0

4.25 
1232.6 

464 
58432 

Cordeau et al. 
(2001) 

12.08 
1210.1 

2.73 
969.57

10.00
828.4

3.00 
589.9

11.50 
1389.8

3.25 
1134.5 

407 
57556 

Lau et al. (2002) 12.17 
1211.5 

3.00 
1001.1

10.00
832.1

3.00 
589.9

12.25 
1418.8

3.38 
1170.9 

418 
58477 
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RECENT WORK ON THE VRPTW 
 
• Gehring and Homberger have proposed larger 

benchmark instances for the VRPTW (200-1000 
customers) 

• Several authors have presented methods for tackling 
these. 

• Survey by Gendreau and Tarantilis almost completed. 
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1 Vehicle Routing Problem

The VRP [19] can be formally defined as follows. Let G = (V,A) be a graph
with A the arc set and V = {1, ..., n} the vertex set, where vertex 1 is the depot
and the other vertices are cities or customers to be served. With every arc (i, j),
i 6= j, is associated a non-negative distance matrix D = (dij), where dij can be
interpreted either as a true distance, a travel time or a travel cost. Note that
the undirected version of the VRP is obtained when D is symmetric. A fleet
of vehicles, based at the depot, is available for serving the vertices. Usually,
the number of vehicles is variable, and a fixed cost f is incurred each time a
new vehicle is used. It can also happen that the number of vehicles is fixed or
upper bounded. A non-negative weight or demand qi is associated with each
vertex i > 1 and the sum of demands on any vehicle route should not exceed the
vehicle capacity. The capacity and fixed cost can be the same for all vehicles
(homogeneous fleet) or not (heterogeneous fleet). In some variants, the total
travel distance or total travel time of each vehicle is also constrained. The
problem is to find a set of least-cost vehicle routes such that:

• each vertex in V − {1} is served exactly once by exactly one vehicle;

• each vehicle route starts and ends at the depot;

• all side constraints are satisfied (capacity, maximum travel distance or
maximum travel time).

Note that this section also covers methods developed to solve Open VRP
(OVRP), in which each route is a Hamiltonian path instead of Hamiltonian
cycle; this difference comes from the fact that vehicles do not return to the
starting depot or, if they do so, they must follow the same path backwards.
Problems with multiple objectives are also considered.

The reader is referred to [9] for a general survey about metaheuristics for the
classical VRP with capacity constraints. References on specific metaheuristics
are found in the following subsections.

1.1 Simulated annealing

I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Annals of Operations Research, 41:421–451, 1993.

I. Zeng, H.L. Ong and K.M. Ong. An assignment-based local search method for
solving vehicle routing problems. Asia-Pacific Journal of Operational Research,
22:85–104, 2005.

S. Chen, B. Golden and E. Wasil. The split delivery vehicle routing problem:
Applications, algorithms, test problems, and computational results. Networks,
49:318–329, 2007.
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1.2 Tabu search

I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for
the vehicle routing problem. Annals of Operations Research, 41:421–451, 1993.

É.D. Taillard. Parallel iterative search methods for vehicle routing problems.
Networks, 23:661–673, 1993.

M. Gendreau, A. Hertz and G. Laporte. A tabu search heuristic for the vehicle
routing problem. Management Science, 40:1276–1290, 1994.

Y. Rochat and É. Taillard. Probabilistic diversification and intensification in
local search for vehicle routing. Journal of Heuristics, 1:147–167, 1995.

C. Rego. A subpath ejection method for the vehicle routing problem. Manage-
ment Science, 44:1447-1459, 1998.

G. Barbarosoglu and D. Ozgur. A tabu search algorithm for the vehicle routing
problem. Computers & Operations Research, 26:255–270, 1999.

J.-F. Cordeau, G. Laporte and A. Mercier. A unified tabu search heuristic for
vehicle routing problems with time windows. Journal of the Operational Re-
search Society, 52:928–936, 2001.

C.D. Tarantilis and C.T. Kiranoudis. Boneroute: an adaptive memory-based
method for effective fleet management. Annals of Operations Research, 115:227–
241, 2002.

P. Toth and D. Vigo. The granular tabu search and its application to the vehicle
routing problem. INFORMS Journal on Computing, 15:333–348, 2003.

J. Brandão. A tabu search algorithm for the open vehicle routing problem. Eu-
ropean Journal of Operational Research, 157:552–564, 2004.

Z. Fu, R.W. Eglese and L. Li. A new tabu search heuristic for the open vehicle
routing problem. Journal of the Operational Research Society, 56:267–274, 2005.

C.D. Tarantilis. Solving the vehicle routing problem with adaptive memory
programming methodology. Computers & Operations Research, 32:2309–2327,
2005.

C. Archetti, A. Hertz and M.G. Speranza. A tabu search algorithm for the split
delivery vehicle routing problem. Transportation Science, 40:64 73, 2006.

M. Gendreau, M. Iori, G. Laporte and S. Martello. A tabu search algorithm for
a routing and container loading problem. Transportation Science, 40:342–350,
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2006.

N.A. Wassan. A reactive tabu search for the vehicle routing problem. Journal
of the Operational Research Society, 57:111–116, 2006.

U. Derigs and R. Kaiser. Applying the attribute based hill climber heuris-
tic to the vehicle routing problem. European Journal of Operational Research,
177:719–732, 2007.

D. Pisinger and S. Røpke. A general heuristic for vehicle routing problems.
Computers & Operations Research, 34:2403–2435, 2007.

1.3 Variable neighborhood search

J. Kytöjoki, T. Nuortio, O. Bräysy and M. Gendreau. An efficient variable
neighborhood search heuristic for very large scale vehicle routing problems.
Computers & Operations Research, 34:2743–2757, 2007.
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2 VRP with Time Windows

In the VRP with Time Windows (VRPTW) [2], a time interval [ai, bi] is asso-
ciated with vertex i ∈ V . In the hard time window variant, the vertex must be
served within that interval (although the vehicle can wait, if it arrives before
the lower bound ai). In the soft time window variant, the vertex can be served
outside of its time interval, but a penalty is incurred in the objective. A general
survey about metaheuristics for the VRPTW is found in [1].

2.1 Simulated annealing

W.-C. Chiang and R.A. Russell. Simulated annealing metaheuristics for the
vehicle routing problem with time windows. Annals of Operations Research,
63:3–27, 1996.

K.C. Tan, L.H. Lee, Q.L. Zhu and K. Ou. Heuristic methods for vehicle routing
problem with time windows. Artificial Intelligence in Engineering, 15:281–295,
2001.

Z. Czech and P. Czarnas. Parallel simulated annealing for the vehicle routing
problem with time windows. In Proceedings of 10th Euromicro Workshop on
Parallel Distributed and Network-Based Processing, Canary Islands, Spain, 376–
383, 2002.

2.2 Tabu search

B.-L. Garcia, J.-Y. Potvin and J.-M. Rousseau. A parallel implementation of
the tabu search heuristic for vehicle routing problems with time window con-
straints. Computers & Operations Research, 21:1025–1033, 1994.

Y. Rochat and É. Taillard. Probabilistic diversification and intensification in
local search for vehicle routing. Journal of Heuristics, 1:147–167, 1995.

J.-Y. Potvin, T. Kervahut, B.L. Garcia and J.-M. Rousseau. The vehicle rout-
ing problem with time windows - Part I: Tabu search. INFORMS Journal on
Computing, 8:157–164, 1996.

P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin and É. Taillard. A parallel
tabu search heuristic for the vehicle routing problem with time windows. Trans-
portation Research – Part C, 5, 109–122, 1997.

W.-C. Chiang and R.A. Russell. A reactive tabu search metaheuristic for the
vehicle routing problem with time windows. INFORMS Journal on Computing,
9:417–430, 1997.
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B. De Backer and V. Furnon. Meta-heuristics in constraint programming ex-
periments with tabu search on the vehicle routing problem. In Proceedings of
the Second International Conference on Metaheuristics (MIC’97), S. Antipolis,
France, 1–14, 1997.

É. Taillard, P. Badeau, M. Gendreau, F. Guertin and J.-Y. Potvin. A tabu
search heuristic for the vehicle routing problem with soft time windows. Trans-
portation Science, 31:170–186, 1997.

J. Brandão. Metaheuristic for the vehicle routing problem with time windows.
In Meta-heuristics - Advances and Trends in Local Search Paradigms for Op-
timization, S. Voss, S. Martello, I.H. Osman and C. Roucairol, eds., Kluwer
Academic Publishers, Boston, 19–36, 1999.

J. Schulze and T. Fahle. A parallel algorithm for the vehicle routing prob-
lem with time window constraints. Annals of Operations Research, 86:585–607,
1999.

J.-F. Cordeau, G. Laporte and A. Mercier. A unified tabu search heuristic for
vehicle routing problems with time windows. Journal of the Operational Re-
search Society, 52:928–936, 2001.

K.C. Tan, L.H. Lee, Q.L. Zhu and K. Ou. Heuristic methods for vehicle routing
problem with time windows. Artificial Intelligence in Engineering, 15:281–295,
2001.

H.C. Lau, M. Sim and K.M. Teo. Vehicle routing problem with time windows
and a limited number of vehicles. European Journal of Operational Research,
148:559–569, 2003.

J.-F. Cordeau, G. Laporte and A. Mercier. Improved tabu search algorithm for
the handling of route duration constraints in vehicle routing problems with time
windows. Journal of Operational Research Society, 55:542–546, 2004.

S.C. Ho and D. Haugland. A tabu search heuristic for the vehicle routing prob-
lem with time windows and split deliveries. Computers & Operations Research,
31:1947–1964, 2004.

D. Pisinger and S. Røpke. A general heuristic for vehicle routing problems.
Computers & Operations Research, 34:2403–2435, 2007.

2.3 Variable neighborhood search

L.-M. Rousseau, M. Gendreau and G. Pesant. Using constraint-based operators
to solve the vehicle routing problem with time windows. Journal of Heuristics,
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8:43–58, 2002.

O. Bräysy. A reactive variable neighbourhood search for the vehicle routing
problem with time windows. INFORMS Journal on Computing, 15: 347–368,
2003.

O. Bräysy, G. Hasle and W. Dullaert. A multi-start local search algorithm for
the vehicle routing problem with time windows. European Journal of Opera-
tional Research, 159:586–605, 2004.
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3 VRP with Backhauls

In the VRP with Backhauls (VRPB) [20], the demand at each vertex i corre-
sponds either to a delivery or a pick-up (backhaul) which is then brought back
to the depot. While goods are picked up or delivered, the quantity on board
should never exceed the capacity of the vehicle. This problem is a special case
of the VRPPD (see Section 4).

3.1 Tabu search

C. Duhamel, J.-Y. Potvin and J.-M, Rousseau. A tabu search heuristic for the
vehicle routing problem with backhauls and time windows. Transportation Sci-
ence, 31:49–59, 1997.

I.H. Osman and N. Wassan. A reactive tabu search metaheuristic for the vehicle
routing problem with backhauls. Journal of Scheduling, 5:263–285, 2002.

J. Brandão. A new tabu search algorithm for the vehicle routing problem with
backhauls. European Journal of Operational Research, 173:540–555, 2006.
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4 VRP with Pick-ups and Deliveries

In the VRP with Pick-ups and Deliveries (VRPPD) [3], a transportation re-
quest i is associated with two vertices oi and di, and the demand qi should be
picked up at oi and delivered at di. For a solution to be feasible, both oi and
di should be in the same route. Furthermore, oi should appear before di in the
route. In this problem, capacity constraints can be present or not, depending
on the application, and a time window is typically associated with each vertex.
For example, in transportation-on-demand applications where people with spe-
cial needs are transported (a problem referred to as the Dial-A-Ride Problem),
there are both capacity and time window constraints. Furthermore, there is a
constraint on the maximum ride time of each passenger.

4.1 Simulated annealing

S.M. Hart. The modeling and solution of a class of dial-a-ride problems using
simulated annealing. Control and Cybernetics, 25:131–157, 1996.

H. Li and A. Lim. A metaheuristic for the pickup and delivery problem with
time windows. International Journal on Artificial Intelligence Tools, 12:173–
186, 2003.

4.2 Tabu search

W.P. Nanry and J.W. Barnes. Solving the pickup and delivery problem with
time windows using reactive tabu search. Transportation Research – Part B,
34:107–121, 2000.

P. Caricato, G. Ghiani, A. Grieco and E. Guerriero. Parallel tabu search for a
pickup and delivery problem with track contention. Parallel Computing, 29:631–
639, 2003.

J.-F. Cordeau and G. Laporte. A tabu search heuristic for the static multi-
vehicle dial-a-ride problem. Transportation Research - Part B, 37:579–594, 2003.

A. Attanasio, J.-F. Cordeau, G. Ghiani and G. Laporte. Parallel tabu search
heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput-
ing, 30:377–387, 2004.

M. Gendreau, F. Guertin, J.-Y. Potvin and R. Séguin. Neighborhood search
heuristics for a dynamic vehicle dispatching problem with pick-ups and deliver-
ies. Transportation Research C 14:157–174, 2006.

F.A. Montané, R.D. Galvão. A tabu search algorithm for the vehicle routing
problem with simultaneous pickup and delivery service. Computers & Opera-
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tions Research, 33:595–619, 2006.

E. Melachrinoudis, A.B. Ilhan and H. Min. A dial-a-ride problem for client
transportation in a health-care organization. Computers & Operations Research,
34:742–759, 2007.

4.3 Others

S. Røpke and D. Pisinger. A unified heuristic for a large class of vehicle routing
problems with backhauls. European Journal of Operational Research, 171:750-
775, 2006.

S. Røpke and D. Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science,
40:455-472, 2006.
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5 VRP with Multiple Use of Vehicles

In standard vehicle routing problems, it is implicitly assumed that each vehicle
serves a single route. In some cases, however, it might be possible or even
necessary to assign the vehicle to several routes. This situation happens, for
example, when the capacity of the vehicle is relatively small. In this case,
frequent returns to the depot are required to load or unload the vehicle.

5.1 Tabu search

É. Taillard, G. Laporte and M. Gendreau. Vehicle routeing with multiple use
of vehicles. Journal of the Operational Reseach Society, 47:1065–1070, 1996.

J. Brandão and A. Mercer. A tabu search algorithm for the multi-trip vehicle
routing and scheduling problem. European Journal of Operational Research,
100:180–191, 1997.

J. Brandão and A. Mercer. The multi-trip vehicle routing problem. Journal of
the Operational Research Society, 49:799–805, 1998.

A. Olivera and O. Viera. Adaptive memory programming for the vehicle routing
problem with multiple trips. Computers & Operations Research, 34:28–47, 2007.
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6 Fleet Size and Mix VRP

When the number of vehicles is free and the fleet is heterogeneous, one is faced
with the Fleet Size and Mix VRP (FSMVRP) [8], which exhibits special features
that need to be addressed through specific algorithmic procedures. In particular,
the benefits of replacing one type of vehicle by another for serving a particular
route must be taken into account. We also include in this section methods
devised for solving the VRP with trailers (VRPT), where one has to determine
the optimal deployment of a vehicle fleet of truck-trailer combinations.

6.1 Simulated annealing

R. Tavakkoli-Moghaddam, N. Safaei and Y. Gholipour. A hybrid simulated
annealing for capacitated vehicle routing problems with the independent route
length. Applied Mathematics and Computation, 176:445–454, 2006.

F. Li, B. Golden and E. Wasil. A record-to-record travel algorithm for solv-
ing the heterogeneous fleet vehicle routing problem. Computers & Operations
Research, 34:2734-2742, 2007.

6.2 Tabu search

I.H. Osman and S. Salhi. Local search strategies for the vehicle fleet mix prob-
lem. In Modern Heuristic Search Methods, V.J. Rayward-Smith, I.H. Osman,
C.R. Reeves and G.D. Smith, eds., John Wiley & Sons, Chichester, 131–153,
1996.

M. Gendreau, G. Laporte, C. Musaraganyi and É. Taillard. A tabu search
heuristic for the heterogeneous fleet vehicle routing problem. Computers & Op-
erations Research, 26:1153–1173, 1999.

R. Mechti, S. Poujade, C. Roucairol and B. Lemarié. Global and local moves in
tabu search: a real-life mail collecting application. In Meta-heuristics Advances
and Trends in Local Search Paradigms for Optimization, S. Voss, S. Martello,
I.H. Osman and C. Roucairol, eds., Kluwer, Boston, 155–174, 1999.

I.-M. Chao. A tabu search method for the truck and trailer routing problem.
Computers & Operations Research, 29:33–51, 2002.

N.A. Wassan and I.H. Osman. Tabu search variants for the mix fleet vehicle
routing problem. Journal of the Operational Research Society, 53:768–782, 2002.

S. Scheurer. A tabu search heuristic for the truck and trailer routing problem.
Computers & Operations Research, 33:894–909, 2006.
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6.3 Others

C.D. Tarantilis, C.T. Kiranoudis and V.S. Vassiliadis. A list based threshold
accepting metaheuristic for the heterogeneous fixed fleet vehicle routing prob-
lem. Journal of the Operational Research Society, 54:65–71, 2003.

C.D. Tarantilis, C.T. Kiranoudis and V.S. Vassiliadis. A threshold accepting
metaheuristic for the heterogeneous fixed fleet vehicle routing problem. Euro-
pean Journal of Operational Research, 152:148–158, 2004.
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7 VRP with Multiple Depots and Periodic VRP

In the VRP with Multiple Depots (MDVRP), there is not a single depot, but
rather a number of depots with different locations and an associated fleet of
vehicles. Depending on the variant considered, each vehicle may be required to
terminate its route at its starting depot.

The Periodic VRP (PVRP) is an extension of the VRP in which customers
must be visited one or more times during a planning horizon of several periods
with routes performed by vehicles in each period. By substituting days for
depots, one can show the equivalence of some variants of the MDVRP and the
PVRP.

7.1 Simulated annealing

A. Lim and W. Zhu. A fast and effective insertion algorithm for multi-depot
vehicle routing problem with fixed distribution of vehicles and a new simulated
annealing approach. In IEA/AIE 2006, Lecture Notes in Artificial Intelligence
4031, M. Ali and R. Dapoigny, eds., Springer, 282–291, 2006. Springer-Verlag.

7.2 Tabu search

J. Renaud, G. Laporte and F.F. Boctor. A tabu search heuristic for the multi-
depot vehicle routing problem. Computers & Operations Research, 23:229–235,
1996.

J.-F. Cordeau, M. Gendreau and G. Laporte. A tabu search heuristic for peri-
odic and multi-depot vehicle routing problems. Networks, 30:105–119, 1997.

E. Hadjiconstantinou and R. Baldacci. A multi-depot period vehicle routing
problem arising in the utilities sector. Journal of the Operational Research So-
ciety, 49:1239–1248, 1998.

J.-F. Cordeau, G. Laporte and A. Mercier. A unified tabu search heuristic for
vehicle routing problems with time windows. Journal of the Operational Re-
search Society, 52:928–936, 2001.

E. Angelelli and M.G. Speranza. The periodic vehicle routing problem with
intermediate facilities. European Journal of Operational Research, 139:233–247,
2002.

D. Pisinger and S. Røpke. A general heuristic for vehicle routing problems.
Computers & Operations Research, 34:2403–2435, 2007.
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8 Dynamic VRP

In dynamic vehicle routing problems [10, 17], some data about the problem are
not known beforehand. That is, new information are revealed on-line, as the
routes are executed by the vehicles. In most cases, a quick or real-time response
time is also required. The new information often correspond to the occurrence
of a new vertex (customer) that must be included into the current routes. It
can also be some new information about the travel time of a vehicle, the current
customer status (e.g., cancellation of a transportation request), etc. This section
includes (repeats) papers on the dynamic variant of the VRPPD.

8.1 Tabu search

C. Rego and C. Roucairol. Using tabu search for solving a dynamic multi-
terminal truck dispatching problem. European Journal of Operational Research,
83:411–429, 1995.

M. Gendreau, F. Guertin,, J.-Y. Potvin and E. Taillard. Parallel tabu search for
real-time vehicle routing and dispatching. Transportation Science, 33:381–390,
1999.

S. Ichoua, M. Gendreau and J.-Y. Potvin. Diversion issues in real-time vehicle
dispatching. Transportation Science, 34:426–438, 2000.

S. Ichoua, M. Gendreau and J.-Y. Potvin. Vehicle dispatching with time-
dependent travel times. European Journal of Operational Research, 144:379–
396, 2003.

A. Attanasio, J.-F. Cordeau, G. Ghiani and G. Laporte. Parallel tabu search
heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput-
ing, 30:377–387, 2004.

M. Gendreau, F. Guertin,, J.-Y. Potvin and R. Séguin. Neighborhood search
heuristics for a dynamic vehicle dispatching problem with pick-ups and deliver-
ies. Transportation Research – Part C, 14:1157-174, 2006.

S. Ichoua, M. Gendreau and J.-Y. Potvin. Exploiting knowledge about future
demands for real-time vehicle dispatching. Transportation Science, 40:211-215,
2006.
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