
Bounded knapsack problem

3.1 INTRODUCTION

The Bounded Knapsack Problem (BKP) is: given n item types and a knapsack, with

Pj
= profit of an item of type j;

Wj
= weight of an item of type j;

bj
= upper bound on the availability of items of type j;

c = capacity of the knapsack,

C.1)

C.2)

0 <
jcy

< bj and integer, j eN = {\\, ... ,n]. C.3)

BKP is a generalization of the 0-1 knapsack problem (Chapter 2), in which bj
= 1

for all j eN.
We will assume, without loss of generality, that

Pj,Wj,bj and c are positive integers, C.4)

n

^bjWj
> c, C.5)

7 = 1

/?ywy < c fory G A^. C.6)

Violation of assumption C.4) can be handled through a straightforward

adaptation of the Glover A965) method used for the 0-1 knapsack problem

81

select a number Xj (j =

maximize z

subject to

1, ... ,n)
n

7 = 1

n

7 = 1

of

<

\"
items of each

c.

type so as to

82 3 Bounded knapsack problem

(Section 2.1). If assumption C.5) is violated then we have the trivial solution

Xj
=

bj for all j ^ N, while for each j violating C.6) we can replace bj with

[c/wj\\. Also, the way followed in Section 2.1 to transform minimization into

maximization forms can be immediately extended to BKP.

Unless otherwise specified,we will suppose that the item types are orderedso
that

\302\2431> ^ > . .. > ^ C.7)

A close connection between the bounded and the 0-1 knapsack problems is self-
evident, so all the mathematical and algorithmic techniques analysedin Chapter 2

could be extended to the present case. The literature on BKP, however,is not

comparable to that on the binary case, especially considering the last decade.

The main reason for such a phenomenon is, in our opinion, the possibility of

transforming BKP into an equivalent 0-1 form with a generally limited increase in

the number of variables, and hence effectively solving BKP through algorithms for

the 0-1 knapsack problem.
In the following sections we give the transformation technique (Section 3.2)

and consider in detail some of the basic results concerningBKP (Section3.3).
The algorithmic aspects of the problem are briefly examined in Section 3.4. We
do not give detailed descriptions of the algorithms since the computational results
of Section3.5 show that the last generation of algorithms for the 0-1 knapsack
problem, when applied to transformed instances of BKP, outperforms the (older)

specialized algorithms for the problem.

The final section is devoted to the special case of BKP in which bj
= +oc for all

j ^ N (Unbounded Knapsack Problem). For this case, interesting theoretical results

have been obtained. In addition, contrary to what happens for BKP, specialized
algorithms usually give the best results.

3.2 TRANSFORMATIONINTOA 0-1 KNAPSACK PROBLEM

The following algorithm transforms a BKP, as defined by C.1)-C.3), into an

equivalent 0-1 knapsack problem with

n = number of variables;

(Pj) =
profit vector;

(Wj)
= weight vector;

c = c =
capacity.

For each item-type y of BKP, we introduce a series of [log2/?yJ items, whose profits
and weights are, respectively, (pj.wj), (Ipj.lwj), Dpj, 4wy), ... , and one item
such that the total weight (resp. profit) of the new items equals bjWj (resp. bjPj).

3.2 Transformation into a 0-1 l^napsacli problem 83

procedure TB01 :
input: n.(pj).(wj).(bj);

output: n.(pj). (wj);
begin

n :=0;

for 7 := 1 to \302\253do

begin

k := 1;
repeat

a P + k > bj then A: := bj
- P;

n := n + I;
Pn \342\226\240=kpj ;

Wfi := kwj;

P:=P + k;
k :=2k

until /3 =
bj

end

end.

The transformed problem has n =
Yl'i=i l^^Bi^^J \342\226\240\342\200\242\"1I binary variables, hence

0(n) gives the time complexity of the procedure. To see that the transformed

problem is equivalent to the original one, let xy, Xj^ (q = [log2(/?y + 1)]) be the

binary variables introduced for Xj and notice that item y'/, corresponds to \302\253/,items

of type j, where
B^-^ if h <q;

f^h
= s ,

Uy-Eri 2'-^ ^^ h = q.

Hence
Xj

=
Yll=i ^h^j^

can take any integer value between0 and bj.

Notice that the transformation introduces 2^ binary combinations, i.e. 2'' \342\200\224
{bj + \\)

redundant representations of possibleXj values (the values from
\302\253^

to 2^~^ - 1
have a double representation). Since, however, q is the minimum number of

binary variables needed to represent the integers from 0 to bj, any alternative

transformation must introduce the same number of redundancies.

Example 3.1

Considerthe instance of BKP defined by

\302\253= 3;

iPj) =A0, 15, 11)

{Wj)
= (1, 3, 5)

{bj) = (6, 4, 2)

c = 10.

84 3 Bounded knapsack problem

Applying TBOl, we get the equivalent 0-1 form:

\302\253= 8;

ipj) = A0, 20, 30, 15,30, 15,11,11);
(Wj)

= (1, 2, 3, 3, 6, 3, 5, 5).

Items 1 to 3 correspond to the first item type, with double representation of the value

xi = 3. Items 4 to 6 correspond to the second item type, with double representation
of the values jc2 = 1, jc2 = 2 and X2 = 3. Items 7 and 8 correspond to the third item

type, with double representation of the value x^ = 1. \342\226\241

3.3 UPPER BOUNDS AND APPROXIMATE ALGORITHMS

3.3.1 Upper bounds

The optimal solution J of the continuous relaxation of BKP, defined by C.1), C.2)

and

0 <
jcy

< bj, j eN,

can be derived in a straightforward way from Theorem 2.1. Assume that the items

are sorted according to C.7) and let

5 = mm y :^/7,w,-
>cl C.8)

be the critical item type. Then

Yj
=

hj for 7 = 1, ... ,5 \342\200\2241.

Jy
= 0 for 7 = 5 + 1,...,\302\253.

_ c
Xs = \342\200\224

We

where
.5-1

C =
C-^hjWj.

Hence the optimal continuous solution value is

7 = 1

3.3 Upper bounds and approximate algorithms 85

and an upper bound for BKP is

7 = 1 \342\200\242-'^
C.9)

A tighter bound has been derived by Martello and Toth A977d) from
Theorem 2.2. Let

7 = 1

C.10)

be the total profit obtained by selecting bj items of type j for j = I, ... ,s \342\200\224I, and

[J^J items of type s. The corresponding residual capacity is

Then

U' = z' +
jPs + l

C.11)

is an upper bound on the solution value we can obtain if no further items of type

5 are selected, while selecting at least one additional item of this type produces

upper bound

U'=z' +

Hence
Ps -

(W,
- C)

(/2=max {U^.U^)

C.12)

C.13)

is an upper bound for BKP. Since from C.9) we can write U\\ = z' + [c'ps/ws\\,
U^ < U\\ is immediate, while U^ < Ui is proved by the same algebraic
manipulations as those used in Theorem 2.2 (ii). U2 < U\\ then follows.

The time complexity for the computation of U\\ or U2 is 0{n) if the item types
are already sorted. If this is not the case, the computation can still be done in

0{n) time through an immediate adaptation of procedure CRITICAL, ITEM of
Section2.2.2.

Determining the continuous solution of BKP in 0-1 form still produces bound

U\\. The same does not hold for U2, since C.11) and C.12) explicitly consider

the nature of BKP hence U^ and U^ are tighter than the corresponding values
obtainablefrom the 0-1 form.

Example 3.1 (continued)

The critical item type is 5 = 2. Hence

15
(/, = 60-H = 80.

86 3 Bounded knapsack problem

G^ = 75 +

U^ =15 +

U2 = 11.

11

5

15-2

= 77;

10
T

= 70;

Considering the problem in 0-1 form and applying B.10) and B.16), we would

obtain Ui = U2 = 80. D

SinceU2 < U\\ < z' +ps < 2z, the worst-case performance ratio of U\\ and U2

is at most 2. To see that p{U\\)
= p{U2) = 2, considerthe series of problems with

n = 3. pj =Wj
= k and bj = 1 for all j, and c = 2/: - 1:we have Ui = U2 = 2k - I

and z = k, so f/i/z and f/2/^ can be arbitrarily close to 2 for k sufficiently large.
All the bounds introduced in Section 2.3 for the 0-1 knapsack problem can

be generalizedto obtain upper bounds for BKP. This could be done either in a

straightforward way, by applying the formulae of Section2.3 to BKP in 0-1 form

(as was done for Ui) or, better, by exploiting the peculiar nature of the problem
(as was done for U2)- This second approach,not yet dealt with in the literature,

could be a promising direction of research.

3.3.2 Approximate algorithms

Value z' defined by C.10) is an immediate feasible solution value for BKP. Let
z be the optimal solution value. Then the absolute error z \342\200\224z' is bounded by ps
(since z' < z < Ui < z' + Ps), while the ratio z'/z can be arbitrarily close to 0

(consider, e.g., n = 2, pi = wi = I, p2 = W2 = k, bi = b2
= ^ and c = k, for k

sufficiently large). The worst-case performance ratio, however,can be improved to

1/2 by computing (still in 0(n) time)

z^ = max {z'.ps)

as the approximate solution value. In fact, z < z' + p^ < 2z^, and a tightness
example is: n = 2, pi =

wi
= I, p2 = W2

= k, bi = I, b2
= 2 and c = 2k, for k

sufficiently large.
If the item types are sorted according to C.7), a more effective greedy algorithm

is the following:

procedure GREEDYB:

input: n.c,(pj).(wj).(bj);
output: z^.(xj);
begin

c := c;
z^ :=0;

3.4 Exact algorithms 87

7* :
for

lib

end.

= 1;
j := 1 to

begin

xj :\342\226\240\342\226\240

c :=

zs :

end;

i*Pr > ^
begin

z^ :
for

Xj*
end

n do

= min([c/w
\342\226\240\342\226\240c-wjxj;
= ZS +PjXj
,Pj > bj'Pj'

s then

=
bj'Pj';

/ := 1 to \302\253

i\\-bjy,

. then7'

do xj := 0;

--J

The worst-caseperformance ratio is |, since trivially z^ > z'' and the series of

problems with n = 3, pi = wi = I, p2 =
W2

= P3 = w^ = k, bi = b2 = bs = I and
c = 2k proves the tightness. The time complexity is clearly0(n), plus 0{n\\ogn)

for sorting.

Transforming BKP into an equivalent 0-1 problem and then applying any of the

polynomial-time, or fully polynomial-time approximation schemesof Section 2.8,

we obtain approximate solutions obeying the worst-case bounds defined for such
schemes. In fact the two formulations of any instance have, of course, the

same optimal value, and the solution determined by the scheme for the 0-1

formulation preserves feasibility and value for the bounded formulation. Hence

the worst-case performance ratio is maintained. The time and space complexities

of the resulting schemes are given by those in Section 2.8, with n replaced by

fi =
EU\\^og,(bj

+ l)].
In this case too, better results could be obtained by defining approximation

schemes explicitly based on the specific structure of BKP.

3.4 EXACT ALGORITHMS

In this section we briefly outline the most important algorithms from the literature

for the exact solution of BKP. The reason for not giving a detailed description
of these methods is the fact that they are generally useless for effectivesolution

of the problem. In fact, the high level of sophistication of the algorithms for the

0-1 knapsack problem has not been followed in the algorithmic approach to BKP,
so the most effective way to solve bounded knapsack problems nowadays is to
transform them into 0-1 form and then apply one of the algorithms of Section 2.9.

(This is confirmed by the experimental results we present in the next section.) Of

course, a possibledirection of research could be the definition of more effective

specific algorithms for BKP through adaptation of the results of Chapter 2.

88 3 Bounded knapsack problem

3.4.1 Dynamic programming

Let/w(c) denote the optimal solution value of the sub-instance of BKP defined by

item types 1,... ,m and capacity c (l < m < n. 0 < c < c). Clearly

Mc)=<

0 for c = 0, ... ,wi
\342\200\224

1;

pi for c =
vvi .2wi \342\200\2241;

(bi
- l)pi for c = (bi-l)wi. \342\200\224biwi

\342\200\224I;

, b\\p\\ for c =
biWi . c.

fm(c) can then be computed, by considering increasing values of m from 2 to n,
and, for each m, increasing values of c from 0 to c, as

f^ic) =
msLx{ f^_i(c

-
Iwm) + Iprrr : I integer, 0< / < min(/?^,[c/w^J)}.

The optimal solution value of BKP is given by /\342\200\236(c).For each m, 0{cbm)

operations are necessary to compute/^(c) (c = 0, ... ,c).Hence the overall time

complexity for solving BKP is 0{c Y11i=\\ ^m)^ i-C- 0{nc^) in the worst case. The

space complexity is 0(nc), since the solution vector corresponding to each/w(c)
must also be stored.

The basic recursionabove has been improved on, among others, by Gilmore

and Gomory A966) and Nemhauser and Ullmann A969). Dynamic programming,

however, can only solve problems of very limited size. (Nemhauser and Ullmann

A969) report that their algorithm required 74 seconds to solve, on an IBM-7094,

a problem instance with n = 50 and bj
= 2 for each j.)

3.4.2 Branch-and-bound

Martello and Toth A977d) adapted procedure MTl of Section 2.5.2 to BKP.
The resulting depth-first branch-and-bound algorithm, which incorporates upper
bound U2 of Section 3.3.1, is not described here, but could easily be derived from

procedure MTUl presented in Section 3.6.2 for the unbounded knapsack problem.

(See also a note by Aittoniemi and Oehlandt A985).)

Ingargiola and Korsh A977) presented a reduction algorithm related to the one
in Ingargiola and Korsh A973) (Section 2.7) and imbedded it into a branch-search

algorithm related to the one in Greenberg and Hegerich A970) (Section 2.5). (See
also a note by Martello and Toth A980c).)

Bulfin, Parker and Shetty A979) have proposed a different branch-and-bound

strategy, incorporating penalties in order to improve the bounding phase.

Aittoniemi A982) gives an experimental comparison of the above algorithms,

indicating the Martello and Toth A977d) one as the most effective.As already

3.5 Computational experiments 89

mentioned, however, all these methods are generally outperformed by algorithm
MT2 (Section 2.9.3) applied to the transformed 0-1 instance. The Fortran

implementation of this algorithm (MTB2) is included in the present volume.

3.5 COMPUTATIONAL EXPERIMENTS

In Tables 3.1, 3.2 and 3.3 we analyse the experimental behaviour of exact and

approximate algorithms for BKP through data sets similar to those used for the 0-1

knapsack problem, i.e.:

uncorrelated:pj and Wj uniformly random in [1,1000];

weakly correlated: wy uniformly random in [1,1000],

Pj uniformly random in [wy
\342\200\224100. Wj + 100];

strongly correlated:
wy uniformly random in [1,1000],

pj =
Wj

+ 100.

For all data sets, the values bj are uniformly random in [5,10], and c is set to
0.5

Yl^=[^j^j (^o about half of the items are in the optimal solution).
The tables compare the Fortran IV implementations of the following methods:

Table 3.1 Uncorrelated problems: pj and Wj uniformly random in [1,1000], bj uniformly

random in [5,10]; c = 0.5 Yl,\"=\\ ^j^j- ^^ 9000/840 in seconds. Average times (average
percentage errors) over 20 problems

n

25

50

100

200
500

1000
2 000

5 000

10000
20000
30000
40000

50000

MTB

time

0.034
0.121
0.464
1.761
9.705

36.270

88.201

159.213
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

IK

time

0.022

0.115
0.149
0.462
5.220

11.288

33.490

106.550
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTB2

time

0.023

0.049
0.084
0.143
0.395

0.583

1.107

2.272

3.599
6.689
9.445

14.119
14.836

MTB2

approximate

time (% error)

0.011@.09851)

0.020@.04506)

0.031@.02271)

0.061@.01166)
0.158@.00446)
0.324@.00079)
0.649@.00097)

1.585@.00028)

3.055@.00031)

6.195@.00011)

9.692@.00010)
13.443@.00003)
15.298@.00005)

GREEDYB

time (% error)

0.001@.09721)
0.005@.04775)
0.012@.01354)
0.023@.00809)

0.065@.00246)

0.138@.00071)

0.272@.00033)

0.745@.00008)
1.568@.00003)
3.332@.00001)
5.144@.00000)

7.080@.00000)

8.942@.00000)

90 3 Bounded knapsack problem

Table 3.2 Weakly correlated problems: Wj uniformly random in [1,1000], pj
in [Wj

\342\200\224100,

Wj
+ 100], bj uniformly random in [5,10]; c = 0.5

J2\"=i ^j^j- HP 9000/840 in seconds.

Average times (average percentage errors) over 20 problems

n

25

50

100

200
500

1000
2000

5 000

10000

20000
30000
40000
50000

MTB

time

0.051

0.150
0.478
1.350
6.232

16.697

39.707

131.670
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

IK

time

0.206

0.855
3.425
8.795

25.840

59.182

57.566

131.212
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTB2

time

0.075

0.199
0.207
0.354
0.532

0.574

0.810

1.829

3.359
6.973
9.785

6435.178

\342\200\224

MTB2

approximate

time (% error)

0.012@.08072)

0.019@.03975)

0.037@.01384)

0.061@.00901)
0.147@.00414)
0.292@.00228)
0.568@.00242)

1.572@.00062)

3.052@.00037)

6.633@.00021)

9.326@.00016)
12.182@.00017)
15.473@.00010)

GREEDYB

time (% error)

0.001@.13047)
0.007@.04214)
0.014@.01374)
0.021@.00461)
0.057@.00126)

0.125@.00054)

0.265@.00015)

0.725@.00004)

1.572@.00001)
3.293@.00000)
5.089@.00000)
6.966@.00000)

8.533@.00000)

Table 3.3 Strongly correlated problems: Wj uniformly random in [1,1000], Pj
=

Wj
+ 100,

bj uniformly random in [5,10]; c = 0.5
Yl,\"=\\ ^J^J- HP 9000/840 in seconds. Average times

(average percentage errors) over 20 problems

n

MTB

time

IK

time

MTB2

time

MTB2

approximate

time (% error)

GREEDYB

time (% error)

25
50

100
200

500

1000

2 000

5 000
10000
20000

30000

40000

50000

3.319
279.782

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

216.864 23.091

4513.810
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

0.012@.36225)

0.018@.14509)

0.037@.14295)

0.066@.07570)
0.139@.03866)
0.283@.01688)
0.589@.00818)

1.529@.00352)

3.133@.00181)

5.794@.00064)

9.847@.00054)
12.058@.00042)
15.265@.00034)

0.002@.62104)

0.005@.22967)

0.010@.16482)

0.023@.08262)

0.059@.03919)
0.123@.01701)
0.265@.00822)
0.756@.00352)

1.558@.00181)

3.169@.00064)

5.065@.00054)

6.705@.00042)
8.603@.00034)

3.6 A special case: the unbounded knapsack problem 91

exact algorithms:

MTB = Martello and Toth A977d);

IK = Ingargiola and Korsh A977);

MTB2= Transformation through procedure TBOl (Section 3.2) and solution

through algorithm MT2 (Section 2.9.3);

approximate algorithms:

MTB2approximate
= MTB2 with heuristic version of MT2 (Section 2.10.2);

GREEDYB = greedy algorithm (Section 3.3.2).

All runs were executedon an HP 9000/840 (with option \"-o\" for the Fortran

compiler), with values of n ranging from 25 to 50000 (for n > 50000, the size of
the transformed instances could exceed the memory limit). The tables give average
times and percentage errors computed over sets of 20 instances each. The errors
are computed as 100(z \342\200\224

z\/z,") where z\" is the approximate solution value, and z

either the optimal solution value (when available) or upper bound U2 introduced in

Section 3.3.1. The execution of each algorithm was halted as soon as the average
time exceeded 100 seconds.

MTB2 is clearly the most efficient exact algorithm for uncorrected and weakly

correlated problems. Optimal solution of strongly correlated problems appears to be
practically impossible. As for the heuristic algorithms, GREEDYB dominates the

approximate version of MTB2 for uncorrelated and weakly correlated problems,
but produces higher errors for strongly correlated problems with n < 2 000. The

anomalous entry in Table 3.2 (MTB2 exact, n = 40000) was produced by an

instance requiring more than 34 hours!

3.6 A SPECIAL CASE: THE UNBOUNDED KNAPSACK

PROBLEM

In this section we consider the problem arising from BKP when an unlimited

number of items of each type is available, i.e. the Unbounded Knapsack Problem

(UK?)

maximize z = T.m C14)
7=1

subject to y^^wyjcy
< c. C.15)

Xj
> 0 and integer, j e N = {I.... .n}. C.16)

92 3 Bounded knapsack problem

The problem remains NP-hard, as proved in Lueker A975) by transformation

from subset-sum. However, it can be solved in polynomial time in the \302\253= 2 case

(Hirschberg and Wong A976), Kannan A980)). Notice that the result is not trivial,

since a naive algorithm, testing xi = i. X2
=

[(c
\342\200\224

iwi)/w2\\ for / taking on integer
values from 0 to [c/wij, would require a time 0(c), exponential in the input

length.
UKP can clearly be formulated (and solved) by defining an equivalent BKP

with bj
= [c/wj\\ for j - 1,... ,\302\253,but algorithms for BKP generally perform

rather poorly in instances of this kind. Also transformation into an equivalent 0-1

knapsack problem is possible (through a straightforward adaptation of the method of

Section 3.2), but usually impractical since the number of resulting binary variables

(^\"^j [log2([c/wyJ + 1)]) is generally too elevated for practical solution of the

problem.
We maintain assumptions C.4) and C.7), while C.6) transforms into

Wj
<c forjeN C.17)

and C.5) is satisfied by any instance of UKP.

3.6.1 Upper bounds and approximate algorithms

The optimal solution of the continuous relaxation of UKP, defined by C.14), C.15)

and

xj > 0. j eN,

is Ji = c/wi, Jj = 0 for j =2, ... ,n, and providesthe trivial upper bound

f/n = c-

By also imposing xi < [c/wij,which must hold in any integer solution, the

continuous solution is

X] =

Xj
= 0 for j = 3, ... ,n,

_ c
X2 = ,

W2

where

c = c(modwi). C.18)

This provides the counterpart of upper bound U[of Section 3.3.1, i.e.

3.6 A special case: the unbounded knapsack problem 93

U^= \342\200\224
c

Wi

P\\ +
-P2c \342\200\224

W2_
C.19)

(Note that the critical item type is always s = 2.)
The counterpart of the improved upper bound U2 is

(/2 = max((/^(/^).

where
c

Wi

P\\ +
c

_W2

P2,

c' = c(mod W2),

jP3

U'=z' +

W3

P2
- (W2 - C)

\342\200\224

W\\

C.20)

C.21)

C.22)

C.23)

C.24)

In this case, however, we can exploit the fact that s =2 to obtain a better bound.

Remember (see Section3.3.1)that U^ is an upper bound on the solution value we
can obtain if at least [c/w2j + 1 items of type 2 are selected. Noticenow that this

can be done only if at least [(w2 \342\200\224
c')/wi~\\ items of type 1 are removedfrom the

solution corresponding to z', and that c' + \\(W2
\342\200\224

c')/w{]wi units of capacity are
then available for the items of type 2. Hence, a valid upper bound can be obtained

by replacing U ^
with

U'=z' + ('ĉ' +

A

W2
\342\200\224c'

VVi

N

VVi
\\ P2

/ W2

W2
\342\200\224c'

VVi
Pi C.25)

Furthermore, U < U^ since, with c' + \\{W2
-

c')/w{\\wi > W2, U is obtained

by \"moving\" a greater number of capacity units from items of type 1 to (worse)
items of type 2. We have thus proved the following

Theorem 3.1 (Martello and Toth, 1990a)

(/3=max((/\".f/ ^). C.26)

where U^ andU ^
are defined by C.18), C.2l)-C.23) and C.25), is an upper bound

for UKP and, for any instance, U3 < 1/2-

The time complexity for the computation of Uq. U\\, U2 and U3 is 0(n), since
only the three largest ratios pj /wj

are needed.

94 3 Boundedknapsack problem

Example 3.2

Consider the instance of UKP defined by

n =3 \342\226\240

ipj)
= B0, 5, 1);

(Wj)
= A0, 5, 3);

c = 39.

The upper bounds are

(/o = 78.

(/i = 60+

G^ = 65 +

U^ =65 +

5

\025.

4i
3.

= 69.

= 66;

I'-SI
= 68;

G2 = 68.

G ^ = 65 +

U3 = 66. n

[{\342\200\242\342\200\242

\"

1
\"

To \i-

'
1

\"

To
201 =59;

J

Since Uj, < U2 <U\\ < Uq < z' +pi < 2z, the worst-case performance ratio of
all bounds is at most 2. To see that p(Uo) = p(U[) = p(U2) = piU^)= 2, consider

the series of problems with n = 3. pj =
Wj

= k for all j, and c = 2/: \342\200\2241: we

have Uo = Ui
= U2 = U3 = 2k - I and z = /:, so the ratio (upper bound)/z can be

arbitrarily close to 2 for k sufficiently large.

The heuristic solution value defined by C.21) has an interesting property.
Remember that the analogous values z' defined for BKP (Section3.3.2)and for the

0-1 knapsack problem (Section2.4)can provide an arbitrarily bad approximation
of the optimal value z. For any instance of UKP, instead, we have it that z'/z > |.
The proof is immediate by observing that z \342\200\224z' < pi and, from C.17), z' > pi.
The series of problems with n = 2. pi = wi = k + I. p2 =

W2
= k and c = 2k

shows that | is tight, since z'/z = (k + \\)/{2k) can be arbitrarily close to
\\

for k

sufficiently large. Also notice that the same property holds for the simpler heuristic

value z\" =
[c/wi\\pi.

The greedy algorithm of Section 3.3.2 can now be simplified as follows. (We
assumethat the item types are sorted accordingto C.7).)

3.6 A specialcase:the unbounded knapsack problem 95

procedure GREEDYU:

input: \302\253.c.(/7y).(wy);

output: z^.(jcy);
begin

c := c;
z8 :=0;

for 7 := 1 to \302\253do

begin

xj
\342\226\240.=[c/wj\\;

c:=c-WjXj;
Z8 -.= 28 +PjXj

end
end.

The time complexity of GREEDYU is 0(n), plus 0(n\\ogn) for the preliminary

sorting.

Magazine, Nemhauser and Trotter A975) studied theoretical properties of the

greedy algorithm when applied to the minimization version of UKP. In particular,

they determined necessary and sufficient conditions for the optimality of the greedy
solution (see also Hu and Lenard A976) for a simplified proof), and analysed

the worst-case absolute error producedby the algorithm. Ibarra and Kim A975)
adapted their fully polynomial-time approximation scheme for the 0-1 knapsack

problem (Section 2.8.2) to UKP. The resulting scheme produces, for any fixed

\302\243> 0, a solution having worst-case relative error not greater than e in time

Oin + (l/\302\243'^)log(l/\302\243)) and space 0{n +{l/\302\243^)). Also Lawler A979) derived from
his algorithm for the 0-1 knapsack problem (Section2.8.2)a fully polynomial-time

approximation scheme for UKP, obtaining time and space complexity Oin+(l/\302\243^)).

3.6.2 Exact algorithms

An immediate recursionfor computing the dynamic programming function/^(c)
(see Section3.4.1),is

/i(c) = for c = 0, ... ,c;

fm(c)
= max

<j frrt-i(c
~

Iwrrt) + Ipm \342\226\240I integer. 0 < / <

for m = 2, ... ,n and c = 0,c.

The time complexity for determining z =fn(c) is 0{nc^).
Gilmore and Gomory A965) have observed that a better recursion for computing

fm(c), for m = 2, ...,\302\253, is

96 3 Boundedknapsack problem

(fm-dc) forc=0 Wm
- I;

fm(c)={
[max {fm-\\{c),f,ri{c- Wm)+Pm) for C = W^ ,C,

which reduces the overall time complexity to 0(nc).
Specializeddynamic programming algorithms for UKP have been given by

Gilmore and Gomory A966), Hu A969), Garfinkel and Nemhauser A972),
Greenbergand Feldman A980), Greenberg A985, 1986). Dynamic programming,

however, is usually capable of solving only instances of limited size.
More effective algorithms, based on branch-and-bound, have beenproposedby

Gilmore and Gomory A963), Cabot A970) and Martello and Toth A977d). The
last one has proved to be experimentally the most effective (Martello and Toth,

1977d), and derives from algorithm MTl for the 0-1 knapsack problem, described
in Section 2.5.2. Considerations (i) to (iii) of that section easily extend to this

algorithm, while parametric computation of upper bounds (consideration(iv)) is no

longer needed, since the current critical item type is always the next item type to
be considered.The general structure of the algorithm and the variable names used
in the following detailed description are close to those in MTl. It is assumed that

the item types are sorted accordingto C.7).

procedure MTLI1:

input: n,c,(pj),iwjy,
output: z.ixj);
begin
1. [initialize]

z :=0;
z :=0;
c := c;
Pn+i :=0;

w\342\200\236+i:= H-oc;
for k := 1 to \302\253do Xk := 0;

compute the upper bound U = U3 on the optimal solution value;
for k := n to I step -1 do compute nik = min{w, : / > k];
j \342\226\240\342\226\240=1;

2. [build a new current solution]
while Wj > c do

if z > z +
[cpj+i/wj+i\\ then go to 5 else 7 :=y + 1;

y \342\226\240=[c/wyj;
u := [(c -ywj)pj+i/wj+i\\;
if z > z +ypj + u then go to 5;
if M = 0 then go to 4;

3. [save thef current solution]
c := c \342\200\224

ywj;
z \342\226\240.=z+ypj;

Xj \342\226\240=y;

J-=J + U

3.6 A special case: the unbounded knapsack problem 97

if c >
my_i then go to 2;

\\i z > z then go to 5;
y:=0-

4. [update the best solution so far]

z -z+ypji
for ^ := 1 to y

- 1 do x/, := xi,;

Xj :=y;
for k :=j + I to n do Xk := 0;
if z = (/ then return ;

5. [backtrack]
find / =

n\\ax{k <j : Xk > 0};
if no such / then return ;

c := c + Wi;

z := z - Pi;
Xj .\342\200\224Xj 1,
if z > z +

[cpi+i/wi+i\\ then

begin
comment: remove all items of type /;
c := c +WjXi;

z := z -
piXi;

i, := 0;

J \342\226\240=r,

go to 5

end;
J :=/ + !;
if c - w, > nij then go to 2;
/z := /;

6. [try to replace one item of type / with items of type h]

h:=h + \\;

if z > z +
\\cph/wh\\ then go to 5;

if w/, = w, then go to 6;
if w/, > w, then

begin
if w/, > c or z > z +/?/, then go to 6;
z := z +ph\\

for /: := 1 to \302\253do x^ := Xk;

jc/, := 1;
if z = (/ then return;
/ := h;
go to 6

end

else

begin
if c -

w/, < nih-i then go to 6;

goto 2
end

end.

98 3 Bounded knapsack problem

Example 3.3

Considerthe instance of UKP defined by

n =7 ;

ipj) = B0, 39, 52, 58, 31,4, 5);

(Wj)
= A5, 30, 41, 46, 25, 4, 5);

c = 101.

Figure 3.1 gives the decision-tree produced by algorithm MTUl. \342\226\241

The Fortran implementation of procedure MTU1is included in that of procedure
MTU2, which is described in the next section.

3.6.3 An exact algorithm for large-sizeproblems

Experimental results with algorithm MTUl, reportedin Martello and Toth A977b),
show a behaviour close to that of analogous algorithms for the 0-1 knapsack

problem, i.e.: (i) in spite of its worst-case complexity, many instances of UKP can
be exactlysolved within reasonable computing times, even for very large values of

n; (ii) when this is possible, the sorting time is usually a very large fraction of the

total time; however, (iii) only the item types with the highest values of the ratio

Pj/wj are selected for the solution, i.e. maxjy : xj > 0} <C \302\253\342\200\242

The concept of core problem (Section2.9)can be extended to UKP by recalling

that, in this case, the critical item type is always the second one. Hence, given
a UKP and supposing, without loss of generality, that Pj/wj > pj+\\/wj+\\

for

7 = 1,...,\302\253
\342\200\2241, we define the core as

C = {1,2,...,7i =
maxjy : Xj > 0}}.

and the core problem as

maximize z =
^Pj^J
jec

subject to 'y^'^jXj < c,
jec

Xj
> 0 and integer, j G C

If we knew \"a priori\" the value of n, we could solve UKP by setting Xj
= 0 for all

j such that pj/wj < pj[/wj^, determining C as {y :
Pj/wj

> pj^/wj^] and solving
the resulting core problem by sorting only the items in C. n cannot, of course, be
\"a priori\" identified, but we can determine an approximate core without sorting as
follows.

3.6 A special case: the unbounded knapsack problem 99

[Ih

100 3 Boundedknapsack problem

Assuming no condition on the ratios pj /wj, we select a tentative value for pj^/wj^
and solve the corresponding core problem: if the solution value equals that of an

upper bound, then we have the optimum; otherwise, we reduce the variables not

in the core and, if any variables are left, we try again with a decreased tentative

value. Reduction is based on the following criterion. Let Uq{j) denote upper bound

Uq {q = \\. 2 or ?)) of Section 3.6.1 for UKP, with the additional constraint Xj
= \\,

i.e. an upper bound on the solution value that UKP can have if item type j is used

for the solution. If, fory not in the approximate core, we have Uq{j) < z (where z

denotes the solution value of the approximate core problem),then we know that
Xj

must take the value 0 in any solution better than the current one. Given a tentative

value d for the initial core problem size, the resulting algorithm is thus (Martello
and Toth, 1990a) the following.

procedure MTLI2:

input: n.c.(pj). (Wj). 1!);

output: z.ixj);

begin

^:= 0;
A^ := {1.2.....\302\253};

repeat _
k \342\226\240=mHk+ i3.\\N\\y, _
find the kXh largest value r in {pj/wj '\342\226\240j EN];

G:={j eW:pj/wj>r};
E:={j eN :pj/wj=r];
E :=any subset of E such that \\E\\= k -

\\G\\;

C \342\226\240=GUE;

sort the item types in C according to decreasing Pj/wj ratios;
exactly solve the core problem, using MTLI1, and let z and (xj) define

the solution;

\\i k = d (comment: first iteration) then

compute upper bound U3 of Section 3.6.1;
if z < (/s then (comment: reduction)

for each j e N\\C do
begin

if M > z then u_:= lh{j)',
if M < z thenF :=A^\\{7}

end^
until z = (/3 or A^ = C;
for eachy g {1 n}\\C do

jcy
:= 0

end.

At each iteration, the exact solution of the core problem is obtained by first

identifying dominated item types in C, then applying algorithm MTUl to the

undominated item types. Dominances are identified as follows.

Definition 3.1 Given an instanceof UKP, relative to item types set N, item type

3.6 A special case: the unbounded knapsack problem 101

k E N is dominated if the optimal solution value does not change when k is removed
from N.

Theorem 3.2 (Martello and Toth, 1990a) Given any instance ofUKP and an item

type k, if there exists an item type j such that

Wk_

Wi
Pj>Pk C.27)

then k is dominated.

Proof. Given a feasible solution in which jc^t = a > 0 and Xj
=

f3, a. better solution

can be obtained by setting Xk = 0 and
Xj =13+ _Wk/wj\\a. In fact: (i) the new

solution is feasible, since
\\wk/wj\\awj

< aw^; (ii) the profit produced by item

type j in the new solution is no less than that produced by item types j and k in

the given solution, since, from C.27), [wk/wj\\apj > apk- D

Corollary 3.1 All dominated item types can he efficiently eliminated from the core
as follows:

1. sort the item types according to C.7), breaking ties so that Wj
< Wj+i;

2. fory := 1 to |C| - 1do
for A: :=7 + l to | C | do if C.21) holds \\hen C :=C\\{k}.

Proof. Condition C.27) never holds if either Pj/wj < pk/wk or Wk <Wj.\\Z\\

Hence the time complexity to eliminate the dominated item types is 0(| C |^)(or

O(n^), if the original UKP is considered).

Example 3.3 (continued)

Taking i? = 4, the core problem is defined by:

(pj) = B0. 39.52.58);

(wj) =A5^ 30. 41. 46).

Applying Corollary 3.1, we find that item type 1 dominates item types 2 and 4.

Applying MTUl to the resulting problem, defined by

iPj) = B0. 52);

(wj) =A5. 41).

we obtain the branch-decision tree of Figure 3.2.

102 3 Bounded knapsack problem

c=101 I ^
G=132

c=\\\\

Figure 3.2 Decision-treeof procedure MTU2 for Example 3.3

The core problem solution value (z = 132) is not equal to upper bound

U3 relative to the original instance without the dominated item types (U3 =

maxA20+[11\302\247J.
120+ [A1+ fffll5)|f

- [ffl20J) = 133).Hence we apply

the reduction phase:

7=5: (/iE) = 31+
A00

+
52

41

7=6: (/iF) = 4+ A20 +

7=7: (/iG) = 5+ A20 +

52
'4-1

65?41

= 132 <z:

= 132 < z;

= 132<z.

Since all the item types not in core are reduced, we conclude that the core

problem has produced the optimal solution z = 132. (xj) = D, 0, 1,0,0,0, 0). Q

The initial tentative value 1!) was experimentally determined as

I? = max 100
100

The Fortran implementation of algorithm MTU2 is included in the present volume.

3.6.4 Computational experiments

Table 3.4 compares the algorithms for UKP on the same data sets of Section 3.5,
but with Wj uniformly randomly generated in the range [10,1000], so as to avoid
the occurrence of trivial instances in which the item type with largest pj /wj ratio
has Wj

= 1 (so xi = c is the optimal solution).

For all problems, c was set to 0.5
^21=1 ^j for n < 100000, to 0.1 Yll=i ^J (^^

order to avoid integer overflows) for n > 100000.

We compare the Fortran IV implementations of algorithms MTUl and MTU2.

The kth largest ratio pj/wj was determined through the algorithm given in Fischetti
and Martello A988) (including Fortran implementation). All runs have been

3.6 A special case: the unbounded knapsack problem 103

Table 3.4 w^ uniformly random in [10,1000];c =0.5̂ \"^,Wj forn < 100 000, c =0.1Y.\"=\\^j
for n > 100000. HP 9000/840in seconds. Average times over 20 problems

n

50

100

200
500

1000
2000

5 000

10000

20000
30000
40000
50000

60000

70000

80000

90000
100000
150000
200000

250000

Sorting

0.01

0.01
0.02
0.05
0.11
0.24

0.60

1.35

3.21

4.71
6.12
8.04

10.53
12.50
13.86
15.56
17.96
27.41
37.56

48.55

Uncorrelated:

Pj unif. random in

[1,1000]

MTUl

0.01

0.01
0.02
0.05
0.11
0.24

0.68

1.44

3.31

5.38
9.67

21.91
41.11
17.63

172.00
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTU2

0.01

0.01

0.02
0.04
0.07
0.13
0.32
0.60
1.23
1.82
2.73

3.25

3.90

4.89

5.28
5.88
5.83

10.05
13.08
17.35

Weakly

Pj unif.

correlated:

random in

[Wj
- 100, Wj

+ 100]

MTUl

0.01
0.01
0.02
0.05

0.11

0.24

0.62

1.37
494.93

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTU2

0.01

0.01

0.03
0.05
0.08
0.14
0.29
0.66
1.18
1.94
2.48

3.30

3.71

4.50

5.00
5.41
6.22

10.14
11.98
17.52

Strongly correlated:

Pj=Wj + 100

MTUl

0.01
0.01
0.06

131.70
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTU2

0.01

0.01

0.02
0.04
0.08
0.14
0.35

0.62

1.39

1.91

2.66
3.34
4.10
4.81
5.12
5.68

5.81

9.95

13.26

17.94

executed on an HP 9000/840 with option \"-o\" for the Fortran compiler. For each
data set and value of n. Table 3.4 gives the average running times (including

sorting), expressed in seconds, computed over20 problem instances. Sorting times

are also separatelyshown. Execution of an algorithm was halted as soon as the

average running time exceeded 100 seconds.
The table shows that MTU2 always dominates MTUl, and can solve very large

problems with reasonable computing time also in the case of strongly correlated
data sets. The initial value of d always produced the optimal solution. With

the exception of strongly correlated data sets, MTUl requires negligible extra

computational effort after sorting, when n < 10000. For larger values of n, the

branch-and-bound phase can become impractical. This shows that the superiority
of MTU2 (particularly evident for very large instances and for strongly correlated

problems) derives not only from the avoided sorting phase but also from application
of the dominance criterion. In fact, the number of undominated item types was

always very small and almost independent of n.

