
0-1 Knapsack problem

2.1 INTRODUCTION

The 0-1, or Binary, Knapsack Problem (KP) is: given a set of n items and a

knapsack, with

Pj =
profit of item j,

Wj
= weight of item j,

c =
capacity of the knapsack,

B.1)

B.2)

jcy =0 or 1, j eN = {l, ... ,n], B.3)

1 if item j is selected;

0 otherwise.

select a subset of the items

maximize z

subject to

so as to

n

7 = 1

n

7 = 1

< c.

where

KP is the most important knapsack problem and one of the most intensively

studied discrete programming problems. The reason for such interest basically
derives from three facts: (a) it can be viewed as the simplest Integer Linear

Programming problem; (b) it appears as a subproblem in many more complex
problems;(c) it may represent a great many practical situations. Recently, it has

been used for generating minimal cover induced constraints (see, e.g., Crowder,

Johnson and Padberg, A983)) and in several coefficient reduction procedures
for strengthening LP bounds in general integer programming (see, e.g., Dietrich

and Escudero, A989a, 1989b)). During the last few decades, KP has been
studied through different approaches, according to the theoretical development of

Combinatorial Optimization.

13

14 2 0-1 Knapsack problem

In the fifties, Bellman's dynamic programming theory produced the first

algorithms to exactly solve the 0-1 knapsack problem. In 1957 Dantzig gave an

elegant and efficient method to determine the solution to the continuous relaxation
of the problem, and hence an upper bound on z which was used in the following

twenty years in almost all studies on KP.
In the sixties, the dynamic programming approach to the KP and other knapsack-

type problems was deeply investigated by Gilmore and Gomory. In 1967 Kolesar

experimentedwith the first branch-and-bound algorithm for the problem.

In the seventies, the branch-and-bound approach was further developed, proving

to be the only method capableof solving problems with a high number of variables.
The most well-known algorithm of this period is due to Horowitz and Sahni. In

1973 Ingargiola and Korsh presented the first reduction procedure, a preprocessing
algorithm which significantly reduces the number of variables.In 1974 Johnson

gave the first polynomial-time approximation scheme for the subset-sum problem;

the result was extended by Sahni to the 0-1 knapsack problem. The first fully

polynomial-time approximation scheme was obtainedby Ibarra and Kim in 1975.
In 1977 Martello and Toth proposed the first upper bound dominating the value of

the continuous relaxation.
The main results of the eighties concern the solution of large-size problems, for

which sorting of the variables (required by all the most effective algorithms) takes
a very high percentage of the running time. In 1980 Balas and Zemel presented a

new approach to solve the problem by sorting, in many cases, only a small subset

of the variables (the core problem).
In this chapter we describe the main results outlined above in logical (not

necessarily chronological) sequence. Upper bounds are described in Sections 2.2
and 2.3, approximate algorithms in Sections 2.4 and 2.8, exact algorithms in

Sections 2.5, 2.6 and 2.9, reduction procedures in Section 2.7. Computational

experiments are reported in Section 2.10, while Section 2.11 contains an

introduction to the facetial analysis of the problem. Section 2.12 deals with a

generalization of KP (the multiple-choice knapsack problem).
We will assume, without any loss of generality, that

Pj, Wj and c are positive integers, B.4)

n

X;>^y>c, B.5)

7=1

Wj <c forjeN. B.6)

If assumption B.4) is violated,fractions can be handled by multiplying through

by a proper factor, while nonpositive values can be handled as follows (Glover,

1965):

1. for each j e N^ = {j e N : pj < 0, Wj
> 0} do Xj := 0;

2. for each j eN^ = {j eN :
pj

> 0, Wj
< 0} do xj := 1;

2.1 Introduction 15

3. letA^- ={j eN -.pj <0,Wj <0],N^=N\\{N^UN ÛN'), and

(
yj

= 1 -
Xj, pj

= -pj, Wj
=

-Wj forjeN-,

\\ yj
= Xj, Pj

= Pj, Wj
=

Wj for j eN^;

4. solve the residual problem

maximize z = V^ P/J/ + 2^ Pj

jeN-uN+ jeN^uN-

subject to 2_] ^jyj ^ c \342\200\224
2_,

jeN-uN+ jeN^uN-

Wi

yj =0 or 1, j eN~ UN^.

If the input data violate assumption B.5) then, trivially, Xj
= 1 for ally G A'^; if

they violate assumption B.6), then Xj
= 0 for eachy such that Wj > c.

Unless otherwise specified,we will always suppose that the items are ordered

according to decreasing values of the profit per unit weight, i.e. so that

^>^>...>^, B.7)
W\\ W2 W\342\200\236

If this is not the case, profits and weights can be re-indexedin 0(n\\ogn) time

through any efficient sorting procedure (see, for instance, Aho, Hopcroft and

UUman, A983)).
Given any problem instance /, we denote the value of any optimal solution with

z(/), or, when no confusion arises, with z.

KP is always considered here in maximization form. The minimization version
of the problem,

n

minimize /_^PyJ/\"
y=i

n

subject to /^^wyjy
> <7,

yj =0 or 1, j eN

can easily be transformed into an equivalent maximization form by setting yj
=

1 -
Xj

and solving B.1), B.2), B.3) with c = Yll=\\^j
~

<?\342\200\242^^^ zmax be the
solution value of such a problem: the minimization problem then has solution

value zmin =
Y^j=\\Pi

~ zmax. (Intuitively, we maximize the total profit of the
items not inserted in the knapsack.)

16 2 0-1Knapsack problem

2.2 RELAXATIONS AND UPPER BOUNDS

2.2.1 Linear programming relaxation and Dantzig's bound

The most natural, and historically the first, relaxation of KP is the linear

programming relaxation, i.e. the continuous knapsack problem C{KP) obtained
from B.1), B.2), B.3) by removing the integrality constraint on Xj:

maximize
^PjXj
7 = 1

subject to 2-\\'^jXj < c,
7 = 1

0 <
JCy

< 1, j = \\, ... ,n.

Suppose that the items, ordered according to B.7), are consecutively inserted into

the knapsack until the first item, s, is found which does not fit. We call it the
critical item, i.e.

s = mm
I (=1
7:^w,>cl, B.8)

and note that, because of assumptions B.4)-B.6), we have 1 < s < n. Then
C(KP) can be solved through a property established by Dantzig A957), which can
be formally stated as follows.

Theorem 2.1 The optimal solution x of C{KP) is

,n.

where

Xj
= 1

Xj =0

c
Xs = \342\200\224

Ws

\"c = c \342\200\224

forj = 1, ...

for j = s + I,

s-\\

H^y-
7 = 1

B.9)

Proof A graphical proof can be found in Dantzig A957). More formally, observe
that any optimal solution x of C{KP) must be maximal, in the sense that

V\"^j wyxy
= c. Assume, without loss of generality, that

Py/wy > pj+\\/wj+\\ for

ally, and let x* be the optimal solution of C(KP). Suppose, by absurdity, that

x^ < 1 for some k < s, then we must have x* > Xg
for at least one item q > s.

2.2 Relaxations and upper bounds 17

Given a sufficiently small \302\243> 0, we could increase the value of x^ by \302\243and

decrease that of x* by \302\243Wk/wg, thus augmenting the value of the objective function

of \302\243(pk
\342\200\224

Pq'^k/'^q) (> 0, since pkjy^k > Pq/'^q), which is a contradiction. In the

same way we can prove that x^ > 0 for ^ > 5 is impossible. Hence Xs = c/ws
from maximality. Q

The optimal solution value of C{KP) follows:

z(C(KP)) = Tpj+cf^.
7 = 1

'

Because of the integrality of pj and Xj, a valid upper bound on z (KP) is thus

B.10)U, = [ziC{KP))\\ =Y,Pj+
\"^

7 = 1
Wc

where [a\\ denotes the largest integer not greater than a.

The worst-case performanceratio of f/i is p{Ui) = 2. This can easily be proved
by observing that, from B.10), f/i < Xl/Ci Pj+Ps- Both Yl^'i Pj andp^ are feasible
solution values for KP, hence no greater than the optimal solution value z, thus, for

any instance, f/i/z < 2. To see that p{Ui) is tight, consider the series of problems
with n = 2. pi =

wi = p2 = W2 = k and c = 2k \342\200\224
1, for which Ui = 2k \342\200\224I and

z = k, so Ui/z can be arbitrarily close to 2 for k sufficiently large.
The computation of z(C{KP)), hence that of the Dantzig bound Ui, clearly

requires 0(n) time if the items are already sorted as assumed.If this is not the

case, the computation can still be performed in 0{n) time by using the following

procedure to determine the critical item.

2.2.2 Finding the critical item in Oin) time

For each j E N, define rj
=

pj /wj. The critical ratio r^ can then be identified by

determining a partition of A'^ into 71 UJC U 7 0 such that

and

rj > rs

fj
= fs

n < rs

I] >^y
< c

7 6/1

for7 eJl,

for) eJC,

forj eJO,

< E ^^

jejiujc

The procedure, proposed by Balas and Zemel A980), progressively determinesJ 1

18 2 0-1 Knapsack problem

and J 0 using, at each iteration, a tentative value A to partition the set of currently

\"free\" items A'^\\(y 1 U/O). Once the final partition is known, the critical item s is
identified by filling the residual capacity c \342\200\224

J2ieji ^j \"^^^^ items in JC, in any

order.

procedure CRITICAL. ITEM:

input n.c,{pj),(wj);
output: s;
begin

71 :=0;
yO:=0;
JC :={l....,n];
c := c;

partition := \"no\";

while partition = \"no\" do

begin
determine the median A of the values in R = {pj/wj :j eJC];
G :={j eJC :pj/wj> A};

L:= {j eJC -.pj/wj < A};

E:={j eJC :pj/wj = X];

c\" \342\226\240\342\226\240=\342\202\254'
+T.j^eW^

W c' < c < c\" then partition := \"yes\"

else if c' > c then (comment: A is too small)
begin

yo:=youLu\302\243;

JC :=G

end
else (comment: A is too large)

begin
71 :=yi UG UE;
JC :=L;

\"c :='c \342\200\224c\"

end

end;
71 .-71 UG;
70:=70UL;
JC :=E{= {e\\,e2.,... -.eq]);
c :='c \342\200\224c';

a := min {j : J2Li ^e, > c};
s :=ea

end.

Finding the median of w elements requires 0{m) time (see Aho, Hopcroft and

Ullman, A983)), so each iteration of the \"while\" loop requires 0{\\ JC |) time. Since
at least half the elements of 7C are eliminated at each iteration, the overall time

complexity of the procedure is 0{n).

2.2 Relaxations and upper bounds 19

The solution of C {KP) can then be determined as

Jy
= 1 fox j \302\243j\\\\J {e\\.e2, \342\226\240\342\226\240\342\226\240,ea-\\]',

J/=0 forj eJQ{j{ea+\\, ... ,eq];

Xs= \\c -
^ WjXj /Ws.

\\ J^N\\{s] I

1.1.3 Lagrangian relaxation

An alternative way to relax KP is through the Lagrangian approach. Given a non-

negative multiplier A, the Lagrangian relaxation of KP (L(KP.A)) is

/ n \\

maximize /\"^Py-^; + A
J

c \342\200\224
y^ wjXj

7=1 \\ 7=1 /

subject to
jcy

= 0 or 1. j = I, ... ,n.
The objective function can be restated as

z(L(KP.X))=J2pjXj+^c., B.11)
7 = 1

where pj
= pj

\342\200\224
Xwj forj = 1, ... ,n, and the optimal solution of L{KP,A) is easily

determined, in 0(n) time, as

fl ifp/>0,
xj

= < B.12)

(O ifpy<0.

(When pj = 0, the value of xj is immaterial.) Hence, by defining /(A) =

{J '\342\200\242Pj/'^j > ^]- the solution value of L{KP. A) is

z(L(KP,X))= Y^ pj+Xc.
jeJiX)

For any A > 0, this is an upper bound on z(KP) which, however, can never

be better than the Dantzig bound U\\. In fact B.12) also gives the solution of the

continuous relaxation of L(KP.A), so

z(L(KP.X)) = z(C(L(KP. A))) > z(C(KP)).

20 2 0-1 Knapsack problem

The value of A producing the minimum value of z{L{KP.A)) is A* = Ps/'^s- With

this value, in fact, we havepj > 0 forj = I, ... ,s \342\200\224I andpj < 0 forj = s, ... ,n,
soJ(X*) C {l,...,^

- 1}. HenceXy =Xj forj eN\\{s] (where (Jy) is defined by

Theorem 2.1) and, from B.11)-B.12), z{L{KP.*))= Ey^/CPy
-

>^*Wj)
+ ^*c =

z{C{KP)). Also notice that, for A = A*, pj becomes

Pj =Pj C2.13)

I pj I is the decrease which we obtain in z{L{KP. A*)) by setting Jfy
= 1 \342\200\224

Xj,

and hence a lower bound on the corresponding decrease in the continuous solution

value (since the optimal A generally changes by imposing the above conditions).

The value of | p* | will be very useful in the next sections.

Other properties of the Lagrangian relaxation for KP have been investigated

by Maculan A983). See also Fisher A981) for a general survey on Lagrangian

relaxations.

2.3 IMPROVED BOUNDS

In the present section we consider upper bounds dominating the Dantzig one,
useful to improve on the average efficiency of algorithms for KP. Becauseof this

dominance property, the worst-case performanceratio of these bounds is at most 2.

Indeed, it is exactly 2, as can easily be verified through series of examplessimilar

to that introduced for U\\, i.e. having pj
=

Wj
for all j (so that the bounds take the

trivial value c).

2.3.1 Bounds from additional constraints

Martello and Toth obtained the first upper bound dominating the Dantzig one, by

imposing the integrality of the critical variable Xs.

Theorem 2.2 (Martello and Toth, 1977a) Let

7 = 1

-Ps+l
B.14)

7 = 1

r -sPs-\\
Ps -

(W, -C) B.15)

where s and c are the values defined by B.8) and B.9). Then

2.3 Improved bounds 21

(i) an upper bound on z (KP) is

f/2=max(f/\302\260.f/'); B.16)

(//) for any instance of KP, we have U2 <U\\.

Proof, (i) SinceXg cannot take a fractional value, the optimal solution of KP can
be obtained from the continuous solution J of C{KP)either without inserting item

s (i.e. by imposing Xs = 0), or by inserting it (i.e. by imposing J^ = 1) and hence

removing at least one of the first s \342\200\2241 items. In the former case, the solution value

cannot exceed U^, which corresponds to the case of filling the residual capacity c
with items having the best possible value of

py/wy (i.e. ps+i/ws+\\). In the latter it

cannot exceed U', where it is supposed that the item to be removedhas exactly

the minimum necessary value of wy (i.e. Ws \342\200\224c)and the worst possible value of

Pj/wj (i.e.p,_i/w,_i).
(ii) f/\302\260< Ui directly follows from B.10), B.14) and B.7). To prove that

U^ < U\\ also holds, notice that Ps/ws < Ps-i/ws-i (from B.7)), and c < w^

(from B.8), B.9)). Hence

.- . fPs Ps-\\\\ . ^
(c -Ws) [

> 0.
\\Ws Ws-lJ

and, by algebraic manipulation,

-Ps . , -.Ps-\\
c\342\200\224>Ps- (w, - c)-

Ws W,_i

from which one has the thesis. Q

The time complexity for the computation of U2 is trivially 0{n), once the critical
item is known.

Example 2.1

Consider the instance of KP defined by

\302\253= 8,

(py) = A5, 100,90, 60, 40, 15,10, 1),

(wy)
= (2, 20, 20, 30, 40, 30, 60, 10),

c = 102.

The optimal solution is jc = A, 1, 1, 1, 0, 1,0, 0), of value z = 280. From B.8)

we have s = 5. Hence

22 2 0-1 Knapsack problem

Ux = 265 +

f/\302\260= 265 +

f/' = 265+

f/2
= 285. D

30

30

40
40

15
30

40- 10

= 295.

= 280;

60

30
= 285;

The consideration on which the Martello and Toth bound is based can be
further exploited to compute more restrictive upper bounds than U2- This can

be achieved by replacing the values U^ and f/' with tighter values, say U \302\260
and

U ', which take the exclusion and inclusion of item s more carefully into account.

Hudson A977) has proposed computing U
' as the solution value of the continuous

relaxation of KP with the additional constraint Xs
= I. Fayard and Plateau A982)

and, independently, Villela and Bomstein A983), proposed computing f/
\302\260

as the

solution value of C(KP) with the additional constraint Xs
= 0.

By defining cr^ij) and a^ij) as the critical item when we impose, respectively,

Xj
= 1 (y > s) and Xj =0 (j < s), that is

cr\\j) = min < k : ^Wi > c -
Wj >. B.17)

we obtain

<7^{j)= min < k :
/Jw,

> c

7 = 1

(=1

PaO(s)

7=1 .
y^ /

W^oo\"(s)

v^ =Ps+ Yl Pj^
7 = 1

C \342\200\224W, -
Y. ^>

and the new upper bound

f/3=max(f/\302\260.f/')

B.18)

Pa\\s)

B.19)

B.20)

2.3 Improved bounds 23

It is self-evident that;

(a) Z/O < f/o andZ/' < U\\so U3 < U2;

(b) the time complexity for the computation of f/3 is the same as for Ui and U2,

i.e. 0(n).

Example 2.1 (continued)

From B.17)-B.20) we have

G\302\260E)
= 7. Z7\302\260= 280 +

60
= 280;

a\\5) = A. f/'=40 + 205 +

f/3=285.n

.^ 6020 \342\200\224

30
= 285;

2.3.2 Bounds from Lagrangian relaxations

Other bounds computable in 0{n) time can be describedthrough the terminology

introduced in Section 2.2 for the Lagrangian relaxation of the problem. Remember
that z(C(^f)) = z{L{KP. A*)) and | p* \\ (see 2.13) is a lower bound on the decrease

of z{C{KP)) correspondingto the change of the j\\h variable from
Xj

to 1 -
Xj.

Muller-Merbach A978) noted that, in order to obtain an integer solution from the

continuous one, either (a) the fractional variable J^ alone has to be reduced to

0 (without any changes of the other variables), or (b) at least one of the other

variables, say Jj, has to change its value (from 1 to 0 or from 0 to 1). In case (a)

the value of z(C(KP)) decreasesby cp^/ws, in case (b) by at least \\ p* |. Hence

the Muller-Merbach bound

f/4=max I
^p,.max{[z(C(/^/'))- |p; IJ :yGA^\\{^}} . B.21)

It is immediately evident that f/4 < f/i. No dominance exists, instead, between U4

and the other bounds. For the instance of example 2.1 we have f/3
= f/2 < ^4

(see below),but it is not difficult to find examples (see Muller-Merbach A978))
for which U4 < U3 < U2.

Theideasbehind bounds U2. f/3 and f/4 have been further exploited by Dudzinski

and Walukiewicz A984a), who have obtained an upper bound dominating all

the above. Consider any feasible solution x to KP that we can obtain from the

continuous one as follows:

1. for each k e N\\{s]doXk :=r^;

2. Xs := 0;

24 2 0-1Knapsack problem

3. for each k such that i^ = 0 do
W Wk < C \342\200\224

Ylj=l ^j^j *^\302\256\"̂k '\342\226\240=1,

and define N = {j E N\\{s] : Xj =0} {x is closely related to the greedy solution,

discussed in Section 2.4). Noting that an optimal integer solution can be obtained

(a) by setting x^ = 1 or (b) by setting x^ = 0 and Xj
= 1 for at least one j G iV, it

is immediate to obtain the Dudzinski and Walukiewicz A984a) bound:

f/s =max (min (Z7'.max {[ziC(KP)) -p*\\ :j = 1, ... ,s - 1}),
min (U^,msLX {[z{C{KP))+p*\\ : j eN]),

J^Pj^J^- B.22)
7 = 1

where U \302\260
and U ' are given by B.19) and B.20). The time complexity is 0(n).

Example 2.1 (continued)

From B.13), (py*) =
A3, 80, 70, 30, 0, -15, -50, -9). Hence:

U4
= max B65,max {282. 215. 225. 265. 280.245.286})=286.

ixj)
= il., L L 1. 0, L 0, 0);

U5 = max (min B85,max {282. 215, 225. 265}).

min B80, max {245. 286}). 280) = 282.D

2.3.3 Bounds from partial enumeration

Bound f/3 of Section 2.3.1 can also be seenas the result of the application of the

Dantzig bound at the two terminal nodes of a decision tree having the root node

corresponding to KP and two descendent nodes, say NO and Nl, corresponding
to the exclusion and inclusion of item s. Clearly,the maximum among the upper
bounds corresponding to all the terminal nodes of a decision tree representsa valid

upper bound for the original problem corresponding to the root node. So, if U ^

and U
' are the Dantzig bounds corresponding respectively to nodes NO and Nl,

f/3 represents a valid upper bound for KP.

An improved bound, U(\342\200\236can be obtained by considering decision trees having

more than two terminal nodes, as proposedby Martello and Toth A988).
In order to introduce this bound, suppose s has been determined, and let r, r

be any two items such that I < r < s and s < t < n. We can obtain a feasible

2.3 Improved bounds 25

solution for KP by setting Xj
= \\ iov j < r.

Xj
= Q for j > t and finding

the optimal solution of subproblem KP(r.r) defined by items r.r + 1 t with

reduced capacity c{r) = c \342\200\224
Yl'i=\\ ^j- Suppose now that KP(r. t) is solved through

an elementary binary decision-tree which, for j = r.r + I.... .t, generates pairs of

decision nodes by setting, respectively, Xj
= 1 and

Xj
= 0; each node k (obtained,

say, by fixing Xj) generates a pair of descendentnodes (by fixing Xj+i) iffy < t and

the solution corresponding to k is feasible. For each node k of the resulting tree,
let/(^) be the item from which k has been generated(by setting x/^k)

= 1 or 0)
and denote with

Xj {j = r, ... ,f{k)) the sequence of values assigned to variables
Xr Xf(k) along the path in the tree from the root to k. The set of terminal nodes

{leaves) of the tree can then be partitioned into

/(/)

Lx = ll:
Y^Wjxl

>c{r) (infeasible leaves) f

J=r

fil)

^2 = < / :/(/) = t and
Y^wyJcj

< c{r) > (feasible leaves).

For each I \302\243L\\ U L2, let m/ be any upper bound on the problem defined by B.1),
B.2) and

Xj
-

Xj
if yG{r, ...,/(/)},

xj=0 or 1 if) eN\\{r,...,fil)].
B.23)

Since all the nonleaf nodes are completelyexplored by the tree, a valid upper
bound for KP is given by

U(, = max {ui : I e L\\ UL2}. B.24)

/ _ v-'--i ^/(O\342\200\236./A fast way to compute m/ is the following. Let p = J2i=i Pj
'^ J2i=r Pj^j

d' =\\c(r)- J2^-f^r^jxjI; then

and

M/ =

p' -d'
Wr-\\

p' +d'
w,+i

if / eLu

if / G L2,

B.25)

which is clearly an upper bound on the continuous solution value for problem B.1),
B.2),B.23).

The computation of U(, requires 0{n) time to determine the critical item and

define KP(r. t), plus 0B'~'') time to explore the binary tree. If r - r is bounded

by a constant, the overall time complexity is thus 0{n).

26 2 0-1 Knapsack problem

Example 2.1 (continued)

Assume r = 4 and t = 6. The reduced capacityis c{r)= 60.The binary tree is

given in Figure 2.1. The leaf sets are Li = {2.8},L2
= {4,5,9, 11, 12}. It follows

that Ue = 280, which is the optimal solution value. \342\226\241

tt5=270 us=2l5 tt9=248 uu^225

Figure 2.1 Binary tree for upper bound U(, of Example 2.1

2

\302\253i2=215

The upper bounds at the leaves can also be evaluated, of course, using any of

the bounds previously described, instead of B.25).If Uk (k = I, ... ,5) is used,

then clearly Ue < Uk; if B.25) is used, then no dominance exists between Ue and

the Dudzinsky and Walukiewicz A984a) bound, so the best upper bound for KP is

U =min(f/5,f/6).

Ue canbe strengthened, with very small extra computational effort, by evaluating

w^ = min {wj : j > t]. It is not difficult to see that, when / G L2 and d' <Wm. ui

can be computed as

ui = max
/ ^ Pt+\\

P +Wm (w\342\200\236d')r^-'
Wr

B.26)

Finally, we note that the computation of Ue can be considerably accelerated

by using an appropriate branch-and-bound algorithm to solve KP(r.r). At any

iteration of such algorithm, let I{r. t) be the value of the best solution so far. For

any nonleaf node k of the decision-tree, let Uk be an upper bound on the optimal
solution of the subproblem defined by items r.... .n with reduced capacity c{r),

i.e., the subproblem obtained by setting Xj
= 1 for 7 = 1, ... ,r \342\200\2241. Uk can be

computed as an upper bound of the continuous solution value of the problem, i.e.

2.4 The greedy algorithm 27

f(k) s(k)-\\

Uk =
^Pjxf

+ Y^ Pj
j=r j=f(k)+\\

B.27)

where s{k) = min {t + l,min {/ :
Y.^j^~r \"^i^f

+
Y.'j=f{k)+\\'^j > c(r)]). If we

have Uk < 'z{r,t), the nodes descendingfrom k need not be generated. In fact,
for any leaf / descending from k, it would result that m/ <

J2'i=i^Pj +Uk <

Y.]:'pj+z{KP{r,t))<U(,.

Example 2.1 (continued)

Accelerating the computation through B.27), we obtain the reduced branch-decision

tree of Figure 2.2. \342\226\241

M5=50

4

z(r,/)=75

Figure 2.2 Branch-and-bound tree for upper bound U(, of Example 2.1

2.4 THE GREEDY ALGORITHM

The most immediate way to determine an approximate solution to KP exploits
the fact that solution J of the continuous relaxation of the problem has only one

fractional variable, Xs (see Theorem 2.1). Setting this variable to 0 gives a feasible

28 2 0-1 Knapsack problem

solution to KP of value
s-l

7 = 1

We can expect that z' is, on average,quite close to the optimal solution value z.

In fact z' < z < U\\ < z' +ps, i.e. the absolute error is bounded by ps. The worst-

case performance ratio, however, is arbitrarily bad. This is shown by the series of

problems with n = 2. pi =
wi

= I. p2 =
W2

= k and c = k, for which z' = 1 and

z = ^, so the ratio z'/z is arbitrarily close to 0 for k sufficiently large.

Noting that the above pathology occurs when p^ is relatively large, we can obtain

an improved heuristic by also considering the feasible solution given by the critical
item alone and taking the best of the two solution values, i.e.

z^ =max (z',p,). B.28)

The worst-case performance ratio of the new heuristic is ^. We have already noted,
in fact, that z < z' +ps, so, from B.28), z < 2z^. To see that ^

is tight, consider
the series of problems with n = 3. p\\

= w\\ = I. p2 =
W2

= P3 =
W2

= k and c = 2k:
we have z^ = ^ -i- 1 and z = 2^, so z^/z is arbitrarily close to ^ for k sufficiently

large.

The computation of z^ requires0{n) time, once the critical item is known. If

the items are sorted as in B.7), a more effective algorithm is to consider them

according to increasingindices and insert each new item into the knapsack if it

fits. (Notice that items 1..... 5 \342\200\2241 are always inserted, so the solution value is

at least z'.) This is the most popular heuristic approach to KP, usually called the

Greedy Algorithm. Again, the worst-case performance can be as bad as 0 (take for

example the series of problems introduced for z'), but can be improved to ^ if

we also considerthe solution given by the item of maximum profit alone, as in

the following implementation. We assume that the items are orderedaccording to

B.7).

procedure GREEDY:

input:/i.e. (py).(w^);
output: z^.(xj);

begin
c := c;
zs :=0;

for; :=IXo n do

begin
if Wj > c then Xj := 0

else

begin
Xj := 1;

2.5 Branch-and-bound algorithms 29

c :=c -
Wj ;

zS := z^ +pj
end;

ifpy >py. then/ :=;
end;

if Py. > z^ then

begin
z^ :=Py;
fory := 1 to \302\253do jcy := 0;

Xj* := 1

end

end.

The worst-case performanceratio is ^ since: (a) pj* > ps, so z^ > z^; (b) the

series of problemsintroduced for z^ proves the tightness. The time complexity is

0(n), plus 0(n\\ogn) for the initial sorting.
For Example 2.1 we have z' = z^ = 265 and z^ = 280, which is the optimal

solution value since U(,
= 280.

When a 0-1 knapsack problem in minimization form (see Section 2.1) is
heuristically solved by applying GREEDY to its equivalent maximization instance,
we of course obtain a feasible solution, but the worst-case performance is not

preserved. Consider,in fact, the series of minimization problems with n =3. pi =
wi

= k, p2 = W2 = L p2 =
W2

= k and q = 1, for which the optimal solution
value is 1. Applying GREEDY to the maximization version (with c = 2k), we

get z^ = ^ -I- 1 and hence an arbitrarily bad heuristic solution of value k for the

minimization problem.

Other approximate algorithms for KP are considered in Section 2.8.

2.5 BRANCH-AND-BOUND ALGORITHMS

The first branch-and-bound approach to the exact solution of KP was presented by

Kolesar A967). His algorithm consists of a highest-first binary branching scheme
which: (a) at each node, selects the not-yet-fixed item j having the maximum profit

per unit weight, and generates two descendent nodes by fixing Xj, respectively, to
1 and 0; (b) continues the search from the feasible node for which the value of

upper bound U\\ is a maximum.

The large computer memory and time requirements of the Kolesar algorithm

were greatly reduced by the Greenberg and Hegerich A970) approach,differing

in two main respects: (a) at each node, the continuous relaxation of the induced

subproblem is solved and the corresponding critical item s is selectedto generate

the two descendent nodes (by imposing jcj
= 0 and jcj

= 1); (b) the search continues
from the node associated with the exclusion of item s (condition xj =0). When
the continuous relaxation has an all-integer solution, the search is resumed from
the last node generated by imposing xj = 1, i.e.the algorithm is of depth-first type.

Horowitz and Sahni A974) (and, independently, Ahrens and Finke A975))

30 2 0-1Knapsack problem

derived from the previous schemea depth-first algorithm in which: (a) selectionof

the branching variable
Xj

is the same as in Kolesar; (b) the search continues from
the node associated with the insertion of item 7 (condition Xj

= 1), i.e. following a

greedy strategy.

Other algorithms have been derived from the Greenberg-Hegerich approach

(Barr and Ross A975), Lauriere A978)) and from different techniques (Lageweg
and Lenstra A972), Guignard and Spielberg A972), Fayard and Plateau A975),
Veliev and Mamedov A981)). The Horowitz-Sahni one is, however, the most

effective, structured and easy to implement, and has constituted the basis for several

improvements.

2.5.1 The Horowitz-Sahnialgorithm

Assume that the items are sorted as in B.7). A forward move consists of
inserting the largest possible set of new consecutive items into the current

solution. A backtracking move consists of removing the last inserted item from
the current solution. Whenever a forward move is exhausted,the upper bound

U\\ corresponding to the current solution is computed and compared with the best
solution so far, in order to check whether further forward moves could lead to
a better one: if so, a new forward move is performed,otherwise a backtracking

follows. When the last item has been considered, the current solution is complete
and possible updating of the best solution so far occurs. The algorithm stops when

no further backtracking can be performed.

In the following description of the algorithm we use the notations

(Xj)
= current solution;

f = current solution value I =
YlPj^j '\342\226\240>

c = current residual capacity I = c \342\200\224
^ WjXj J;

(xj)
= best solution so far;

z = value of the best solution so far I =
YlPj^j \342\200\242

\\ J=' J

procedure HS:
input: n^c, (py),(wy);

output: z .{Xj);
begin
1. [initialize]

z :=0;
z :=0;

2.5 Branch-and-bound algorithms 31

c := c;
Pn+\\ \342\226\240=0;

w\342\200\236+i:= +oc;

j \342\226\240\342\226\240=1;

2. [compute upper bound U\\]

find r = min {/ :
Yl'k=j ^k > c};

\" '\342\226\240=
Y.[~=lPk

+ [{c
-

Y.[Zl Wk)Pr/wr\\;

if z '^z +u then go to 5;
3. [perform a forward step]

while Wj
< c do

begin

z := z +pj]
Xj := 1;

end;
if 7 < \302\253then

begin

xj:=0-

end;
if 7 < n then go to 2;
\\i j = n then go to 3;

4. [update tlie best solution so far]

\\\\ z > z then

begin
z :=z;
for ^ := 1 to \302\253do Xk := i^:

end;

if Jc\342\200\236
= 1 then

begin
c \342\200\242=c + Wn;
Z :=Z - Pn]
Xn :=0

end;

5. [backtrack]
find / = max {k <} \\ Xk =

\\\\\\

if no sucli / then return ;

c \342\226\240=(:+ w,-;
z := z -

p,-;

Xi := 0;

j :=/ + !;
goto 2

end.

32 2 0-1 Knapsack problem

Example 2.2

Considerthe instance of KP defined by

n =1;

(pj) = G0, 20, 39, 37, 7, 5, 10);
(Wj)

= C1, 10, 20, 19, 4, 3, 6);
c =50.

Figure 2.3 gives the decision-tree produced by procedure HS. D

Several effective algorithms have been obtained by improving the Horowitz-
Sahni strategy. Mention is made in particular of those of Nauss A976) (with Fortran

code available), Martello and Toth A977a) (with Fortran code in Martello and Toth

A978) and Pascal code in Syslo, Deo and Kowalik A983)), Suhl A978), Zoltners

A978).
We describe the Martello-Toth algorithm, which is generally considered highly

effective.

2.5.2 The Martello-Toth algorithm

The method differs from that of Horowitz and Sahni A974) in the following main

respects (we use the notations introduced in the previous section).

(i) Upperbound U2 is used instead of U\\.

(ii) The forward move associated with the selection of they th item is split into two

phases: building of a new current solution and saving of the current solution.

In the first phase the largest set
Nj

of consecutive items which can be inserted

into the current solution starting from theyth, is defined, and the upper bound

corresponding to the insertion of the jth item is computed.If this bound is

less than or equal to the value of the best solution so far, a backtracking move
immediately follows. If it is greater, the second phase, that is, insertion of the

items of set Nj into the current solution, is performed only if the value of
such a new solution does not represent the maximum which can be obtained

by inserting the jth item. Otherwise, the best solution so far is changed, but

the current solution is not updated, so useless backtrackings on the items in

Nj are avoided.

(iii) A particular forward procedure, based on dominance criteria, is performed

whenever, before a backtracking move on the ith item, the residual capacity c
doesnot allow insertion into the current solution of any item following the ith.

The procedure is based on the following consideration: the current solution

could be improved only if the ith item is replaced by an item having greater

profit and a weight small enough to allow its insertion, or by at least two items

having global weight not greater than w, +c. By this approach it is generally

possible to eliminate most of the useless nodes generated at the lowest levels
of the decision-tree.

2.5 Branch-and-bound algorithms 33

2=Z=0

c-50 (0) \"=107

f=102

c=2

z=102

;c=(l.LO.0.1.1.0)

c=0
z=105
;c =A.1.0.0.0.1.1)

Figure 2.3 Decision-tree of procedure HS for Example 2.2

(iv) The upper bounds associated with the nodes of the decision-tree are computed

through a parametric technique based on the storing of information related to
the current solution. Suppose, in fact, that the current solution has been built

by inserting all the items from the jth to the rth: then, when performing a

backtracking on one of these items (say the /th, j < i < r), if no insertion

occurred for the items preceding the jth, it is possible to insert at least items

/ -I- 1 r into the new current solution. To this end, we store in F,, p, and

34 2 0-1Knapsack problem

Wi the quantities r + 1.Yl\\=iPk ^^^ Z]I=/ ^k, respectively, for / = j, ... ,r,
and in r the value r \342\200\2241 (used for subsequent updatings).

Detailed descriptionof the algorithm follows (it is assumed that the items are

sorted as in B.7)).

procedure MT1:

\\x\\pu\\:n,c.{pj).{Wj);
output: z .{Xj);
begin
1. [initialize]

z :=0;
f :=0;
c := c;
Pn+\\ :=0;

Wn+\\ := +oc;
for ^ := 1 to \302\253do x^ := 0;
compute the upper bound f/ = f/2 on the optimal solution value;
vvi := 0;

Pi := 0;
Fi :=1;

f := n;
for k := n \\o \\ step -1 do compute w^

= min {w, : / > ^};

2. [build a new current solution]
while Wj > c do

if z > z +
[cpy+i/wy+ij then go to 5 else7 \342\200\242.=j + \\\\

find r = min {/ : Wj + X^U? \"^k > c};

P \342\226\240=Pj
+

Ek=7,Pk'

w' \342\226\240.=Wj +
Y!k~=l^k\\

M r <n then u := max ([(c -
w')p;.+i/w;.+ij,

Lfr
- {^r -

(C
-

w'))Pr-l/W;._lJ)
else M := 0;
if z > z +p' + u then go to 5;
if M = 0 then go to 4;

3. [save the current solution]
c := c \342\200\224w';

z := z + p';
for ^ :=7 to r - 1do Jc^ := 1;

Wj := w';

Pj-=p'\\
Kj \342\226\240=r;

for k :=] + 1 to r -
begin

Wk \342\200\242.=Wk-

Pk \342\226\240=Pk-\\

rk \342\226\240=r

1 do

1
- ^k-u

- Pk-u

2.5 Branch-and-bound algorithms 35

end;
for ^ := r to r do

begin
Wk := 0;

Ik
\342\226\240\342\226\240=0;

rk \342\226\240=k

end;

r := r \342\200\2241;

j :=r + l;
if c > wy_i then go to 2;
if z > f then go to 5;
p' :=0;

4. [update the best solution so far]

z := z + p';
for ^ := 1 toy

- 1 do Xk := h',
for ^ :=7 to r - 1do jc^ := 1;

for ^ := r to \302\253do Xk := 0;
\\i z = U then return ;

5. [backtrack]
find / = max {k <j :Xk

=
I};

if no such / then return.;

c := c + Wi;

z \342\200\242=z- Pi;
Xi := 0;

j :=/ + !;
if c - w, > w, then go to 2;
7 := i;
h := i;

6. [try to replace item / with item h]
h:=h + l;
\\i z > z +

[cph/wh\\ then go to 5;
if Wh = Wi then go to 6;
if Wh > Wi then

begin
if w/, > c or z > z +ph then go to 6;
z := z +ph;
for ^ := 1to \302\253do x^ := x^;
Xh := I;
\\i z = U then return;

/ := h;

go to 6
end

else
begin

if c \342\200\224
w/, < w/j then go to 6;

c :=c \342\200\224
Wh',

z \342\226\240=z+ph;

Xh := 1;

j:=h + l-

36 2 0-1 Knapsack problem

Wh

Ph

rh

:=w/,;

\342\226\240\342\226\240=Ph\\

:=/i + l;
for k := h +

f :-

go
end

begin
\\Vk

Pk

rk :

end;

--h\\

to 2

1 tor

:=0;
:=0;
\342\226\240.=k

do

end.

The Fortran code corresponding to MTl is included in the present volume. In

addition, a second code,MTIR, is included which accepts on input real values for

profits, weights and capacity.

Example 2.2 (continued)

Figure 2.4 gives the decision-tree producedby procedure MTl. \342\226\241

Branch-and-bound algorithms are nowadays the most common way to effectively
find the optimal solution of knapsack problems.More recent techniques imbed

the branch-and-bound process into a particular algorithmic framework to solve,
with increased efficiency, large instances of the problem. We describe them in

Section 2.9.

The other fundamental approach to KP is dynamic programming. This has been

the first technique available for exactly solving the problem and, although its

importance has decreased in favour of branch-and-bound, it is still interesting
because (a) it usually beats the other methods when the instance is very hard

(see the computational results of Section2.10.1),and (b) it can be successfully
used in combination with branch-and-bound to produce hybrid algorithms for KP

(Plateau and Elkihel, 1985) and for other knapsack-type problems(Martello and

Toth A984a), Section 4.2.2).

2.6 DYNAMICPROGRAMMING ALGORITHMS

Given a pair of integers m {\\ < m < n) and c @ < c < c), considerthe sub-

instance of KP consisting of items l,...,w and capacity c. Let/;\342\200\236(c)denote its

optimal solution value, i.e.

fm{c)
= max < ypjXj : > WyXy

< c. Xj
=0 or 1 for j = I, ... ,m > . B.29)

2.6 Dynamic programming algorithms 37

i^-?--0/TNp'--0
Cr50 Wu-L/=107

fr90Wpr12
f=9 ClJu-3

p'=37
UrO

2r107

x=A,0,0,1,0,0,0)

Figure 2.4 Decision-tree of procedure MTl for Example 2.2

We trivially have

/i(c) =1^
r 0 for c = 0, ... ,wi

\342\200\2241;

Pi for c = wi, ... ,c

Dynamic programming consists of considering n stages (for m increasing from
I to n) and computing, at each stage m > 1, the values/;\342\200\236(c) (for c increasing
from 0 to c) using the classical recursion (Bellman, 1954, 1957;Dantzig, 1957):

38 2 0-1 Knapsack problem

(fm-\\(c) for c = 0, ...,Wm-
U

fmin
=

{
[max ifm-lic),frn-\\iC -

W^) + Pm) for C = Wm, ..., C.

We call states the feasible solutions corresponding to the/;\342\200\236(c)values. The optimal
solution of the problem is the state corresponding to/.,(c).

Toth A980) directly derived from the Bellman recursion an efficient procedure
for computing the states of a stage. The following values are assumed to be defined
beforeexecution for stage m:

i-i \\^
B.30)

B.31)

..,v; B.32)

for c = 0, ... ,v. B.33)

where Xj defines the value of the j\\h variable in the partial optimal solution

corresponding to /;\342\200\236_i (c), i.e.

m\342\200\224\\ m\342\200\224\\

From a computational point of view, it is convenient to encode each set X^ as a

bit string, so this notation will be used in the following. After execution, values
B.30) to B.33) are relative to stage m.

procedure REC1:
input: v,b,(Ps).(Xs).w^,Pm;

output: v.b.iPe),iXe);
begin

if V < c then

begin
M := v;
V := min (v +Wm. c);
for c :=M + 1 to V do

begin
P-=P \342\226\240
re \342\200\242' w
Xc := Xu

end

end;

for c := V to Wm step -1 do
if Pf <Pe-^^+pm then

begin

2.6 Dynamic programming algorithms 39

' C \342\200\242~ ' C \342\200\224Wm \"'' Pm \302\273

end;

b \342\226\240.=lb

end.

An immediate dynamic programming algorithm for KP is thus the following.

procedure DP1:

input:/i.c.(py).(wy);
output: z.{xj);
begin

for c := 0 to wi
- 1 do

begin
Pc \342\200\242=0;

Xe :=0

end;
V := wi;
b :=2;

/'v :=Pi;
Xv := 1;

for w := 2 to \302\253do call REC1;
z :=Pc;
determine (Xj) by decoding Xc

end.

Procedure RECl requires 0(c) time, so the time complexity of DPI is 0(nc).

The space complexity is 0{nc). By encodingX^ as a bit string in computer words

of d bits, the actual storage requirement is A + \\n/d'])c, where \\a'\\ is the smallest

integer not less than a.

2.6.1 Elimination of dominated states

The number of states consideredat each stage can be considerably reduced by

eliminating dominated states, that is, those states{Pf.Xs)for which there exists a

state {Py.Xy) with Py > P^ and y < c. (Any solution obtainable from (P^. X^) can

be obtained from (Py. Xy).) This technique has been used by Horowitz and Sahni

A974) and Ahrens and Finke A975). The undominated states of the wth stage can
be computed through a procedure proposed by Toth A980). The following values
are assumed to be defined before execution of the procedure for stage m:

s = number of states at stage (w - 1); B.34)

b = 2'\"-^; B.35)

W1, = total weight of the /th state (/ = 1, ... ,5); B.36)

40 2 0-1 Knapsack problem

P1, = total profit of the /th state {i = \\, ... ,s); B.37)

.. ,x\\]. for / = 1, ... ,5. B.38)

where Xj defines the value of the jih variable in the partial optimal solution of the
/th state, i.e.

m-1 m\342\200\2241

W\\i =
Y^ WjXj and P^i =

Y^PjXj.
i=i y=i

Vector Vl^l (and, hence, PI) is assumed to be ordered according to strictly

increasing values.

The procedure uses index / to scan the states of the current stage and index k

to store the states of the new stage. Each current state can produce a new state of
total weight j = Vl^ 1, +W;\342\200\236,so the current states of total weight W Ih < y, and then

the new state, are stored in the new stage, but only if they are not dominated by

a state already stored. After execution, values B.34) and B.35) are relative to the

new stage, while the new values of B.36), B.37) and B.38) are given by (W2k),
(P2k) and (X2^), respectively. Sets X1, and Xl^ are encoded as bit strings. Vectors

(Wlk) and iP2k) result ordered according to strictly increasing values.On input,

it is assumed that l^ Iq = P lo = ^ lo=0.

procedureREC2:

\342\200\242input:s.b.(Wh).(Ph).(Xh)-Wm.Pm.c;

output: s.b. (Wlk). (Plk). (Xlk);
begin

/ :=0;
k := 0;

h := 1;
y :=H';

WUI

W2o:--
P2o :=
X2q:=
while 1

m J

:= H-oc;
= 0;

0;

0;
nin iy.WXh) < c

\\\\W\\h <y then

begin
comment:
p:=Ph;
X :=X1/,;

\\\\W\\h=y

begin

do

define the next state [p.x)

then

\\^P\\i+Pm

begin

> p then

p :=Pli +pn

2.6 Dynamic programming algorithms 41

end;
/ := / + 1;
y :=W 1/ + w^

end;
comment: store the next state, if not dominated;

ifp > P2k then
begin

k \342\200\242=k+ l;

W2k :=Wh;
P2k :=p;
X2k :=x

end;

h:=h + l
end

else
begin

comment:store the new state, if not dominated;

a Pli+Pr\342\200\236> P2k ttten

begin
k \342\226\240.=k + l;

W2k :=y;
P2k :=Ph+Pm;
X2k \342\226\240.=Xli+b

end;
/ := / + 1;
y :=Wli +Wm

end;
s := k;
b :=2b

end.

A dynamic programming algorithm using REC2 to solve KP is the following.

procedure DP2:
input:/i.c.(py).(wy);
output: z .{xj);

begin
W lo :=0;
Ph:=0;
Xh:=0;
s :=1;
b :=2;

W l\\ := w\\;

Ph \342\226\240.=Pu

X11 := 1;
for m := 2 to \302\253do

begin

42 2 0-1 Knapsack problem

call REC2;
rename H^ 2. P 2 and X 2 as ly L P1 and X1, respectively

end;

z -Ph;
determine {xj) by decoding Xls

end.

The time complexity of REC2 is 0(s). Since s is bounded by min B'\" \342\200\2241. c), the

time complexity of DP2 is 6)(min B\"'^Knc)).

Procedure DP2 requires no specific ordering of the items. Its efficiency, however,

improves considerablyif they are sorted according to decreasing pj /wj ratios since,

in this case, the number of undominated states is reduced. Hence,this ordering is

assumed in the following.

Example 2.3

Considerthe instance of KP defined by

n = 6;

(Pj) = E0, 50,64,46, 50, 5);

(Wj)
= E6, 59, 80, 64, 75, 17);

c = 190.

Figure 2.5 gives, for each stage m and for each undominated state /, the values

Wi. Pi, corresponding, in DP2, alternatively to l^ 1,.P1, and W2i. P2,. The optimal
solution, of value 150, is (xj) = A. 1.0.0.1.0).For the same example, procedure
DPI generates866 states.\342\226\241

/

0

1

2

3
4
5
6
7
8
9

10
11

m

W,

0

56

= 1

Pi

0
50

m

W,

0

56
115

= 2
P.

0
50

100

m

W,

0
56
80

115
136

= 3

P,

0
50
64

100
114

m

W,

0

56
80

115
136
179

= 4

P,

0
50
64

100

114

146

m

w.

0
56
80

115
136

179

190

= 5
P,

0
50
64

100

114

146
150

m

W,

0

17
56
73
80
97

115

132

136
153
179
190

= 6

P,

0

5

50
55
64
69

100

105

114

119
146
150

Figure 2.5 States of procedure DP2 for Example 2.3

2.6 Dynamic programming algorithms 43

2.6.2 The Horowitz-Sahnialgorithm

Horowitz and Sahni A974) presented an algorithm based on the subdivision of the

original problem of n variables into two subproblems, respectively oi q =
\\n/T\\

and r = n-q variables. For each subproblem a list containing all the undominated

states relative to the last stage is computed;the two lists are then combined in

order to find the optimal solution.
The main feature of the algorithm is the need, in the worst case, for two lists

of 2'^ \342\200\2241 states each, instead of a single list of 2\" - 1 states. Hence the time and

space complexities decrease to 0{m\\r\\ B\"^^. nc)), with a square root improvement
in the most favourable case. In many cases, however, the number of undominated

states is much lower than 2\"^^, since (a) many states are dominated and (b) for n

sufficiently large, we have, in general, c <C 2\"^^.

Ahrens and Finke A975)proposedan algorithm where the technique of Horowitz
and Sahni is combined with a branch-and-bound procedure in order to further

reduce storage requirements. The algorithm works very well for hard problems

having low values of n and very high^alues of w, and c, but has the disadvantage

of always executing the branch-and-bound procedure, even when the storage

requirements are not excessive.
We illustrate the Horowitz-Sahni algorithm with a numerical example.

Example 2.3 (continued)

We have q = ?>. The algorithm generates the first list for w =1, 2, 3, and the second

for w = 4, 5, 6. The corresponding undominated states are given in Figure 2.6.

Combining the lists corresponding to w = 3 and w = 6 we get the final list of

Figure 2.5. Q

/

0

1

2

3

4

5

6

7

m = \\

Wi P,

0 0

56 50

m = 2

Wi P,

0 0

56 50

115 100

m = 3

W, P,

0 0

56 50

80 64

115 100

136114

m =

Wi

0

17

64

75

81

92

139

6

Pi

0

5

46

50

51

55

96

156 101

m = 5

Wi Pi

0 0

64 46

75 50

139 96

m = A

Wi Pi

0 0

6446

Figure 2.6 States of the Horowitz-Sahni algorithm for Example 2.3

44 2 0-1Knapsack problem

2.6.3 The Toth algorithm

Toth A980) presented a dynamic programming algorithm based on (a) the
elimination of useless states and (b) a combination of procedures RECl and REC2.

Severalstates computed by REC1 or REC2 are of no use for the following stages

since, of course, we are only interested in states capable of producing, at the final

stage, the optimal solution. Uselessstates produced by RECl can be eliminated by

the following rule:
If a state, defined at the wth stage, has a total weight W satisfying one of the

conditions

n

(i) W <c- J2 ^J-

j=m + \\

(ii) c - rmnm^j<n{wj] <W <c.
then the state will never produce Pc and, hence, can be eliminated.

A similar rule can be given for REC2 (in this case, however, it is necessary to
keep the largest-weight state satisfying (i)), and the last, i.e. ^th, state. The rule

cannot be extended, instead, to the Horowitz-Sahni algorithm, since, in order to
combine the two lists, all the undominated states relative to the two subproblems

must be known.

Example 2.3 (continued)

The states generated by DP2, with REC2 improved through the above elimination

rule, are given in Figure 2.7. \342\226\241

/

0

1

2

3
4

m -

W,

0

56

= 1

P,

0
50

m

W,

0

56
115

= 2
P.

0
50

100

m

W,

0
56
80

115
136

= 3

P,

0
50
64

100

114

m

W,

0
80

115
136
179

= 4

P.

0
64

100
114
146

m

W,

0
136
190

= 5
P.

0
114
150

m

W,

0

190

= 6
P,

0
150

Figure 2.7 States of the improved version of DP2 for Example 2.3

Algorithm DP2 is generally more efficient than DPI, because of the fewer
number of states produced. Notice however that, for the computation of a single
state, the time and space requirements of DP2 are higher. So, for hard problems,
where very few states are dominated, and hence the two algorithms generate almost

the same lists, DPI must be preferred to DP2. A dynamic programming algorithm
which effectively solves both easy and hard problems can thus be obtained by

combining the best characteristics of the two approaches. This is achieved by using

2.7 Reduction algorithms 45

procedure REC2as long as the number of generated statesis low, and then passing
to RECl. Simpleheuristic rules to determine the iteration at which the procedure
must be changedcan be found in Toth A980).

2.7 REDUCTIONALGORITHMS

The size of an instance of KP can be reduced by applying procedures to fix the

optimal value of as many variables as possible. These procedures partition set

A^={1.2 n] into three subsets:

J I = {j E N : Xj
= I in any optimal solution to KP},

J0 = {j E N : Xj
= 0 in any optimal solution to KP},

F =N\\(Jl U/O).

The original KP can then be transformed into the reduced form

maximize z =
/^^PjXj

+ p

subject to yj^y-^i < c,
jeF

x/
= 0 or 1. y G F,

wherep =
E.g/iP/' c = c-

J2jeJ\\ ^J-

Ingargiola and Korsh A973) proposedthe first method for determining 71 and

70. The basic idea is the following. If setting a variable Xj to a given value b

(/>
= 0 or 1) produces infeasibility or implies a solution worse than an existing one,

then
Xj

must take the value A
-

/>) in any optimal solution. Let / be the value of

a feasible solution to KP, and, for j EN, let
uj (resp. wh be an upper bound for

KP with the additional constraint
Xj

= 1 (resp. Xj
= 0). Then we have

Jl = {j EN :m\302\260</}, B.39)

JO={j EN luj <l]. B.40)

In the Ingargiola-Korsh algorithm, uj and
u^

are computed using the Dantzig

bound. Let s be the critical item (see Section 2.2.1) and U\\ the Dantzig bound for
the original problem. Then uj

= U\\ for any j < s and
u^

= U\\ for any j > s.

Hence values j > s (resp.j < s) need not be considered in determining 7 1 (resp.

70), since U\\ > I. The algorithm initializes / to
X]/^i Pj ^\"^ improves it during

execution. It is assumed that the items are orderedaccording to B.7). Remember

that (t\\j) and (T^(j) represent the critical item when it is imposed, respectively.

46 2 0-1Knapsack problem

Xj
= 1 and Xj

= 0 (see B.17) and B.18)).

procedure IKR:

input:/i,c.(py),(wy);

output: 71.70;

begin
71 :=0;
7O:=0;
determine s = min {j :

J2]^\\ ^i > c};

i-=EMPj'
for j := I \\o s do

begin
determine a^ij) and computeu^;

/:=max(/.n=/^\"'P');

if mP </ then 71 :=71U{7}
end;

for; :=s to n do

begin
determine cr^ij) ^^^ compute uf;

I := max il.pj + Zjl?'^''Pi);
if

m/ < / then 70 :=70 U {7}

end

end.

Notice that the variables corresponding to items in 71 and 70 must take the

fixed value in any optimal solution to KP, thus including the solution of value

/ when this is optimal. However, given a feasible solution x of value /, we are
only interested in finding a better one. Hencestronger definitions of 7 1 and 70 are
obtained by replacing strict inequalities with inequalities in B.39), B.40), i.e.

Jl = {j eN :uf<l], B.41)

70={y gA^ :
uj

< /}. B.42)

If it turns out that the reduced problem is infeasible or has an optimal solution less

than /, then x is the optimal solution to the original problem.

Example 2.4

We use the same instance as in Example 2.2, whose optimal solution, of value 107,
is jc = (LO,0,L0,0,0):

2.7 Reduction algorithms 47

n =1;

(pj)
= G0, 20, 39, 37, 7, 5, 10);

(wy)
= C1, 10, 20, 19, 4, 3, 6);

c =50.

Applying procedure IKR we get:

s =3,

y
= 1 \342\200\242\342\200\242

y
= 2 :

y=3:

y
= 3 :

y=4:

y=5:

y=6:

y=7:

so7 1

/ =90;

M?
= 97.

4 = 107;

M?
= 107;

ul = 106;

m]
= 107^

4 = 106;

M^
= 106;

u] = 105,

= 0. JO={5,

I =96;

I = 1(

6,7}. D

In order to use definitions B.41), B.42) it is simply necessary to replace the

< sign with < in the two tests of procedure IKR. With this modification we get
71=0, 70 = {4,5.6.7}.The optimal solution value of the reduced problem is

then 90, implying that the feasible solution of value / = 107 is optimal. (Notice

that it is worth storing the solution vector corresponding to / during execution.)

Recently, Murphy A986) erroneously claimed that definitions B.41), B.42)
of 7 1 and 70 are incorrect. Balas, Nauss and Zemel A987) have pointed out its

mistake.

The time complexity of the Ingargiola-Korsh procedure is O(n^), since 0(n)
time is required for each a^ij) or (t\\j) computation (although one can expect
that, on average, these values can be determined with few operations, starting from

s). The time complexity does not change if
m^

and uj
are computed through one

of the improved upper bounding techniques of Section 2.3.
An 0(n) reduction algorithm has been independently obtained by Fayard and

Plateau A975) and Dembo and Hammer A980). The method, FPDHR, computes

u^ and
uj through the values p* = pj \342\200\224

WjPs/wg (see B.13)). Recalling that | p* \\

represents a lower bound on the decrease of z(C(^P)) corresponding to the change

of theyth variable from J, to 1 \342\200\224
Ty, we have

48 2 0-1Knapsack problem

uf= _z{C{KP))-p;\\. j = \\,...,s-

uj
=

[z{C{KP))+p;\\. j=s,...,n.

which are computed in constant time, once z(C(KP))is known. It is easy to see
that the values

m^
and

uj
obtained in this way are not lower than those of procedure

IKR, so the method is generally less effective,in the sense that the resulting sets

70 and J 1 have smaller cardinality.

O(n^) reduction algorithms more effective than the Ingargiola-Korsh method

have been obtained by Toth A976), Lauriere A978) and Fayard and Plateau A982).
An effective reduction method, still dominating the Ingargiola-Korsh one, but

requiring 0(n\\ogn) time, has been proposed by Martello and Toth A988). The

algorithm differs from procedure IKR in the following main respects:

(a) Uj*
and uj

are computed through the stronger bound U2;

(b) 71 and 70 are determined at the end, thus using the best heuristic solution

found;

(c) at each iteration, upper bound and improved heuristic solution value are

computed in 0{\\ogn) time by initially defining Wj
=

Yli=\\ ^i andp =
Yli=\\P'

(j
= I, ... ,n) and then determining, through binary search, the current critical

item? (i.e. a^ij) or (t\\j)).

The procedure assumes that the items are ordered according to B.7) and that

Pj/wj = \342\200\224ocif y < 1 , Pj/wj = +OC if y > n.

procedure MIR:
input: n.c.ipj),iwjy,

output: 7 1.70./;
begin

for y := 0 to \302\253do compute pj
=

Yli=\\ Pi ^i^cl wj = ^/^j w,;
find, through binary search, s such that vv^_i < c < vv^;

i-=Ps-\\^
c :=\342\202\254- w,_i;

fory := s + I Xo n do

if Wj < c then

begin
/ := I +pj;
c:=c- Wj

end;

fory := 1 to 5 do
begin

find, through binary search, J such that

_
Wj_ 1 < C +Wj < Wj]

\"c := c +
Wj

\342\200\224
Wj_ 1;

2.7 Reduction algorithms 49

u^
:= pj_ i-Pj+ max ([cpj+i /wj+i\\.

[Pi-('^j-c)Pj-\\/wj_i\\);
I := max (l.pj_^ -Pj)

end;
for; \342\200\242=s Xo n do

begin
find, through binary search, J such that

_
\"^1- 1 < C -Wj < Wj\\

c :=c -Wj -wj_i;

Uj
:= pj_ 1 +_Pj

+ max ([cpj+i/wj+i\\. [pj -
{wj

- c)pj_ i/wj_ iJ);
/ := max (l.pj_i +Pj)

end;

Jl:={j <s :
uf

< /};

70 := {j >s :
uj

< I]
end.

Example 2.4 (continued)

Applying procedure MTR we have

(p.) = @, 70, 90, 129, 166, 173, 178, 188);
(wy)

= @, 31,41, 61, 80, 84, 87, 93);
5 =3, /=90, c = 9;
/ = 102,c = 2;

y
= i

j = 2

y
= 3

y = 3

y
= 4

j=5

y
= 6

7=7

J=5,c= 1,m|^= 97

j=3, c = 19,u^= 107

s=4,c= 9, M?= 107

j=l,c = 30,ul= 99
j = 2,c= 0,ul = 107

j=3, c= 5,ui = 106
j=3, c= 6,M^

= 106

J=3,c= 3,u] = 105

/ = 107;

71=
{1,2, 3}, 70={3, 4, 5, 6, 7}.

The reduced problem is infeasible (x^, is fixed both to 1 and to 0 and, in addition,

Yli\302\243j\\̂ j > ^)^ so the feasible solution of value 107 is optimal. \342\226\241

Procedure MTR computes the initial value of / through the greedy algorithm.

Any other heuristic, requiring no more than 0(n\\ogn) time, couldbe used with no

time complexity alteration.
The number of fixed variables can be further increased by imposing conditions

B.5), B.6) to the reduced problem, i.e. setting 70 = 70U{yGF:wy>

50 2 0-1Knapsack problem

c -
Eygyi^^y) and, if

Y^j^f^j
< ^ -

E/g/i^^/' /I = /I U F. In addition,

the procedure can be re-executed for the items in F (since the values of uj and

My
relative to the reduced problem can decrease)until no further variable is fixed.

This,however, would increase the time complexity by a factor n, unless the number

of re-executions is bounded by a constant.

2.8 APPROXIMATE ALGORITHMS

In Section 2.4 we have described the greedy algorithm, which provides an

approximate solution to KP with worst-case performance ratio equal to ^, in time

0{n) plus 0{n log n) for the initial sorting. Better accuracy can be obtained through

approximation schemes, which allow one to obtain any prefixed performance
ratio. In this section we examine polynomial-time and fully polynomial-time

approximation schemes for KP. Besidesthesedeterministic results, the probabilistic
behaviour of some approximate algorithms has been investigated. A thorough

analysis of probabilistic aspects is outwith the scope of this book. The main results

are outlined in Section 2.8.3 and, for the subset-sum problem, in Section 4.3.4. (The
contents of such sections are based on Karp, Lenstra,McDiarmid and Rinnooy Kan

A985).)

2.8.1 Polynomial-timeapproximation schemes

The first approximation scheme for KP was proposed by Sahni A975) and makes

use of a greedy-type procedure which finds a heuristic solution by filling, in order

of decreasing Py/wy ratios, that part of c which is left vacant after the items of a

given set M have been put into the knapsack. Given M C N and assuming that

the items are sorted according to B.7), the procedure is as follows.

procedure GS:

input: n.c.ipj).{Wj).M;
output: z^.X;
begin

zs :=0;

X := 0;

for) := Ho n do

If 7 ^ M and wj
< c then

begin
8 \342\200\224vS= z^ +Pj;

c :=c \342\200\224
Wj]

X:=XU{J]
end

end.

2.8 Approximate algorithms 51

Given a non-negative integer parameter k, the Sahni scheme S(^) is

procedure S(^):
\\xviiU\\:n,c,{pj),{Wj);

output: z\\.X^

begin
z^ :=0;
for each M c {1 n] such that \\M\\ <k and

X]/6M ^/ < c do

begin
call GS;
\"^' +

E,6MPy
>^'then

begin
^':=^^ + EyeMP/;
X^ :=X UM

end

end

end.

Since the time complexity of procedure GS \\& 0{n) and the number of times it is

executed is 0{n'^), the time complexity of S(^) is 6)(/i^\"^^). The space complexity
is 0{n).

Theorem2.3(Sahni, 1975) The worst-case performance ratio ofS{k) is r{S{k))=
k/(k+ l).

Proof, (a) Let Y be the set of items inserted into the knapsack in the optimal
solution. If 11^ I < k, then S(^) gives the optimum, since all combinations of
size I y I are tried. Hence, assume | y | > k. Let M be the set of the k items of

highest profit in Y, and denote the remaining items of Y with ji yV, assuming

Pji/'^j, >
Pj,+\\/'^j,+\\ (i = ^, \342\226\240\342\226\240\342\226\240,r

\342\200\224
I). Hence, if z is the optimal solution value,

we have
Pi < -^\342\200\224 for / = 1, ... ,r. B.43)

^ + 1

Consider now the iteration of S(^) in which M = M, and lety^^ be the first item of

{ji: \342\226\240\342\226\240\342\226\240Jr] not inserted into the knapsack by GS. If no such item exists then the

heuristic solution is optimal. Otherwisewe can write z as

m\342\200\224\\ r

ieW '=1 '='\"

while for the heuristic solution value returned by GS we have
m\342\200\2241

52 2 0-1 Knapsack problem

where Q denotes the set of those items of N\\M which are in the heuristic

solution but not in {j\\ jr] and whose index is less than j^. Let c* =

c -
Ylif'M^i

~
J17=\\^ ^h ^^^ c = c* -

X^/GC^' ^^ ^^^ residual capacities
available, respectively, in the optimal and the heuristic solution for the items of

N\\M following ^_i. Hence,from B.44),

m\342\200\2241

by definition of m we have c < wy^
and p, /w, >

pj^ /wj^ for / G Q, so

m\342\200\2241

Z
<J2Pi

+ J2PJ' ^Pj-n
+

E^\"

Hence, from B.45), z < z^ +
pj^ and, from B.43),

zs k
>

z k + l'

(b) To prove that the bound is tight, consider the series of instances with:
n =k+2; pi=2. wi = l; pj =

wj
= L > 2 for j = 2, ... ,k + 2; c = (k + l)L.The

optimal solution value is z =
(k + 1)L, while S(^) gives z^ = kL + 2. Hence, for L

sufficiently large, the ratio z''/z is arbitrarily close to k/(k + 1). D

Let M denote the maximum cardinality subset of {1 n] such that

Ylj^W^J \342\200\224^- Then, clearly, for any k > \\M\\, S(k) gives the optimal solution.

Example 2.5

Consider the instance of KP defined by

n =S;

(Pj) = C50, 400, 450, 20, 70, 8, 5, 5);

(Wj)
= (25, 35, 45, 5, 25, 3, 2, 2);

c = 104.

The optimal solution X = {1.3.4.5.7.8} has value z = 900.
Applying Sik) with A: = 0, we get the greedy solution: X^ = {1, 2, 4, 5, 6, 7, 8},

z^ =858.

Applying S(^) with ^ = 1, we re-obtain the greedy solution for

M = {1}, {2},{4},{5},{6},{7}, {8}. For M = {3}, we obtain X^ =

{1, 3,4, 5, 6}, z^ =898.
Applying S(^) with ^ = 2, we obtain the optimal solution when M = {3.7}.\342\226\241

2.8 Approximate algorithms 53

The Sahni algorithm is a polynomial-time approximation scheme, in the sense

that any prefixed worst-case performance ratio can be obtained in a time bounded

by a polynomial. However, the degree of the polynomial increases with k, so the

time complexity of the algorithm is exponential in k, i.e. in the inverse of the
worst-case relative error e = 1 \342\200\224r.

2.8.2 Fully polynomial-time approximation schemes

Ibarra and Kim A975) have obtained q. fully polynomial-time approximation scheme,
i.e. a parametric algorithm which allows one to obtain any worst-case relative

error (note that imposing e is equivalent to imposing r) in polynomial time

and space, and such that the time and space complexities grow polynomially
also with the inverse of the worst-case relative error e. The basic ideas in the
Ibarra-Kim algorithm are: (a) to separate items accordingto profits into a class of

\"large\" items and one of \"small\" items; (b) to solve the problem for the large
items only, with profits scaled by a suitable scale factor b, through dynamic

programming. The dynamic programming list is stored in a table T of length

\\0/ef\\ -Hi; T{k)= \"undefined\" or is of the form (L(k).P(k), W(k)), where L(k)

is a subset of {1,... ,n], P(k)
=

J2jeLik)Pj^ ^(^) =
Ejeuk) ^j and k =

J2jeL{k)Pj
with

Pj
= [pj/b\\. It is assumed that the items are ordered according to B.7) and

that the \"small\" items are inserted in set S preserving this order.

procedure IK(\302\243):

input: \302\253,c,(/?y),(wy);

output: z\\X^

begin
find the critical item 5 (see Section2.2.1);
if

E/=i'^y
=c then

begin
^ :=Ey=i Pj'
X^ \342\200\242={\\,...,s- 1};

return

end;

comment: z/2 <z<z, sincez > max (E/=i Pj'PsY'

b:=z{\302\243/3f;

S :=0;

7@) := (L@),P@),W@)) := @,0,0);
q := [z/6\\- (comment: q =

[C/\302\243)^J);

comment: dynamic programming phase;
for / := I Xo q do T(i) := \"undefined\";

for 7 := 1 to \302\253do

iipj < \302\243z/3then5 := S U {j]
else

54 2 0-1Knapsack problem

begin

Pj '\342\226\240=
by/^J^

for i :=q - pj to 0 step -1 do
if T(i) ^ '\"undefined\" and W(i) +

Wj
< c then

if T(i +pj)
=

\"undefined\"

or W(i +Pj) > W(i) +
Wj then

TH +pj) := (Ld) U {j], Pii)+pj,Wii) + wj)
end;

comment: greedy phase;

z^ :=0;
for / := 0 to <7 do

if T(i) ^ ''undefined\" then

begin
I :=

P(i)+YlieAPj'
where/I is obtained by filling the residual

capacity c -W(i) with items of S in the greedy way;
if F > z^ then

begin
h

X^ :=L(i)UA

z^ :=z;

end
end

end.

The dynamic programming recursion is executed n times and, at each iteration,

no more than q states are considered:since each state takes a constant amount

of time, the dynamic programming phase has time complexity 0(nq). The final

greedy phase is performed at most q times, each iteration taking 0(n) time. Hence
the overall time complexity of IK(\302\243)is 0(nq), i.e. 0{n/\302\243^) by definition oiq, plus
0{n\\ogn) for the initial sorting.

The space required by the algorithm is determined by the [C/\302\243)^J entries of

table T. Each entry needs no more than 2 + r words, where t is the number of

items defining the state. If
^-^ ,\342\226\240\342\226\240\342\226\240,Pi are the scaled profits of such items, we have

t < q/min j^-^,...,^- } < 3/e. Hence the overall space complexity of IK(\302\243)is

0(n) (for the input) + 0(\\/\302\243^).

Theorem 2.4 (Ibarra and Kim, 1975) For any instance of KP, (z - z^)/z < e,
where z is the optimal solution value and z^ the value returned by IK(\302\243).

Proof. If the algorithm terminates in the initial phase with z^ = ^^J^ Pj then z^

gives the optimal solution. Otherwise, let {i\\,...,ik] be the (possibly empty) set

of items with /?,, > ^ez in the optimal solution, i.e.

=
E''. + a.

2.8 Approximate algorithms 55

where a is a sum of profits of items in S. Defining p* =
J2i=i Pu ^'^^ vv

* =
^/=i w,,,

we have, at the end of the dynamic programming phase, T(p*) i ''undefined''''

and W{p*) < w* (since W(i) is never increased by the algorithm). Let L(p*)=
{yi.\342\200\242\342\200\242\342\200\242\342\200\242>jh}- (This implies that^* = J2i=iPj, and H^(^*) =

J2i=i ^jr^ Then the sum

I = J2i=i Pji
\342\226\240\342\200\242\"/^' where /5 is a sum of profits of elements in S, has been considered

in the greedy phase (when / = ^*), so z^ > I. Observe that pj
= [pj/6\\ > 3/e,

from which pj6
< pj < (pj + 1N =Pj6(l

+ i/Pj) < PjK^ + e/3). It follows that

p*6 + a < z <p*6{\\ + \\e) + a,

p*6 + /3 <I <p*6(l +
^\302\243)

+ /3,

from which

z-I p*6\302\243/3+ (q
- P) I Q. \342\200\224

C

1
~ 1 ~ ^

Z

Since W{p*) < w* and the items in S are orderedby decreasing /?y/wy ratios, it

follows that (a
\342\200\224

ji) cannot'be greater than the maximum profit of an item in 5,
i.e. a \342\200\224

/5 < \\zi. Hence (z \342\200\224
1I1 <

^\302\243A
+ z/z). Since J < z^ and z < 2z, then

(z -z^)/z <\302\243.n

Example 2.5 (continued)

We apply IK(\302\243)with e =
\\.

s = 3;

z = 1200;

, 100

S =0 (items with pj < ez/3 = 200will be inserted in 5');

7@) = @.0.0);

q
= 36;

dynamic programming phase:

y
= 1 : p^

= 10, 7A0) = ({1},350,25);

j =2: p2
= 12, 7B2) = ({1, 2}, 750, 60),

7A2)= ({2},400, 35);

y = 3 : ^3 = 13,7B5)=({2,3},850,80),

56 2 0-1 Knapsack problem

7B3) = ({1,3},800,70),
rA3)

= ({3}, 450, 45);

7 =4,..., 8: 5 ={4,5,6, 7, 8};

greedy phase:

for all the entries of table T save 7B3) and 7B5), we have c -W{i) > Yljes^J
~

37. Hence the best solution produced by such states is ^'B2)+^^^ pj = 858.7B3)
gives PB3) +

Ey\342\202\254{4.56}Pj
= 898; 7B5) gives PB5) + Eje{4.6.7.s}Pj= 888.It

follows that z^ = 898. X^ = {I, 3, 4, 5, 6}.

The solution does not change for all values \302\243> jq. For \302\243< jq, we have

\302\243z/3< 8, so items 1-6 are considered\"large\" and the algorithm finds the optimal

solution using entry 7(/) = ({1, 3, 4, 5},890,100).The value of <7, however, is

at least 22 500 instead of 36. D

Ibarra and Kim A975) have also proposed a modified implementation having

improved time complexity 0(n\\ogn) + 0((l/\302\243'*)log(l/\302\243)), with the second term

independent of n. Further improvements have been obtained by Lawler A979), who

used a median-finding routine (to eliminate sorting) and a more efficient scaling
technique to obtain time complexity 0(n\\og(l/\302\243) + !/\302\243\342\226\240*)and space complexity

0(n + \\/e^). Magazine and Oguz A981) have further revised the Lawler A979)
scheme, obtaining time complexity O{rP-\\og{n/e)) and space complexity 0{njz).

A fully polynomial-time approximation scheme for the minimization version of

KP was found, independently of the Ibarra-Kim result, by Babat A975). Its time
and space complexity of 0{n^jz) was improved to 0{n^je) by Gens and Levner

A979).
Note that the core memory requirements of the fully polynomial-time

approximation schemes depend on e and can become impractical for small values of
this parameter. On the contrary, the space complexity of Sahni's polynomial-time
approximation scheme is 0(\302\253), independently of r.

2.8.3 Probabilistic analysis

The first probabilistic result for KP was obtainedby d'Atri A979). Assuming that

profits and weights are independently drawn from the uniform distribution over {1,
2, ..., \302\253},and the capacity from the uniform distribution over {1. 2. ... ,kn\\ {k

an integer constant), he proved that there exists an 0{n) time algorithm giving the

optimal solution with probability tending to 1 as \302\253-^ oc.

Lueker A982) investigated the properties of the average value of {i{C{KP))\342\200\224

z (KP)) (difference between the solution value of the continuous relaxation and the

optimal solution value of KP). Assuming that profits and weights are independently

generated from the uniform distribution between 0 and 1 by a Poisson process with

n as the expected number of items, and that the capacity isc = Pn for someconstant

P, he proved that:

2.9 Exact algorithms for large-size problems 57

(a) if /5 > ^ then all items fit in the knapsack with probability tending to 1, so the

question is trivial;

(b) if f3 < { then the expected value of (z(C(KP))- z(KP)) is 0(log^\302\253/\302\253)and

n(\\/n).

Goldberg and Marchetti-Spaccamela A984) improved the 11A/\302\253) lower bound to

il(\\og^n/n), thus proving that the expected value of the difference is Q(\\og^n/n).
In addition, they proved that, for every fixed \302\243> 0, there is a polynomial-time
algorithm which finds the optimal solution to KP with probability at least 1 \342\200\224e.

(As a function of l/e, the running time of the algorithm is exponential.)

Meanti, Rinnooy Kan, Stougie and Vercellis A989) have determined, for the

same probabilistic model, the expected value of the critical ratio ps /w^ as a function

of /3, namely l/V^ for 0 < /^ < ^. f
- 3/^ for ^ < /^ < ^. The result has been

used by Marchetti-Spaccamela and Vercellis A987) to analyse the probabilistic

behaviour of an on-line version of the greedy algorithm. (An on-line algorithm for

KP is required to decide whether or not to include each item in the knapsack as it

is input, i.e. as its profit and weight become known.)
The probabilistic properties of different greedy algorithms for KP have been

studied in Szkatula and Libura A987).

2.9 EXACT ALGORITHMS FOR LARGE-SIZE PROBLEMS

As will be shown in Section 2.10, many instances of KP can be solved by branch-
and-bound algorithms for very high values of n. For such problems, the preliminary
sorting of the items requires, on average, a comparatively high computing time (for
example, when n > 2000 the sorting time is about 80 per cent of the total time

required by the algorithm of Section 2.5.2). In the present section we examine

algorithms which do not require preliminary sorting of all the items.
The first algorithm of this kind was presented by Balas and Zemel A980) and

is based on the so-called \"coreproblem\". Suppose, without loss of generality, that

Pj/wj > pj+i/wj+i for 7 = 1, ...,\302\253
\342\200\2241, and, for an optimal solution (x*), define

the core as

C = {ju...j2].
where

71 = min {j : x* = 0}. 72 = max {7 : x* = 1};

the core problem is then defined as

maximize z = V^ PjXj

iec

58 2 0-1 Knapsack problem

subject to
y~^WjXj

< c -
2_. ^j\342\226\240

J^C j&{i-p,lw,ypjjwj^]

Xj
=0 or 1. for j G C.

In general, for large problems,the size of the core is a very small fraction of

n. Hence, if we knew \"a priori\" the values of y'l and 72, we could easily solve the

complete problem by setting x* = 1 for a.\\\\jeJl
= {k: pk/wk > Pj^/wy,].x* =0

for all 7 e JO = {k : pk/wk < PjjMjj] and solving the core problem through

any branch-and-bound algorithm (so that only the items in C would have to be
sorted).Notice that /1 and JO are conceptually close to the sets of the same name

determined by reduction procedures.
Indicesj\\ and 72 cannot be \"a priori\" identified, but a good approximation of the

core problem can be obtained if we consider that, in most cases, given the critical

item s, we have 71 > s \342\200\224
(^/2) and 72 < -^ + (^/2) for some d <^n.

2.9.1 The Balas-Zemelalgorithm

Balas and Zemel A980) proposed the following procedure for determining, given
a prefixed value d, an approximate partition (/l.C./O) of A^. The methodology

is very close to that used in Section 2.2.2 to determine the critical item 5 and

the continuous solution (Xj), so we only give the statements differing from the

corresponding ones in procedure CRITICAL_ ITEM:

procedureBZC:

input: n,c.{pj).{wj). d;

output:/l.C.(Jy);
begin

while partition = \"no\" and \\JC\\> d 60

begin
determine the median r, of the first 3 ratios Pj/wj in JC;

end;
\\\\\\JC\\<d then

begin
C :=/C;
sort the items in C according to decreasing Pj /wj ratios;
determine the critical item 5 and the solution (Jy) of the continuous
relaxation through the Dantzig method applied to the items in C

with the residual capacity c
end

else
begin

\\e\\E = {ex, ...,eq};

2.9 Exact algorithms for large-size problems 59

a :=min {j :
YlUi^e, >c-c'];

s \342\226\240.=ea;

for each j G /1 U G U {^i e^_ i} do
Jy

:= 1;

for each j g /O U L U {ea+\\., e^] do J, :=0;
^s \342\200\242\342\226\240=(c

-
Ey\342\202\254{i....\302\253}\\{.}̂ J^j)Ms\\

define C as a sorted subset of JC such that \\C\\
= d and

5 is contained, if possible, in the middle third of C, and

correspondingly enlarge set /1
end

end.

Determining the median of the first three ratios (instead of that of all the ratios)
in JC increases the time complexity of the algorithm to O(n^), but is indicated in

Balas and Zemel A980) as the method giving the best experimental results.They

had also conjectured that the expected size of the core problem is constant, and

experimentally determined it as i? = 25. The conjecture has been contradictedby

Goldberg and Marchetti-Spaccamela A984), who proved that the expected core

problem size grows (very slowly) with n.
The Balas-Zemel method also makes use of a heuristic procedure H and a

reduction procedure R. These can be summarized as follows:

procedure H:
input: C./l;

output: z.ixj);
begin

given an approximate core problem C and a set/1 of items j such that Xj is

fixed to 1, find an approximate solution for C by using dominance relations
between the items;

define the corresponding approximate solution (xj), and its value z, for KP

end.

procedure R:

input: C;

output:/r,/0';

begin
fix as many variables of C as possible by applying the reduction test of

algorithm FPDHR, then that of algorithm IKR (see Section 2.7), modified
so as to compute an upper bound on the continuous solution value when

the items are not sorted;
define subsets JV and JO', containing the variables fixed, respectively, to 1

and to 0
end.

The Balas-Zemel idea is first to solve, without sorting, the continuous relaxation
of KP, thus determining the Dantzig upper bound (see Section 2.2.1), and then

searching for heuristic solutions of approximate core problems giving the upper

60 2 0-1Knapsack problem

bound value for KP. When such attempts fail, the reduced problem is solved
through an exact procedure. The algorithm can be outlined as follows G is a

given threshold value for which Balas and Zemel used 7 = 50).

procedureBZ:

input: n.c.(pj). (wj). 1!).7;
output: z.

(Xj);

begin

caii BZC ;
^

\342\226\240=Ej=iPjXj'

caii H ;

if z = [z'^J tfien return;
C := {1 n];
caiiR;

/I :=/r;
/0:=/0';
C :=C\\(/l U/0) (comment: new core);
if ICI > 7 tiien

begin
caii H ;

if z = [z'J tfien return;
caii R;

/I :=/l UJl';
JO:=JOUJO';
C :=C\\(Jl' U/00 (comment: reduced core);

end;
sort the items in C according to decreasing Pj/wj ratios;

exactly solve the core problem through the Zoltners A978) algorithm;
define the corresponding values of z and (xj) for KP

end.

Two effective algorithms for solving KP without sorting all the items have been
derivedfrom the Balas-Zemel idea by Fayard and Plateau A982) and Martello and

Toth A988).

2.9.2 The Fayard-PIateau algorithm

The algorithm, published together with an effective Fortran implementation (see

Fayard and Plateau A982)), can be briefly described as follows.

procedure FP:
input: \302\253.c.(/7y).(wy);

output: z.(xj):
begin

A^ :={1 \302\253};

2.9 Exact algorithms for large-sizeproblems 61

use a procedure similar to CRITICAL. ITEM (see Section 2.2.2) to determine
the critical item 5 and the subset Jl c N such that, in the continuous
solution of KP, Xj

= 1 fory G /1;

^'
'\342\226\240=Y.jej\\Pj+cps/ws;

apply the greedy algorithm (without sorting) to the items in A^\\/l with the
residual capacity c, and let (jcy) {j G N\\Jl) be the approximate solution

found;
^ '\342\200\242-

z2jejiPj
+

z2jeN\\jiPj^J'
if z = [z'J then return ;

apply reduction algorithm FPDHR (see Section2.7),defining sets JV and

JO';
C \342\200\242.=N\\(Jl' U/00 (comment: reduced problem);
sort the items in C according to increasing values of \\pj\\

=
\\pj

\342\200\224
WjPs/ws\\;

exactly solve the reduced problem through a specific enumerative technique;
define the corresponding values of z and (xj) for KP

end.

2.9.3 The Martello-Toth algorithm

The Martello and Toth A988) algorithm can be sketchedas follows.

Step 1. Partition A^ into J I.JO and C through a modification of the Balas-Zemel
method. Sort the items in C.

Step 2. Exactly solve the core problem, thus obtaining an approximate solution
for KP, and compute upper bound U(, (see Section 2.3.3).If its value

equals that of the approximate solution then this is clearly optimal: stop.
Otherwise

Step 3. Reduce KP with no further sorting: if all variables
Xj

such that y G /1

or 7 G /O are fixed (respectively to 1 and to 0), then we have it that C

is the exact core, so the approximate solution of Step 2 is optimal: stop.
Otherwise

Step 4. Sort the items correspondingto variables not fixed by reduction and exactly

solve the corresponding problem.

The algorithm improves upon the previous works in four main respects:

(a) the approximate solution determined at Step 2 is more precise (often optimal);

this is obtained through more careful definition of the approximate core and

through exact (instead of heuristic) solution of the corresponding problem;

(b) there is a higher probability that such an approximate solution can be proved

62 2 0-1Knapsack problem

to be optimal either at Step 2 (because of a tighter upper bound computation)
or at Step 3 (missing in previous works);

(c) the procedures for determining the approximate core (Step1)and reducing KP

(Step 3) have been implemented more efficiently;

(d) the exact solution of the subproblems (Steps 2 and 4) has been obtained by

adapting an effective branch-and-bound algorithm (procedure MTl of Section

2.5.2).

Step1

The procedure to determine the approximate core problem receives in input four

parameters: d (desiredcore problem size), a, C (tolerances) and rj (bound on the

number of iterations). It returns a partition (/ 1.C ./O) of A^, where C defines an

approximate core problem having residual capacity c = c \342\200\224
^ ^^j Wj, such that

(i) {\\-a)d <\\C\\< {\\ + l3)d,

(ii) E,\342\202\254C^J>c> 0,

(iii) max [pk/'^k '\342\226\240k G JO] < pj/wj < min [pk/'^k : /: G /1} for ally G C.

/1 and /O are initialized to empty, and C to A^. At any iteration we try to move

elements from A^ to /I or /O, until | C is inside the prefixed range. Following

Balas and Zemel A980), this is obtained by partitioning (through a tentative value

A) set C into three sets of items y such xhdApj/wj is less than A (set L), equal to A

(set \302\243\342\226\240)or greater than A (set G). Three possibilities are then considered, according

to the value of the current residual capacity c:

(^) X^/\342\202\254G^i \342\200\224^ <
^i\302\243G\\jE ^i' ^\342\200\242^\342\200\242'\342\200\242^~Ps/'^s'- if I \302\243^I is large enough, the desired

core is defined; otherwise A is increased or decreased, accordingto the values

of I GI and | L|, so that | C results closer to the desired size at the next iteration;

(b) X^.gc vvy > c, i.e., A < Ps/^s'- if I G^l is large enough we move the elements

oiL\\JE from C to /O and increase A; otherwise we decrease A so that, at the
next iteration, | G \\ results larger;

(c) X^.gGuf vvy < c, i.e., A > Ps/^s'- if ^| is large enough we move the elements
oi G\\JE from C to / 1 and decrease A; otherwise we increase A so that, at the
next iteration, \\L\\ results larger.

In the following description of procedure CORE, M^S) denotesthe median of

the profit /weight ratios of the first, last and middle element of S. If the desired

C is not obtained within r] iterations, execution is halted and the current partition

(/l.C./O) is returned. In this case, however, condition (i) aboveis not satisfied,

i.e. I C I is not inside the prefixed range.

2.9 Exact algorithms for large-size problems 63

procedure CORE:
input: n.c. (pj). (Wj). d. a. C. rj\\

output:/I.e./O;

begin
/I :=0;
/O:=0;
C :={1 n]\\

c := c;
k :=0;
A :=M3(C);

while I C > A + /^)i? and k < i^ do

begin

G:={7GC :/7,/wy > A};

L--{j eC :pj/wj < A};

\302\243:={7GC:/.,/w,=A};

if c' < c < c'' then

if |\302\243|> A
- a)i?then

begin
let\302\243= {^1 eg}:
a :=min {y : E^=i ^^, > c-c'};
5 := e^;
C :={er et'] with r. t such that

r - r + 1 is as closeas possible to -d

and (r +r)/2 to 5;
/0:=/OULU {^,+1 e^};
/I :=/l UGU {^1 e,_i}

end
else

if |GU\302\243| < I? then A :=M3(L)
else A :=M3(G)

else

if c' > c then
if |G| < A -a)t?then A :=M3(L)

else

begin
/0:=/OULU\302\243;
C :=G;
A :=M3(C)

end

else
if \\L\\ < A -a)i?then A :=M3(G)

else

begin
/I :=/lUGU\302\243;

C := L;
c:=c-c'';

64 2 0-1Knapsack problem

end;

k \342\226\240.=k + l

end
end.

The heaviest computations in the \"while\" loop (partitioning of C and definition

of c' and c\") require 0(n) time. Hence, if rj is a prefixed constant, the procedure

runs in linear time.

Steps2, 4

Exact solutions (xj) of the core problem and of the reduced problem are obtained

through procedure MTl of Section 2.5.2, modified so as also to compute, if

required, the value u of upper bound U(, (Section 2.3.3) for KP. We refer to this

procedure as MTl' and call it by giving the sets C (free items) and /I (items y

such that Xj
is fixed to 1).

procedure MTV:

input: n.c, (pj).(wj).C .J \\, bound;

output: (xj).u;
begin

define the sub-instance KP' consisting of the items in C with residual capacity

c-EjeJi'^J'
if bound = \"no\" then call MT1 for KP'
else call MT1 for KP' with determination oi u = Ue;
let (xj) be the solution vector returned by MT1

end.

Step 3

Reduction without sorting is obtained through the following procedure, which

receives in input the partition determined at Step 1 (with only the items in C

sorted according to decreasing Pj/wj ratios) and the value z^ of the approximate

solution found at Step 2. The procedure defines sets /I and /O accordingto the

same rules as in procedure MTR (Section 2.7), but computing weaker bounds u^
and

uj
when the current critical item ? is not in C.

procedure MTR':

input: n. c. (pj). (Wj). z^ JI .C JO;
output: 71,70;

begin
comment: it is assumed that the items in C are 1,2 f if =

I CI), sorted according to decreasing Pj/wj ratios;

P-=J2jeJiPJ'

2.9 Exact algorithms for large-sizeproblems 65

for7 := 1 to/ do compute Wj
=

Yl!=i ^i ^'^^ Pj = J2!=iPi'
find, through binary search, s e C such that w^_i < c < w^;
for each 7 G/1U{1 s] do

if c +
Wj < Wf then

begin
find, through binary search, J e C such that

_ Wj_ 1 <C+Wj < Wj,
\"c :='c +Wj

\342\200\224
Wj_ I;

uf :=p- Pj +Pj_x+ max (^pj+x/wj+x\\ \342\226\240

VP-^
- (^^ - 'c)Pj-X1^1-1J);

z^ := max {i^.p -pj +Pj_x)
end

else
begin

U^ \342\226\240=P-Pj +Pf+ [(C +
Wy

-
Wf)pf/Wf\\ ;

z^ := max (z'^.p
- pj +Pf)

end;
for eachy g /OU {5 /} do

if c \342\200\224
Wj > vv 1 then

begin

find, through binary search, J e C such that

_ Wj_ X <C-Wj < Wj;

c:=c-Wj-wj_x;
uj \342\226\240=p+Pj +Pj_x+ max ([cpj+x /wy+iJ \342\226\240

[pj
-

(\"^j
- ^pj- 1 /w7-1J);

z^ := max (z'^.p +pj +Pj_x)
end

else
begin

uj
:= [p+Pj + (c -

Wj)px/wx\\;

if c -
Wj

> 0 then z^ := max (z'' .p +pj)
end;

/0:={y eJOU{s /} :u} <z^};
7T:={7G/1U{1 s}-.uf <z^}

end.

The heaviest computations are involved in the two \"for each\" loops: for 0(n)
times a binary search, of time complexity 0(log|C|), is performed.The overall

time complexity is thus 0(\302\253log| C |), i.e. 0(n) for fixed \\C\\.

Algorithm

The algorithm exactly solves KP through Steps 1^, unless the size of core C
determined at Step 1 is too large. If this is the case, the solution is obtained

66 2 0-1 Knapsack problem

through standard sorting, reduction and branch-and-bound. On input, the items are
not assumed to be sorted.

procedure MT2:
input: n.c. (Pj)-('^j)- ^- Q- /3, r);

output: z. {xj);
begin

fory := 1 to n do x, := 0;
comment: Step 1;
callCORE;

if |C| < A -
a)\302\253then

begin
sort the items in C by decreasing Pj /wj ratios;
comment: Step 2;
bound := \"yes\";
call MTl';

\\i z'' = u then
for each j e JI U {k e C : Xk = I] do Xj

:= I

else (comment: Step 3)
begin

cajl_MTR'; _
if/1 D/1 and/OD/0 then

for each j eJlU{k eC :Jc^t = 1} do jcy := 1

else (comment: Step 4)
begin

C :={1 \302\253}\\(/lU/0);

sort the items in C according to

decreasing/7y/wy ratios;
bound := \"no\";

/I :=/l;
call Mir ; _
for each j eJlU{k eC : Xk = I] do Xj := 1

end

end

end
else (comment:standard solution)

begin
sort all the items according to decreasing pj/wj ratios;

call MTR;

z':=l-
C := {1 n]\\(Jl U/0);
bound.= \"no\";

call MTl';
for each j e JI U {k e C : Xk = I] do

Xj
:= I

end;

2.10 Computational experiments 67

En
if z < z^ then

begin
define the solution vector (xj) corresponding to z^;

end
end.

On the basis of the computational experiments reportedin the next section, the
four parameters needed by MT2 have been determined as

(n if n < 200,

[2y/n otherwise;

a = 0.2;

/3
= 1.0;

ri
= 20.

The Fortran implementation of MT2 is included in the present volume.

2.10 COMPUTATIONAL EXPERIMENTS

In this section we analyse the experimental behaviour of exact and approximate

algorithms for KP on sets of randomly generated test problems. Since the difficulty

of such problems is greatly affected by the correlation between profits and weights,

we consider three randomly generated data sets:

uncorrelated: pj and wy uniformly random in [1, v];

weakly correlated: Wj uniformly random in [1, v],
Pj uniformly random in [wj

\342\200\224r. Wj +r\\,

strongly correlated: Wj uniformly random in [1, v],

Pj
= ^j + f-

Increasing correlation means decreasing value of the difference msLXj{pj/wj]
\342\200\224

minj{pj/wj], hence increasing expected difficulty of the corresponding problems.

According to our experience, weakly correlated problems are closer to real world

situations.

For each data set we consider two values of the capacity: c = 2v and

c =
0.5J21^^Wj. In the first case the optimal solution contains very few items,

so the generated instances are expected to be easier than in the second case, where
about half of the items are in the optimal solution. (Further increasing the value of

c does not significantly increase the computing times.)

68 2 0-1Knapsack problem

2.10.1 Exact algorithms

We give separatetables for small-size problems (n < 200) and large-size problems

(n > 500).
We compare the Fortran IV implementations of the following algorithms:

HS = Horowitz and Sahni A974), Section 2.5.1;

MTR+HS = HSpreceded by reduction procedure MTR of Section2.7;

NA = Nauss A976), with its own reduction procedure;

MTl = Martello and Toth A977a), Section 2.5.2;

MTR+MTl = Martello and Toth A977a) preceded by MTR;

MTR+DPT = Toth A980), Section2.6.3,preceded by MTR;

BZ = Balas and Zemel A980), Section 2.9.1, with its own reduction

procedure;

FP =
Fayard and Plateau A982), Section 2.9.2, with its own reduction

procedure;

MT2 = Martello and Toth A988), Section 2.9.3, with MTR and MTR'.

NA, MTl, FP and MT2 are published codes, whose characteristicsare given

in Table 2.1. HS, MTR and DPT have been coded by us. For BZ we give the

computing times presented by the authors.

Table 2.1 Fortran codes for KP

Core Number of
Authors memory statements List

Nauss A976)
Martello and Toth A977a)

Fayard and Plateau A982)

Martello and Toth A988)

All runs (except those of Table 2.8) were executed on a CDC-Cyber 730. For

each data set, value of c and value of n, the tables give the average running time,

expressed in seconds, computed over 20 problem instances.SinceBalas and Zemel

A980) give times obtained on a CDC-6600,which we verified to be at least two

times faster than the CDC-Cyber 730 on problems of this kind, the times given in

the tables for BZ are those reported by the authors multiplied by 2.

Code FP includes its own sorting procedure. The sortings needed by HS, NA,
MTl, DPTand MT2 were obtained through a subroutine (included in MT2), derived

8rt

8rt

In

8rt

280

280

600

1400

Available from the author

This volume (also in

Martello and Toth A978))
In Fayard and Plateau A982)

This volume

2.10 Computational experiments 69

Table 2.2 Sorting times. CDC-Cyber 730 in seconds. Average times over 20 problems

n

time

50

0.008

100

0.018

200

0.041

500

0.114

1000

0.250

2000

0.529

5000

1.416

10000

3.010

Table 2.3 Uncorrelated problems: p and Wj uniformly random in [1,100]. CDC-Cyber730
in seconds. Average times over 20 problems

c

200

0.5 Ew,

n

50

100

200

50
100
200

HS

0.022

0.039

0.081

0.031
0.075
0.237

MTR

+HS

0.013

0.024
0.050

0.016
0.028
0.065

NA

0.015

0.025
0.055

0.015
0.029
0.073

MTl

0.015

0.026
0.051

0.016
0.030
0.068

MTR

+MT1

0.012
0.025
0.050

0.013
0.026

0.057

FP

0.013
0.018
0.032

0.013
0.021
0.053

MTR

+DPT

0.013
0.029
0.055

0.020
0.043

0.090

Table 2.4 Weakly correlated problems: Wj uniformly random in [1,100], pj in [wj\342\200\224lO,

Wj+\\0]. CDC-Cyber 730 in seconds. Average times over 20 problems

c

200

0.5 Ew,
7 = 1

n

50

100
200

50
100
200

HS

0.031

0.049
0.091

0.038
0.079
0.185

MTR

+HS

0.018

0.029
0.052

0.025
0.042
0.070

NA

0.019

0.038
0.060

0.035
0.086
0.151

MTl

0.017

0.032

0.055

0.022
0.040
0.069

MTR

+MT1

0.014

0.024
0.048

0.020
0.031
0.055

FP

0.016

0.023
0.030

0.021
0.039
0.057

MTR

+DPT

0.022
0.041
0.066

0.071
0.158
0.223

Table 2.5 Strongly correlated problems:Wj uniformly random in [1,100], Pj =
wj + 10.

CDC-Cyber 730 in seconds. Average times over 20 problems

c

200

0.5 Ew,
7 = 1

n

50

100
200

50
100
200

HS

0.165

1.035
3.584

time

MTR

+HS

0.101
0.392
2.785

time

NA

0.117

0.259
3.595

time

MTl

0.028

0.052
0.367

4.870
time

MTR

+MT1

0.025
0.047
0.311

4.019
time

FP

0.047

0.096
0.928

17.895
time

MTR

+DPT

0.041
0.070
0.111

0.370
1.409
3.936

70 2 0-1 Knapsack problem

from subroutine SORTZV of the CERN Library, whose experimental behaviour
is given in Table 2.2. All the times in the following tables include sorting and

reduction times.

Tables 2.3, 2.4 and 2.5 compare algorithms HS, MTR+HS, NA, MTl,

MTR+MTl, FP and MTR+DPT on small-sizeproblems (we do not give the times

of MT2, which are almost equal to those of MTR+MTl). For all data sets, v = 100

and r = 10.Table 2.3 refers to uncorrelated problems. Table2.4to weakly correlated

problems. All algorithms solved the problems very quickly with the exception \302\251fHS

and, for weakly correlated problems,MTR+DPT. MTl is only slightly improved
by previous application of MTR, contrary to what happens for HS. Table2.5refers

to strongly correlated problems. Because of the high times generally involved,
a time limit of 500 seconds was assigned to each algorithm for solution of the
60 problemsgenerated for each value of c. The dynamic programming approach

appears clearly superior to all branch-and-bound algorithms (among which MTl

has the best performance).

For large-size instances we do not consider strongly correlated problems, because
of the impractical times involved. Tables 2.6 and 2.7 compare algorithms MTl,
BZ, FP and MT2. Dynamic programming is not considered because of excessive

memory requirements, HS and NA because of clear inferiority. The problems were

generated with v = 1 000, r = 100 and c = 0.5 ^21=1^j-
FP is fast for \302\253< 2 000 but very slow for \302\253> 5 000, while BZ has the opposite

behaviour. MT2 has about the same times as FP for n < 2 000, the same times

as BZ for n = 5 000, and slightly higher than BZ for n = 10000, so it can
be considered,on average, the best code. MTl, which is not designed for large

Table2.6 Uncorrelated problems: pj and Wj uniformly random in [1,1000]; c = 0.5^\"^jWj

CDC-Cyber 730 in seconds. Average times over 20 problems

n

500

1000

2000
5 000

10000

MTl

0.199

0.381

0.787
1.993
4.265

BZ

\342\200\224

0.372

0.606

0.958
1.514

FP

0.104
0.188
0.358

1.745

7.661

MT2

0.157
0.258
0.462
0.982

1.979

Table 2.7 Weakly correlated problems: Wj uniformly random in [1,1000], Pj in [w^ \342\200\224100,

Wj + 100]; c = 0.5^. J Wj. CDC-Cyber 730 in seconds. Average times over 20 problems

n

500

1000
2000
5 000

10000

MTl

0.367

0.663

1.080
2.188
3.856

BZ

\342\200\224

0.588

0.586

0.744
1.018

FP

0.185
0.271
0.404

1.782

19.481

MT2

0.209
0.293
0.491
0.771
1.608

2.10 Computational experiments 71

Table 2.8 Algorithm MT2. Wj uniformly random in [1,1000]; c = 0.5 ^-'^j Wj.

HP 9000/840 in seconds. Average times over 20 problems

n

50

100

200
500

1000
2000
5 000

10000

20000
30000
40000
50000
60000

70000

80000

90000
100000
150000
200000
250000

Uncorrelated problems:

Pj uniformly random
in [1,1000]

0.008

0.016
0.025
0.067
0.122
0.220

0.515

0.872

1.507
2.222
2.835
3.562
4.185
4.731

5.176

5.723

7.001
9.739

14.372
17.135

Weakly correlated problems:

Pj uniformly random
in [Wj

- 100. Wj + 100]

0.015
0.038
0.070
0.076
0.160
0.260

0.414

0.739

1.330
3.474
2.664
3.492

504.935

4.644

5.515

6.108
7.046

time limit
\342\200\224

\342\200\224

problems, is generally the worst algorithm. However, about 80 per cent of its time

is spent in sorting, so its use can be convenient when several problems are to be
solved for the same item set and different values of c. A situation of this kind
arises for multiple knapsack problems, as will be seen in Section 6.4.

n = 10000 is the highest value obtainable with the CDC-Cyber 730 computer

available at the University of Bologna,becauseof a core memory limitation of 100
Kwords. Hence, we experimented the computational behaviour of MT2 for higher

values of n on an HP 9000/840 with 10 Mbytes available.We used the Fortran

compiler with option \"-o\", producing an object with no special optimization. The

results obtained for uncorrelatedand weakly correlated problems are shown in

Table 2.8. Uncorrelated problems were solved up to \302\253= 250000 with very regular

average times, growing less than linearly with n. Weakly correlated problemsshow

an almost linear growing rate, but less regularity; for high values of n, certain

instances required extremely high times (for \302\253= 60 000 one of the instances took

almost 3 hours CPU time, for n = 150000 executionwas halted after 4 hours).

2.10.2 Approximate algorithms

In Tables 2.9-2.11 we experimentally comparethe polynomial-time approximation

scheme of Sahni (Section 2.8.1) and a heuristic version of algorithm MT2

72 2 0-1 Knapsack problem

Table 2.9 Uncorrelated problems: Pj and Wj uniformly random in [1,1000]; c = 0.5
Yl'i=i ^r

HP 9000/840 in seconds. Average times (average percentage errors) over 20 problems

n

50

100

200
500

1000
2000
5 000

10000

20000
30000
40000
50000
60000

70000

80000

90000
100000
150000
200000
250000

MT2 approx.
time (% error)

0.004@.10569)

0.009@.05345)

0.015@.03294)
0.029@.00767)
0.058@.00418)
0.117@.00251)
0.296@.00182)

0.641@.00076)

1.248@.00032)

1.873@.00016)
2.696@.00016)
3.399@.00011)
3.993@.00009)
4.652@.00003)

5.307@.00008)

5.842@.00016)

6.865@.00007)
9.592@.00005)

13.223@.00008)
16.688@.00010)

S@)

time (% error)

0.005E.36560)
0.009B.25800)
0.017A.15739)
0.049@.49120)

0.105@.21213)

0.224@.10531)

0.618@.05540)
1.320@.02045)
2.852@.00897)
4.363@.00786)
6.472@.00521)

8.071@.00428)

9.778@.00403)

11.420@.00301)
13.075@.00329)
14.658@.00247)
16.347@.00231)
25.357@.00156)

35.050@.00144)

44.725@.00094)

S(l)
time (% error)

0.017E.13968)

0.060B.21412)

0.210A.12217)
1.242@.47978)
4.894@.20748)

19.545@.10338)
125.510@.05488)

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

SB)

time (% error)

0.319E.05006)
2.454B.19447)

19.376A.11691)
299.593@.47577)

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

(Section 2.9.3). The fully polynomial-time approximation schemes are not included

since a limited series of experiments showed a dramatic inferiority of these
algorithms (see also Section 4.4.2, where this trend is confirmed for the subset-sum

problem).

The heuristic version of MT2 was obtained by halting execution at the end of

Step 2, and returning the approximate solution of value z^. In order to obtain a

small core problem, procedureCOREwas executed with parameters

^ = 5;

a =0.0;

P= 1.0;

ri
= 200.

As for the Sahni scheme S(k), we experimented S@),S(l) and SB), since the

time complexity 6)(\302\253^\"^') makes the algorithm impractical for k >3.
Tables 2.9, 2.10and 2.11 give the results for the three data sets, with v =

1 000. r = 100 and c = 0.5 Yl^i ^j- P^r each approximate algorithm, we give (in
brackets) the average percentage error. This was computed as 100(z\342\200\224z'')/z,where

z^ is the approximate solution value and z either the optimal solution value (when

2.10 Computational experiments 73

Table 2.10 Weakly correlated problems: Wj uniformly random in [1,1000], Pj in [Wj
\342\200\224100,

Wj + 100]; c = 0.5^\"^,Wj. HP 9000/840 in seconds. Average times (average percentage
errors) over 20 problems

n

50

100
200
500

1000
2 000

5 000
10000
20000
30000
40000

50000

60000

70000
80000
90000

100000
150000
200000

250000

Table 2.11

c=0.5E;

n

50

100

200
500

1000
2000
5 000

10000

20000
30000
40000
50000
60000

70000

80000

90000
100000
150000
200000
250000

MT2 approx.
time (% error)

0.006@.17208)

0.008@.04296)

0.013@.06922)
0.033@.01174)
0.058@.00774)
0.114@.00589)
0.312@.00407)

0.645@.00261)

1.297@.00155)
1.943@.00104)
2.667@.00052)
3.374@.00036)
4.544@.00028)
4.662@.00040)

6.029@.00031)

6.249@.00040)

6.618@.00017)
10.231@.00019)
12.991@.00004)
16.062@.00009)

S@)

time (% error)

0.004B.13512)
0.008@.87730)
0.015@.31819)
0.046@.14959)

0.103@.08226)

0.222@.03740)

0.619@.01445)
1.324@.00630)
2.802@.00312)
4.372@.00216)
6.432@.00177)

8.013@.00139)

9.377@.00095)

11.069@.00083)
13.041@.00070)
15.662@.00071)
16.358@.00050)
25.530@.00041)

35.230@.00027)

45.234@.00020)

S(l)
time (% error)

0.017A.81004)

0.055@.78573)

0.194@.28838)
1.139@.14300)
4.432@.07842)

17.626@.03634)
113.527@.01413)

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

SB)

time (% error)

0.302A.77572)
2.281@.76862)

17.779@.28216)

273.118@.14135)
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

Strongly correlated problems: Wj uniformly random in [1,1000], Pj
=

Wj + 100;

L, Wj. HP 9000/840

MT2 approx.

time (% error)

0.008A.50585)
0.008@.81601)
0.015@.51026)
0.029@.27305)

0.059@.10765)

0.119@.06850)

0.315@.02148)
0.679@.01384)
1.266@.00559)
1.879@.00512)
2.603@.00292)

3.182@.00240)

3.795@.00224)

4.529@.00167)
5.090@.00154)
5.595@.00115)
6.320@.00132)
9.141@.00083)

12.005@.00077)

15.950@.00055)

in seconds. Average times (average percentage errors) over 20
problems

S@)

time (% error)
0.003C.25234)
0.007A.43595)
0.017@.77478)

0.046@.33453)

0.111@.15991)

0.236@.08866)
0.614@.02740)
1.341@.01573)
2.787@.00694)
4.333@.00504)

6.022@.00372)

7.598@.00239)
9.194@.00252)

10.760@.00214)
12.324@.00185)
13.968@.00179)
15.569@.00165)

24.583@.00082)

34.400@.00083)

44.001@.00044)

S(l)
time (% error)

0.019A.68977)
0.061@.73186)
0.226@.40653)
1.372@.17836)
5.388@.08409)

21.173@.05196)

132.973@.01421)
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

SB)

time (% error)
0.340@.74661)
2.574@.39229)

20.877@.26096)

316.804@.09783)
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

74 2 0-1 Knapsack problem

available) or an upper bound determined by the approximate version of MT2.
The execution of each approximate algorithm was halted as soon as the average

computing time exceeded 100 seconds.
Table 2.9 shows that it is not convenient to heuristically solve uncorrelated

problems,since the exact version of MT2 requires about the same times as its

approximate version, which in turn dominates S(k). The same consideration holds

for weakly correlated problemswith n < 50000 (Table 2.10); for n > 50000, the

approximate version of MT2 dominates S@), while S(l) and SB) have impractical
time requirements. Table2.11shows that the approximate version of MT2,'which

dominates S@), must be recommended for large-sizestrongly correlated problems;

for small values of n, S(l) and SB) can produce better approximations but require

dramatically higher computing times.
The Fortran code corresponding to MT2, included in the volume, allows use

either of the exact or the approximate version through an input parameter.

2.11 FACETS OF THE KNAPSACK POLYTOPE

In this section we give an outline of the main results obtained in the study of the

knapsack polytope.Sincesuch results did not lead, up to now, to the design of
effective algorithms for KP, the purpose of the present section is only to introduce
the reader to the principal polyhedral concepts and to indicate the relevant literature

concerning knapsack problems. Detailed introductions to the theory of polyhedra
can be found in Bachem and Grotschel A982), Pulleyblank A983), Schrijver A986)
and Nemhauser and Wolsey A988), among others.

We start with some basic definitions. Given a vector a ^ R\" and a scalar

qq ^ R, the set {x \302\243R\" :
Yl^i ^i^i ~ '^o} is called a hyperplane. A

hyperplane defines two halfspaces, namely {x E R\" :
Yl^i ^j^j \342\200\224^o) ^^^

{x \302\243R\" :
^21=1 ^j^j ^ ^o]- The intersection of finitely many halfspaces, when it

is bounded and non-empty, is called a polytope.Hence,polytopes can be written

as P = {x \302\243R\" :
Yl^i^u^j ^ ^io for / = 1, ... ,r}; alternatively, they can

be described as the convex hull of finitely many points, i.e. P = conv (S), with

S C R\" and S finite, m points x^ x\"^ \302\243R\" are called affinely independent if

the equations Yl'k=i '^kx'' = 0 and Y^=\\ ^k =0 imply A^t = 0 for /: = 1 m.
The dimension of a polytope P C R\". dim (P), is | P - 1, where P is the largest
subset of affinely independent points of P. A subset F of a polytope P C R\" is

called diface of P if there exists an inequality Yll=\\ ^j^J ^ ^o which is satisfied by

any jc G P and such that F = {x e P : J2\"= I CljXj
=

CIq }. In other words, a face is the

intersection of the polytope and a hyperplane defining a halfspace containing the

polytope itself. A face F of P such that dim (F) = dim (P)- 1 is called a. facet of P.
Hence an inequality ^J^, ajXj < ao defines a facetof P if (a) it is satisfied by any

X e P, and (b) it is satisfied with equality by exactly dim (P) affinely independent

X e P. The set of inequalities defining all the distinct facets of a polytope P

2.11 Facets of the knapsack poly tope 75

constitutes the minimal inequality representation of P. Hence the importance of

facets in order to apply linear programming techniques to combinatorial problems.
Coming to KP, its constraint set (conditionsB.2),B.3))defines the knapsack

polytope

K = conv <xeR\":^ WjXj
< c, jcy G {0. 1} for y

= 1, ...,\302\253>.

It is easy to verify that, with assumption B.6) (Wj
< c for ally),

dim(^) = n.

In fact (a) dim(/f) < n (obvious), and (b) dim(/f) > \302\253,since K contains the
n + 1 affinely independent points x^ (/: = 0 \302\253),where jc^ = @ 0) and x^

corresponds to unit vector e^ {k
= \\ n). The two main classes of facets of K

are based on minimal covers and A, k)-configurations.
A set 5 C A^ = {1 \302\253} is called a cover for K if

A cover is called minimal if

y^ Wj
< c for any / G S.

jes\\{i}

The set \302\243E)
= 5 U 5', where

S' = {j eN\\S :
Wj >max,g5 {w,}},

is called the extension of S to N. LetS be the family of all minimal covers S for K.
Balas and Jeroslow A972) have shown that constraints B.2), B.3) are equivalent
to the set of canonical inequalities

^ jcy
< I 5 I

- 1 for all 5 G S, B.46)

jeEiS)

in the sense that x G {0. 1}\" satisfies B.2), B.3) if and only if it satisfies B.46).
BalasA975), Hammer, Johnson and Peled A975) and Wolsey A975) have given

necessary and sufficient conditions for a canonical inequality to be a facet of K.
A rich family of facets of K can be obtained by \"lifting\" facets of lower

dimensional polytopes.Given a minimal cover S forK, let Ks C ^''^' denote

the I S I-dimensional polytope

76 2 0-1Knapsack problem

Ks =conv Ix e {0.1}'^' :
^wyjcy

<c\\, B.47)

i.e. the subset of K containing only points x such that Xj
= 0 for all j e N\\S. It

is known (see, for instance, BalasA975), Padberg A975), Wolsey A975)) that the

inequality

jes

defines a facet of the lower dimensional poly tope Ks. Nemhauser and Trotter A974)

and Padberg A975) have given a sequential lifting procedure to determine integer
coefficientsPj (j e N\\S) such that the inequality

jes jeN\\s

defines a facet of K. Calculating these coefficients requires solution of a sequence
of I A^\\5' I 0-1 knapsack problems. Furthermore, the facet obtained depends on the

sequence in which indices y E N\\S are considered. Zemel A978) and Balas and

Zemel A978) have given a characterization of the entire class of facets associated

with minimal covers, and a simultaneous lifting procedure to obtain them. These

facets have in general fractional coefficients (those with integer coefficients coincide

with the facets producedby sequential lifting).
A richer class of facetial inequalities of K is given by (l,/:)-configurations

(Padberg, 1979, 1980). Given a subset M C N md t e N\\M, define the set
S =MU{t].Sis SL (I, k)-configuration for K if (a) J^jeM^J ^ '^ ^'^^ C^) Q^i^]
is a minimal cover for every Q CM with \\Q\\

= k, where k is any given integer

satisfying 2 < k < \\M \\. Note that if k =
\\M \\, a A,/:)-configuration is a minimal

cover for K (and, conversely,any minimal cover S can be expressedas a (l,k)-

configuration, with /: = |5 | \342\200\224
1, for any t \302\243S). Padberg A980) proved that, given

a (l,/:)-configuration S = M U {t] of/f, the complete and irredundant set of facets
of the lower dimensional polytope Ks (see 2.47) is given by the inequalities

(r - k + l)x, +
^2 Xj

< r,

jesir)

where S(r) C M is any subset of cardinality r, and r is any integer satisfying

k < r < \\M \\. Sequential or simultaneous lifting procedures can then be used to
obtain facets of the knapsack polytope K.

Recently, Gottlieb and Rao A988) have studied a class of facets of K, containing
fractional coefficients, which can be derived from disjoint and overlapping minimal
covers and (l,/:)-configurations. For such class, they have given necessary and
sufficient conditions which can easily be verified without use of the computationally

2.12 The multiple-choice knapsack problem 77

heavy simultaneous lifting procedures. The computational complexity of lifted

inequalities has been analysed by Hartvigsen and Zemel A987) and Zemel A988).

2.12 THE MULTIPLE-CHOICE KNAPSACK PROBLEM

The Multiple-Choice KnapsackProblem (MCKP), also known as the Knapsack

Problem with Generalized Upper Bound (GUB)Constraints, is a 0-1 knapsack
problem in which a partition A^i A^^. of the item set A^ is given, and it is

required that exactly one item per subset is selected.Formally,

maximize z =
J2pjXj B.48)
7 = 1

subject to y^^J^J-'^' B.49)
7 = 1

^jcy
= 1. k = l r. B.50)

jeNt

xj =0or I. j eN = {1 n] = [jNk. B.51)
k=i

assuming

Nf,f]Nk
= 0 for all/z ^ k.

The problem is NP-hard, since any instance of KP, having r elements of profit pj

and weight wj (j = I r) and capacity c, is equivalent to the instance of MCKP
obtained by setting n = 2r, pj =

Wj
= 0 forj = r + I,... ,2r and N^ = {k. r + k]

for k = I,... ,r.
MCKP can be solved in pseudo-polynomial time through dynamic programming

as follows.Given a pair of integers / A < / < r) and c @ < c < c),consider the

sub-instance of MCKP consisting of subsetsA^i Ni and capacity c. Let//(c)
denote its optimal solution value, i.e.

fi(c) = max <
y^ pjXj : Y^ WjXj

< c, Y^ xj = I for k = I, ... ,1,

JC/
= 0 or 1 for j e N

78 2 0-1 Knapsack problem

where yv =
|J l=x^k, and assume that//(c) = -oc if the sub-instance has no

feasible solution. Let

=
minjwy

: j \302\243Nk} for /: = 1 r;

\342\200\224oc for c = 0 vvi
\342\200\224

1;

max {pj '\342\226\240j E Ni.Wj < c} for c = vvi c;

for / = 2 r we then have

\342\200\224oc for C = 0 J2k=l ^A: \342\200\224li

fi(c) = { max{ fi-iic -
Wj) +pj :y eNi.Wj < c}

for c =
Yl'k=i^k---- -c-

The optimal solution is the state corresponding to/;^(c). If we have ^^^, Wk > c

then the instance has no feasible solution, and we obtain/.(c) = \342\200\224oc.For each

value of /, the above computation requires 0{\\Ni\\c) operations, so the overall time

complexity of the method is 0(nc).
The execution of any algorithm for MCKP can be conveniently preceded by a

reduction phase, using the following

Dominance Criterion 2.1. For any Ni,(k = 1 r), if there exist two items

i.j G Nk such that

Pi ^ Pj and w, >
Wj

then there exists an optimal solution to MCKP in which jc, = 0, i.e. item i is
dominated.

Proof. Obvious from B.50). \342\226\241

As is the case for KP, dynamic programming can solve only instances of limited

size. Larger instances are generally solved through branch-and-bound algorithms,
based on the exact solution of the continuous relaxation of the problem, C (MCKP),
defined by B.48)-B.50) and

0<^y < 1- J eN. B.52)

An instance of C (MCKP) can be further reduced through the following

Dominance Criterion 2.2. For any Nkik = 1 r), if there exist three items
h.i J E Nk such that

2.12 The multiple-choice knapsack problem 79

A Pi -Ph ^ Pi
- Pi

^h < ^i < ^j and < -^

Wi -
Wh Wj

-
Wi

B.53)

then there exists an optimal solution to C{MCKP) in which jc,
= 0, i.e. item i is

dominated.

We do not give a formal proof of this criterion. However, it can be intuitively

verified by representing the items of Nj^ as in Figure 2.8 and observing that

(i) after application of DominanceCriterion 2.1, the remaining items can only

correspond to points in the shaded triangles;

(ii) for C(MCKP), all points / of each triangle are dominated by the pair of
verticesh.j (sincefor any value jc, ^ 0, there can be found a combination of

values Xfj. Xj producing a higher profit).
Hence

(iii) after application of Dominance Criterion 2.2, only those items remain which

profits

PJ

Pi

Ph

-r^-rrrTT^

Wh Wi Wi weights

Figure 2.8 Representation of items for Dominance Criteria 2.1 and 2.2

80 2 0-1Knapsack problem

correspond to the vertices defining the segments of the piecewise (concave)
linear function.

In addition, by analysing the structure of the Linear Program correspondingto

C(MCKP), it is not difficult to see that

(iv) in the optimal solution of C(MCKP), r - 1 variables (corresponding to items

in r - 1 different subsets) have value 1; for the remaining subset, either one

variable has value 1 or two variables (corresponding to consecutive vertices
in Figure 2.8) have a fractional value.

Formal proofs of all the above propertiescan be found, e.g., in Sinha and Zoltners

A979).

As previously mentioned, the reduction and optimal solution of C(MCKP)play

a central role in all branch-and-bound algorithms for MCKP.

The reduction, based on DominanceCriteria 2.1 and 2.2, is obtained (see, e.g.,
Sinha and Zoltners, A979)) by sorting the items in each subset according to

increasingweights and then applying the criteria. The time complexity for this

phase is clearly 0(J2[^i \\Nk\\\\og\\Nk\\), i.e. 0(\302\253log max{|A^;t| : I <k < r]).
Oinlogr) algorithms for the solution of the reduced C(MCKP) instance have

been presentedby Sinha and Zoltners A979) and Glover and Klingman A979).

Zemel A980) has improved the time complexity for this second phase to 0(n). A

further improvement has been obtainedby Dudzinski and Walukiewicz A984b),
who have presented an 0(r\\og^(n/r)) algorithm.

The reduction phase is clearly the heaviest part of the process. However, in a

branch-and-bound algorithm for MCKP, it is performed only at the root node, while

the second phase must be iterated during execution.

Algorithms for solving C(MCKP) in 0(n) time, without sorting and reducing
the items, have been independently developed by Dyer A984) and Zemel A984).
Theseresults, however, have not been used, so far, in branch-and-bound algorithms
for MCKP, since the reduction phase is essential for the effective solution of the

problem.
Branch-and-boundalgorithms for MCKP have been presented by Nauss A978),

Sinha and Zoltners A979), Armstrong, Kung, Sinha and Zoltners A983), Dyer,
Kayal and Walker A984), Dudzinski and Walukiewicz A984b, 1987).

The Fortran implementation of the Dyer, Kayal and Walker A984) algorithm
can be obtained from Professor Martin E. Dyer.

