
Subset-sum problem

4.1 INTRODUCTION

The Subset-Sum Problem (SSP) is: given a set of n items and a knapsack, with

Wj
= weight of item j;

c =
capacity of the knapsack,

select a subset of the items whose total weight is closest to, without exceeding, c.

I.e.

maximize z = J2wjXj D.1)
7 = 1

subject to y^>^y-^y < c, D.2)
7 = 1

jcy=Oorl, y G A^ = {1, ... ,\302\253}. D.3)

where

Xi =
1 if item j is selected;

\342\200\2427

0 otherwise.

The problem is related to the diophantine equation

n

Y,WjXj=c,
D.4)

7 = 1

jcy=Oorl, j = l,...,n, D.5)

in the sense that the optimal solution value of SSP is the largest c < c for which

D.4)-D.5) has a solution.

SSP, which is also called the Value Independent Knapsack Problem or

Stickstacking Problem, is a particular case of the 0-1 knapsack problem
(Chapter2)\342\200\224arising when pj

=
Wj for all j\342\200\224hence, without loss of generality,

we will assume that

105

106 4 Subset-sum problem

Wj and c are positive integers, D.6)
n

J2^j>c, D.7)

7 = 1

Wj < c for 7 G N. D.8)

Violation of such assumptions can be handled as indicated in Section 2.1. -

The problem arises in situations where a quantitative target should be reached,
such that its negative deviation (or loss of, e.g., trim, space, time, money) must be
minimized and a positive deviation is not allowed. Recently, massive SSP's have
been used in several coefficient reduction procedures for strengthening LP bounds

in general integer programming (see Dietrich and Escudero A989a, 1989b)).
SSPcan obviously be solved (either exactly or heuristically) by any of the

methods describedin Chapter 2 for the 0-1 knapsack problem.It deserves, however,

specific treatment since specializedalgorithms usually give much better results. A

macroscopic reason for this is the fact that all upper bounds of Sections2.2 and

2.3 give, for SSP, the trivial value c (since Pj/wj = 1 for all j). SSP can be
seen, in fact, as the extreme case of correlation between profits and weights (see
Section2.10).As a consequence, one would even expectcatastrophic behaviour of

the branch-and-bound algorithms for the 0-1 knapsack problem, degenerating,for

SSP, into complete enumeration (because of the value c produced, at all decision

nodes, by upper bound computations). This is not always true. In fact, as soon as
a feasible solution of value c is determined, one can obviously stop execution and,
as we will see, this phenomenon often occurs for problemsin which the number

of items is not too small. Also note that the reduction procedures of Section 2.7
have no effect on SSP, because of the bound's uselessness.

We describe exact and approximate algorithms for SSP in Sections 4.2 and 4.3,

respectively, and analyse computational results in Section 4.4.

4.2 EXACT ALGORITHMS

4.2.1 Dynamic programming

Given a pair of integers m (I < m < n) and c @ < c < c),let/w(c) be the optimal
solution value of the sub-instance of SSP consisting of items 1 m and capacity
c. The dynamic programming recursion for computing/\342\200\236(c) (optimal solution value

of SSP) can be easily derived from that given in Section 2.6 for the 0-1 knapsack
problem:

@ for c =0, ... ,wi - 1;

Kwi tor c = wi, ... ,c;

4.2 Exact algorithms 107

for m =2, ... ,n:

fm(c)
=

fm-i(c) for c = 0, ... ,Wm
- I;

max(/^_i(c). fm-i(c -Wm) + Wm) for c = w^, ... ,c.

The time and space complexity to compute/\342\200\236(c) is thus 0(nc).
Faaland A973) has presenteda specialized dynamic programming approach of

the same complexity, which is also suitable for the bounded version of SSP, defined

by D.1), D.2) and

0 <
Xj

< hj. j = I, ... ,n,

Xj integer, y = 1,...,\302\253.

The algorithm derives from a recursive technique given by Verebriusova A904) to

determine the number of non-negative integer solutions to diophantine equations

D.4).

Ahrens and Finke A975) proposeda more effective approach which reduces, on

average,the time and space required to solve the problem. The method derives from
their dynamic programming algorithm for the 0-1 knapsack problem (Section 2.6.2)
and makes use of the \"replacement selection\" technique, described in Knuth A973),

in order to combine the partial lists obtained by partitioning the variables into four

subsets.
Because of the large core memory requirements (the Ahrens and Finke A975)

algorithm needs about 2\"/'^\"^'^ words) dynamic programming can be used only for

small instances of the problem.

Martello and Toth A984a) used \"partial\" dynamic programming lists to obtain

a hybrid algorithm (described in the next section) to effectively solve also large

instances of SSP. These lists are obtained through a recursion conceptually close
to procedure REC2 given in Section 2.6.1 for the 0-1 knapsack problem, but

considering only states of total weight not greater than a given value c < c. The

particular structure of SSP produces considerablesimplifications. The undominated

states are in this case those corresponding to values of c for which the diophantine

equation D.4)-D.5) has a solution. At stage m, the undominated states are
determined from the following information, relative to the previous stage:

5 = number of states at the previous stage; D.9)

/? = 2'\"-'; D.10)

W 1, = total weight of the /th state (/ = !,... ,s)\\ D.11)

X\\i =
{x\\, X2, ... , Xm-\\] for / = 1, ... ,5, D.12)

108 4 Subset-sum problem

where
Xj defines the value of theyth variable in the solution relative to the ith state,

i.e. Wli =
YlTJi ^j^j- Vector W![is assumed to be ordered according to strictly

increasing values. The procedure updates values D.9) and D.10), and stores the

new values of D.11) and D.12) in (Wlk) and (Xlk). SetsX1, and X2k are encoded

as bit strings. Note that, for SSP, stateshaving the same weight are equivalent, i.e.
dominating each other. In such situations, the algorithm stores only one state, so
vector (W2i^) results are ordered according to strictly increasing values. On input,
it is assumed that Wlo=X\\o = 0.

procedureRECS:

mpuX:s.b.(Wh).(Xli).w,\342\200\236.c;

output: s.b.(W2k), (XIk);
begin

/ :=0;
k :=
h :=

y \342\226\240=

Wl

W2

X2o

= 0;

= 1;

^+1 := +oc;

o:=0;
i:=0;

while min(j. Wl^,) < c do

5 :=
b :=

end.

begin

k :=k + l;
\\iWlh <y then

begin
W2k:=Wh;
X2k :=X1/,;

h:=h + \\

end

else

begin
W2k:=y;
X2k :=X1, +b

end

\\\\W2k=y then

begin
/ :=/ + !;
y

\342\226\240=Wli +Wm
end

end
k;

\342\226\240\342\226\2402b

Procedure RECS is a part of the hybrid algorithm described in the next section.

It can also be used, however, to directly solve SSP as follows.

4.2 Exact algorithms 109

procedure DPS:

input: n.c. (wj);

output: z. (xj);
begin

c :=c;
Wlo :=0;

Xlo:=0;
5 := 1;
b :=2;
W li := wi;
Xli := 1;
m := 2;

repeat
call RECS;
renameW2 and X2 as H^ 1 and XI, respectively;
m := m + I

until m > n or W Is = c;
z :=Wh;
determine (xj) by decoding Xl^

end.

The time complexity of RECS is 0(s). Since 5 is bounded by min B'\" \342\200\2241. c),

the time complexity of DPSis 0(min B\"\"^'.\302\253c)).

4.2.2 A hybrid algorithm

Martello and Toth A984a) used a combination of dynamic programming and tree-

search to effectively solve SSP.Assume that the items are sorted beforehandso
that

wi > W2 > \342\226\240\342\226\240\342\226\240> w\342\200\236. D.13)

The algorithm starts by applying the dynamic programming recursion to a subset
containing the last (small) items and by storing the corresponding state lists. Tree-
search is then performed on the remaining (large) items. In this way, the state

weights in the lists are small and close to each other, while, in the branch-decision

tree, the current residual capacity c takes small values after few forward moves,

allowing use of the dynamic programming lists.

The algorithm starts by determining two partial state lists:

(i) given a prefixed value MA < n \342\200\224
I, list (WAj.XAi). i = 1, ... ,SA, contains

all the undominated states inducedby the last MA items;

(ii) given two prefixed values MB (MA < MB < n) and c (w\342\200\236< 'c < c), list

(WBi.XBi). i = I, ... ,SB, contains the undominated states of weight not

greater than c induced by the last MB items.

110 4 Subset-sum problem

Figure 4.1, in which NA = n \342\200\224MA + 1 and NB = n - MB + 1, shows the states

covered by the two lists: the thick lines approximate the step functions giving, for
each item, the maximum state weight obtained at the corresponding iteration.

maximum

state weight

(WAi, XA,)

NA

1

VlD

MA

n Items

Figure 4.1 States covered by the dynamic programming lists

The following procedure determines the two lists. List (W4,,XA,) is first

determined by calling procedure RECS in reverse order, i.e. determining, for
m = n.n \342\200\224I, ... ,NA(= n \342\200\224MA + 1), the optimal solution value ifmic) of the sub-
instance defined by items m.m+l n and capacity c < c.List (WBi, XBi) is then
initialized to contain those states of (WAi. XA,) whose weight is not greater than c,
and completed by calling RECS for m = A^A - 1. A^A - 2, ... , NB(=n-MB + l).

Note that the meaning of XA and XB is consequently altered with respect to D.12).

procedure LISTS:
input: n.c. (Wj).NA.NB.c;

output: SA. (WAi).(XA,). SB. (WBi). (XBi);

begin
comment: determine list (WA,.XA,);

c := c;
Wlo :=0;
Xlo:=0;
5 := 1;

b :=2;

Wli \342\200\242=Wn\\

Xli := 1;

4.2 Exact algorithms 111

m := n \342\200\224I;

repeat
call RECS;
rename W2 and X2 as H^ 1 and XI, respectively;
m := m \342\200\224I

until m < A^A or H^ 1^ = c;
for / := 1 to 5 do

begin

WA, :=Wli;
XA, :=Xh

end;

SA :=s;
if WAsA < c then (comment: determine list {WBi.XBi))

begin
c := c;
determine, through binary search, / = max{/ : W/i, < c};
5 := /;
repeat

call RECS;
rename Wl and X2 as H^ 1 and XI, respectively;
m \\=m \342\200\224\\

until m < NB;
rename W1 and XI as WB and XB, respectively;
SB:=s

end

end.

Example 4.1

Consider the instance of SSP defined by

n = 10;

(wj) = D1, 34, 21,20,8, 7, 7, 4, 3, 3);

c = 50;

MA =4;

MB = 6;

c = 12.

Calling LISTS, we obtain SA = 9. SB=S and the values given in Figure 4.2. n

We can now state the overall algorithm. After having determined the dynamic
programming lists, the algorithm generates a binary decision-tree by setting Xj

to

1 or 0 fory = 1, ... ,NA
\342\200\2241. Only the first NA \342\200\2241 items are considered, since all

the feasible combinations of items NA,..., n are in list (W4,.XA,). A forward

112 4 Subset-sum problem

i

0

1

2

3

4

5

6

7

8

9

WAi

0

3

4

6

7

10

11

13

14

17

XA/(decoded)

0

1

100

11

101

111

1100

1011

1101
1111

WB,

0

3

4

6

7

8

10

11

12

X5,(decoded)

0

1

100

11

101

100000

111

1100

100100

Figure 4.2 Dynamic programming lists for Example 4.1

move starting from an item j consists in: (a) finding the first item j' > j which

can be added to the current solution; (b) adding to the current solution a feasible

sequence7'.y + 1, ... ,j\"of consecutive items until the residual capacity c is no

greater than c. A backtracking step consistsin removing from the current solution

that item j'\" which was inserted last and in performing a forward move starting

fromy''' + 1.

At the end of a forward move, we determine the maximum weight 6 of a dynamic
programming state which can be added to the current solution. This is done by

assuming the existence of two functions, A and B, to determine, respectively.

A(c)
= rmiXo<i<sA{i \342\226\240WAi < c}.

B(c,j) = maxo<,<sB{/ : WBi < c and j^ = 0 for all k <j].

where iy[) denotesthe binary vector encoded in XBi. (Both A{c) and B(c.j) can be

implemented through binary search.) After updating of the current optimal solution

z (z := max(z,(c \342\200\224
c) + 6)), we proceed to the next forward move, unless we find

that the solution values of all the descendent decision nodes are dominated by

(c
\342\200\224

c) + 6. This happens when either the next item which we could insert is one
of the MA last items, or is one of the MB last items and the residual capacity c is
no greater than c.

Values Fk =
Yl'i=k^J (^ = 1> \342\200\242\342\200\242\342\200\242\342\226\240.\302\253)are used to avoid forward moves when

c > Fj' or an upper bound on the optimal solution obtainable from the move is no

greater than the value of the best solution so far.

4.2 Exact algorithms 113

procedure MTS:
input: n. c.(wj).'c.MA.MB]

output: z ,(xj);
begin
1. [initialize]

NA :=n-MA+l;

NB :=n-MB + 1;
call LISTS;
z :=WAsa;

for yt := 1 to A^A - 1 do Xk := 0;

let (yk) be the binary vector encoded in XAsa',

for k := NA to n do Xk := yk',
\\i z = c then return;
for k := n to I step -1 do compute Fk =

Yl%k ^j >

z :=0;

c := c;
for k := I \\o n do Xk := 0;

j \342\200\242=1;

2. [try to avoid the next forward move]
while Wj > c and7 < A^A doy :=j + l;
if 7

= A^A then go to 4;
if Fj < c then

begin
if z +Fy > z then (comment: new optimal solution)

begin
z :=z+Fy;
for /: :=1to y

- 1 do jc^t := xt;
for ^ :=y to \302\253do jcyt := 1;
\\\\ z = c then return

end;

go to 5
end;

determine, through binary search, r =
m'\\n{k > j : Fk < c};

s :=n \342\200\224r + I;
comment: at most ^ items can be added to the current solution;
u := Fj \342\200\224

Fj+s;

comment: u =
Ylitj' ^j = ^o^a' weight of the ^ largest available items;

\\i z + u < z then go to 5;
3. [perform a forward move]

while Wj
< c andy < A^A and c > c do

begin
C := C \342\200\224W;

\"J

z := z +Wj;
Xj

:= 1;

end;

114 4 Subset-sum problem

4. [use the dynamic programming lists]
if c < c then

begin
6 := WBBic.j)-,

flag:=\"h\"

end

else

begin
6 := WAAic)-,

flag :=\"a\";

if 6 < c and z < z +c' then

begin

6:=WBBicj)\\

flag:=\"h\"
end

end;
comment: 6 is the maximum additional weight obtainable from the lists;
if z + 6 > z then (comment: update the optimal solution)

begin
z := z + 6;
for k := 1 to 7 - 1 do Xk := Xk;

if flag = \"a\" then

begin
for k :=j to A^A - 1 do Xk := 0;
let (yk) be the vectorencodedin XA^^^-y,
for k := NA to n do Xk := yk

end
else

begin
for A: :=j to NB ~ I do x/, := 0;
let (jk) be the vectorencodedin XBb(c.j)',
for k := rr\\ax(NB .j) to n do xi, := jyt

end;

\\i z = c then return

end;

if (c < wyv^_i ory = NA) then go to 5;
if (c < wyvB-1 ory > NB) and (c < c) then go to 5
else go to 2;

5. [backtrack]

find / =
rr\\ax{k <j:xi, = l];

if no such / then return;
c := c +Wi;

z := z \342\200\224
Wi]

X, := 0;

J :=/ + !;
goto 2

end.

4.2 Exact algorithms 115

Example 4.1 (continued)

Executing MTS, we obtain:

NA =7,

NB =5,

(F;^) = A48, 107, 73, 52, 32, 24, 17,10,6, 3),

the dynamic programming lists of Figure 4.2 and the branch-decision tree of Figure

4.3. D

z-17
0) x=@,0,0,0,0,0,l,l,l.l)

xi=0

f=41

c=9

?=42

x=@.0,1,0,1,1,1,1.0,1)

Figure 4.3 Branch-decision tree of Procedure MTS for Example 4.1

116 4 Subset-sum problem

The Fortran implementation of procedureMTSis included in that of procedure
MTSL, which is described in the next section. The parameters for the dynamic

programming lists must take into account the \"difficulty\" of the problem. They

have been experimentally determined as the following functions of n and wmax =

msLx{wj]:

MA = minB\\og^Qwmax, 0,7n);

MB = minB,51ogiowmajc,0,8n);

c= \\3wnb-

These values are automatically decreased by the code corresponding to MTS
whenever the space required from the lists is larger than the available core memory.

A different hybrid algorithm for SSP canbe found in Plateau and Elkihel A985).

4.2.3 An algorithm for large-size problems

Computational experimentswith algorithm MTS show (Martello and Toth, 1984a)

that many instances of SSP can be exactly solved in reasonable computing time,

since they admit a large number of feasible solutions of value c (i.e. optimal).
Hence,for large-size problems, there is the possibility of finding one such solution

by considering (and sorting) only a relatively small subset of the items. This can

be obtained by defining a core problem which has a structure similar to that

introduced for the 0-1 knapsack problem (Section2.9)but can be determined much
more efficiently as follows. Given an instance of SSP, we determine the critical

item s = min{y :
YlUi ^' > <^} ^^^^ ^^^ ^ prefixed value ^ > 0, we define the

core problem

maximize z = V^
^j^j D.14)

s+d s-d-\\

subject to 2_] ^j^j < c = c \342\200\224
2_] ^j\342\226\240 D.15)

Xj=OoTl. j =s -'d, ... ,s + ^. D,16)

Then we sort items s \342\200\224
{I,... ,s + {1 according to D.13) and solve the core problem

through procedure MTS. If the solution value found is equal to c then we have an

optimal solution of value c for SSP, defined by values x^_^,... ,x^+^ returned by

MTS, and by Xj
= I for j < s \342\200\224

{I, Xj
= 0 for 7 > s + {1.Otherwise, we enlarge the

core problem by increasing ^ and repeat.

4.3 Approximate algorithms 117

procedure MTSL:

input: n.c. (wj). d.MA.MB .T;
output: z, {xj);
begin

determine s = m\\n{j :
Y1L\\ ^' > '^l-

repeat
a := max(l,5-

^);

b := m\\r\\(n.s + ^);

sort items a.a + \\. b according to decreasing weights;

call MTS for the core problem D.14)-D.16) and let z be the solution

value returned;
^:=2^

until z = c or b \342\200\224a + \\ = n;
l6t

yj U
= a, ... ,b) be the solution vector returned by MTS;

for 7 := 1 to a - 1do Xj
:= 1;

for 7 := a \\o b do Xj
:= yj;

fory := ^ + 1to n do Xj := 0;
z := z + (c \342\200\224

c)

end.

A \"good\" input value for ^ was experimentally determined as

^ = 45,

The Fortran implementation of MTSL is includedin the present volume.

4.3 APPROXIMATE ALGORITHMS

4.3.1 Greedy algorithms

The most immediate approach to the heuristic solution of SSP is the Greedy

Algorithm, which consists in examining the items in any order and inserting each
new item into the knapsack if it fits. By defining pj

=
Wj for all j, we can use

procedure GREEDY given in Section 2.4 for the 0-1 knapsack problem. This

procedure will consider, for SSP, the item of maximum weight alone as a possible
alternative solution, and guarantee a worst-case performance ratio equal to j. No

sorting being needed, since B.7) is satisfied by any instance of SSP, the time

complexity decreases from 0(n\\ogn) to 0{n).
For SSP, better average results can be obtained by sorting the items according

to decreasingweights. Since in this way the item of maximum weight is always
considered first (and hence inserted), we no longer need to explicitly determine it,
so a considerably simpler procedureis the following. We assume that the items are
sorted according to D.13).

118 4 Subset-sum problem

procedure GS:

input: n

output:

begin
c :=

for

\342\226\240c.iwj);

z^ixj);

- c;

j := 1 to n do
if Wj > c tlien

Xj

else

begin

Xj := 1;
c := c \342\200\224

end;

^j

0

z^ := c
end.

The worst-case performance ratio is still |, while the time complexity grows to

0{n\\ogn) becauseof the required sorting.
An 0{n^) greedyalgorithm, with better worst-case performance ratio was given

by Martello and Toth A984b). The idea is to apply the greedy algorithm n times,

by considering item sets {1,... ,n], {2,... ,n], {3,...,n],and so on, respectively,
and take the best solution. Assuming that the items are sorted according to D.13),
the algorithm is the following.

procedure MTGS:
input: n.c. (Wj);

output: z^X^
begin

z^ :=0;
for / := 1 to n do

begin
c :=c;
Y :=0;

for 7 := / to n do

if Wj < c tlien

begin
c :=c \342\200\224

Wj]
Y \342\226\240.=Yij{j]

end;
if c - c > z^ then

begin

z^ := c \342\200\224c;

X^ :=r;
if z^ = c then return

end

end

end.

4.3 Approximate algorithms 119

The time complexity of MTGSis clearly 0{n^). Its worst-case performance ratio

is established by the following

Theorem 4.1 (Martello and Toth, 1984b) /(MTGS) = |.

Proof. We will denote hy z(k) the value c \342\200\224c of the solution found by the algorithm
at the kth iteration, i.e. by considering item set {k,... ,n]. Let

q = max {j -.3 k <j such that item7 is not selected for z{k)]. D,17)

n

G=5Ivv,, D,18)

and note that, because of D.17), items q + \\,...,n are selected for all z{k)
with k < q + I. Let z =

Yl%\\ ^j^j* ^^ ^^^ optimal solution value and define

A = {j <q:x; = l].

(a) If /l| < 2 then z^ = z. In fact: (i) if \\A\\
= 1, with A = {j\\}, we have

^^ > 2G1)> >^y, +Q = z; (ii) if \\A\\
= 2, with A = {71,72} and71 < 72, we

have z^ > zGi) >
wy, +Wp_ + Q - z.

(b) If \\A\\ > 2 then z^ > |c > |z. In fact: (i) if
w<^ > \\c, we have

z^ > z{q-
2)

=
w<^_2 + w<^_i +

w<^
+ Q > |c; (ii) if

w<^
< |c, there must

exist an iteration k < q \342\200\224\\ '\\x\\ which item q is not selected for z(/:) since

Wq> c ~^c\342\200\224
z{k), and hence we have z^ > z{k)> c \342\200\224

w^ >\\c.

To prove that value | is tight, consider the series of instances with n = 4, vvi =

2R, W2 = R + \\, w^ = w^ = R and c = AR. The optimal solution value is z =4^,
while z(l) = zB) = 3^ + 1,zC)= 2R and zD) = R, so z^ = 3^ + 1. Hence the

ratio z^/z can be arbitrarily close to |, for ^ sufficiently large. D

Note that, for the series of instances above, the optimal solution would have
been producedby a modified version of the algorithm applying the greedy search at

iteration k to item set {^,... ,n, 1,...,/:- 1}(the result would be z^ = zC) =4^).
However, adding a fifth element with W5 = 1 gives rise to a series of problems

whereby z^/z tends to | for the modified algorithm as well. Also, from the practical

point of view, computational experiments with the modified algorithm (Martello

and Toth, 1985a) show very marginal average improvements with considerably
higher computing times.

More accurate approximate solutions can obviously be obtained by using any of

the approximation schemes described for the 0-1 knapsack problem (Section 2.8).
However,by exploiting the special structure of the problem, we can obtain better
schemes\342\200\224both from the theoretical and the practical point of view\342\200\224for the

approximate solution of SSP.

120 4 Subset-sum problem

4.3.2 Polynomial-time approximation schemes

The first polynomial-time approximation scheme was given by Johnson A974).

The idea is to identify a subset of \"large\" items (according to a given parameter k)
and to find the corresponding optimal solution. This is completedby applying the

greedy algorithm, for the residual capacity, to the remaining items. The algorithm
can be efficiently implemented as the following procedure (slightly different from

the original one presentedby Johnson A974)), in which k is supposed to be a

positive integer:

procedure J(^):
input: n.c. (wy);

output: z^X^
begin

L:={j -.Wj >c/(k + \\)];
determine X^ C L such that z^ = Ylj^x'-^J '^ closestto, without exceeding,

c,
c \342\200\242=c-z'';

S :={l n]\\L;
sort the items in S according to decreasing weights and let m =

m\\r\\j^sWj]',

wliile S^ 0 and c > m do

begin

let) be the first item in S;

s:=s\\{jy,
if Wj < c tlien

begin
c :=c \342\200\224

Wj]

X^ :=X^ U{j]
end

end;
z^ := c \342\200\224c

end.

The time complexity to determine the initial value of z^ and the corresponding
X^ through complete enumeration is 0(n''), since | X^ | < k. The remaining part of

the algorithm requires time 0{n\\ogn)\342\200\224for sorting\342\200\224plus 0{n). The overall time

complexity of J(k) is thus 0{n\\ogn) for k = \\, and 6>(n^) for ^ > 1. The space

complexity is 0(n).

Theorem 4.2^(Johnson,1974) r{i(k))=k/(k+ l).

Proof. Let z =
Yljex* ^j ^^ ^^^ optimal solution value and consider partition of

the optimal item set X* into L* = {j G X* : Wj > c/{k + 1)} and S* = X*\\L*.

Similarly, partition item setX^ returned by J(^) into L^ = {j G X^ : Wj > c/{k+l)]
and 5^ = X^\\L^SinceL^ is the optimal subset of L = {j :

Wj > c/{k + 1)},

4.3 Approximate algorithms 121

initially determined by the algorithm, we have Yl-^t'^^j \342\200\224Y1-^l*^j- Hence, if

S* C S'\\ we also have
Ylj^s'^^j \342\200\224Z^/es* ^> ^'^^ ^^^ solution found by the

algorithm is optimal. Otherwise,let q \302\243S* be any item not selected for S^: it

must be w^
+ z^ > c, so z'^ > c -

w^
> ckf{k + 1) > zkf{k + 1).

Tightness of the k/{k + 1) bound is proved by the series of problems with

n = k+2. vvi = ^ + 1. Wj
= R for7 > 1 and c = {k + 1). The optimal solution value

is z ={k + \\)R. Since it results that L = {1}, the heuristic solution is z^ = Z:^ + 1,

so the ratio z'^/z can be arbitrarily close to k/{k + 1)for R sufficiently large. \342\226\241

Note that J(l) produces the greedy solution. In fact L = {j :
Wj > c/2}, so

only one item (the one with largest weight) will be selected from L while, for the

remaining items, a greedy searchis performed.

Example 4.2

Consider the instance of SSP defined by

n = 9;

{Wj)
= (81, 80, 43, 40, 30, 26, 12,11,9);

c = 100.

MTGS gives, in 0{n^) time: z^ = max (93, 92, 95, 96, 88, 58, 32, 20, 9) =
96,X^ = {4, 5, 6}.

J(l) (as well as GS) gives, in C>(nlogn) time: L = {1,2},z^ = 93, X^ = {1, 7}.
JB) gives, in 0(n^) time: L = {1, 2, 3, 4}, z^ = 95, X^ = {3, 4, 7}.
JC) gives, in Oin^) time: L = {1, 2, 3, 4, 5, 6}, z^ = 99, X^ = {3, 5, 6}.
The optimal solution z = 100. X = {2, 8. 9} is found by J(ll). D

A better polynomial-time approximation scheme has been found by Martello

and Toth A984b) by combining the idea in their algorithm MTGS of the previous
section with that in the Sahni A975) scheme for the 0-1 knapsack problem (see
Section 2.8.1).For k = 2, the resulting scheme applies MTGS to the original

problem (for k = I the scheme is not defined but it is assumed to be the greedy

algorithm). For k = 3, it imposes each item in turn and applies MTGS to the

resulting subproblem, taking the best solution. For k = 4, all possible item pairs
are imposed, and so on. It will be shown in Section 4.4.2 that, for practical purposes,
/: = 2 or 3 is enough for obtaining solutions very close to the optimum. It is assumed
that the items are sorted according to D.13).

procedureMTSS(/:):
input: n.c.(Wj);

output: zVX^

begin
z^ :=0;

122 4 Subset-sum problem

for each McA^ = {l n] such that \\M\\ < k -2do
begin

\342\226\240\342\226\240=^jeM^J
if g < c tlien

begin
call MTGS for the subproblem defined by item set

N\\M and reduced capacityc \342\200\224
g, and let z^ =

Yliev ^J (^ C A^\\M) be the solution found;

if zs > z^ then

begin
z^ :=zS;
X^ :=M UV;
if z^ = c then return

end

end

end
end.

Since there are0(n'^~^)subsets M c N of cardinality not greater than k \342\200\2242, and

recalling that MTGS requires O(n^) time, the overall time complexity of MTSS(/:)
is 0{n'^).The space complexity is clearly 0{n). From Theorem 4.1 we have

r(MTSSB)) = |. Martello and Toth A984b) have proved that r(MTSSC)) =
f

and (k + 3)/{k+ 4) < r(MTSS(A:)) < k{k + \\)/{k{k + 1) + 2) for k > A. Fischetti

A986) exactly determined the worst-case performance ratio of the scheme:

Theorem 4.3 (Fischetti, 1986) r(MTSS(A:))= CA:
-

3)/CA:
- 2).

Proof. We omit the part proving that r(MTSS(A:)) > CA: - 3)/CA:
- 2). Tightness

of the bound is proved by the series of problems with n = 2k, Wj
= 2R for

j < k, Wk
= R + I, Wj

= R for j > k and c = Ck -
2)R (e.g., for k = A,

(Wj)
= BR.2R.2R.R + l.R.R.R.R). c =

lOR). The unique optimal solution, of
value z = Ck \342\200\224

2)R, includes all the items but the kih. Performing MTSS(/:), there
is no iteration in which M contains all items 7 < /:, so the optimal solution could

be found only by a greedy search starting from an item 7 < k. All such searches,

however, will certainly include item k (since, at each iteration, at least two items

of weight R are not in M), hence producing a solution value not greater than the

greedy solution value z^ = z^ = Ck \342\200\224
3)R + 1. It follows that the ratio z^/z can

be arbitrarily close to Ck \342\200\224
3)/Ck

\342\200\224
2) for R sufficiently large. \342\226\241

MTSS(/:) dominates the Johnson A974) scheme }(k), in the sense that, for

any k > 1, the time complexity of both schemes is 0(n'^), while r(MTSS(/:)) =
Ck -

3)/Ck
- 2) > k/(k + 1)= r(](k))(for example: r(MTSSB)) = | = r(JC)),

r(MTSSC))
=

f
= r(JF)), r(MTSSD)) = -^ = r(}(9))).Also note that, for

increasing values of/:, the solution values returned by MTSS(/:) are non-decreasing
(because of the definition of M), while those returned by }(k) are not (if, for

4.3 Approximatealgorithms 123

example, (Wj)
= (8,5,5,3) and c = 12, J(l) returns z^ = 11, while JB) returns

z^ = 10).

Example 4.2 (continued)

We have already seen that MTSSB) gives, in 0{n^) time: z^ = 96, X^ = {4,5,6}.
MTSSC) gives, in 0{n^) time: z^ = 100, X^ = {2,8,9}(optimal). The solution is

found when M = {2} and the greedy search is performed starting from item 8. \342\226\241

A more effective implementation of MTSS(/:)can be obtained if, at each iteration

/ in the execution of MTGS,we update a pair (L.c) having the property that all

items in 5 = {/ n]\\{M UL) will be selected by the greedy searchstarting from

/, and c = c \342\200\224
Ylj^B ^J- ^^ ^^^^ way, the greedy search can be performed only for

the items in L with residual capacity c. Since each iteration removes items from

L, executionof MTGS can be halted as soon as L = 0. The improved version of

MTSS(/:) is obtained by replacing the call to MTGS with the statement

call MTGSM,
where:

procedure
input: n

output:

begin
z^ :
L:--
c :=
S :-.

i :=

,c.
z^.

:= z
=

{1
: C -

= 0

\342\226\2400;

repeat

i :\342\226\240

if 2

MTGSM:

(wj).M.g.z'';
V;

h.

n]\\M;
-g;

= / + l;
^ M then

begin
while L ^ 0 and w/ < c

begin
c :
S
L

end;
c :=c;
T \342\226\240.=S;

for each j
begin

c :
T

end;

:= c \342\200\224
Wj;

\342\226\240\342\226\240=SU{j];

\342\226\240\342\226\240=L\\{J}

G L do if Wj

:= c \342\200\224
Wj;

\342\226\240=TU{j]

\342\226\240u

< c

the first item

^
then

inL) do

124 4 Subset-sum problem

if c - c > z^ then

begin

z^ := c \342\200\224c;

V :=T

end;
c :=c +Wi;

S:=S\\{i]

end;

until L = 0 or z^ = c

end.

Example 4.2 (continued)

Calling MTGSM with z^ = 0. M = 0 and g = 0, the execution is:

L={1, ... ,9},c= 100, S =0;

/ = 1 : c = 19,5 =
c= 1, T =

c = 100, S =0;

i =2: c= 20, 5 =
c= 8, r =

/ =4

c = 100, S =0;

/ = 3 : c = 17, 5 =
c= 5, r =
c = 60, S =

c= 4, S =
c= 4, T =

c= 44, S =

i =5: c= 12, S =

c= \\2, T =
c= 42, S =

l],L ={2,...,9];
1,7}, z^ =93, V ={l, 7};

2},L= {3,... ,9};
2, 7};

3,4},L={5, ... ,9};
3,4, 7}, z^ =95, V ={3,4, 7};
4};

4, 5, 6},L = {7,8,9};
4, 5, 6}, z^ =96, y = {4, 5, 6};
5, 6};

5,6, 7, 8, 9},L = 0;
5, 6, 7, 8, 9};
6,7,8,9}, n

For large values of n, the computing time required by MTSS(/:) can be further

reduced in much the same way used for MTSL (Section 4.2.3), i.e. by determining

the solution for an approximate core problem and then checking whether the

requested performance (evaluatedwith respect to upper bound c on z) has been

obtained.

Fischetti A989) has proposed a polynomial-time approximation scheme, FS(/:),
based on the subdivision of A^ into a set of \"small\" items and a number of sets of
\"large\" items, each containing items of \"almost equal\" weight. Although the worst-
case performanceratio of the scheme has not been determined, it has been proved

4.3 Approximate algorithms 125

that r(FS(k)) > {(k + if -
A)/{k + if. With this ratio, the result is r(MTSS(A:)) >

r(FS(A:)) for A: < 6, while r(MTSS(A:)) < r(FS(A:)) for A: > 6.

4.3.3 Fully polynomial-time approximation schemes

The algorithms of the previous section allow one to obtain any prefixed worst-case

performance ratio r in polynomial time and with linear space. The time complexity,
however,is exponential in the inverse of the worst-case relative error e = \\ \342\200\224r.

The fully polynomial-time approximation scheme proposedby Ibarra and Kim

A975) for the 0-1 knapsack problem (procedure IK(\302\243)of Section 2.8.2) also

applies to SSP. No sorting being required, the time complexity decreases from

6>(nlogn) -I- 0{njz^) to 0{n/e^), polynomial in \\/e, while the space complexity
remains 0{n + {\\/e^)). Lawler A979) adapted to SSP his iniproved version of
the Ibarra and Kim A975) scheme for the 0-1 knapsack problem, obtaining time

complexity 0{n +{\\/e^))and space complexity 0{n + {\\/e^)), or time and space

complexity 0{n +{\\fe^)\\og{\\fe)).
All of the above schemes are based on the same idea, i.e. (see Section2.8.2);

(a)partitioning the items, basing on the value of e, into \"large\" and \"small\" ones;

(b) solving the problems for the large items only, with scaled weights, through
dynamic programming; (c) completing the solution, in a greedy way, with the

small items. Gens and Levner A978, 1980) have proposed a fully polynomial-

time approximation scheme based on a different (and simpler) principle. They
solve the complete problem through ordinary dynamic programming but, at each

iteration, reduce the current dynamic programming lists by keeping only state

weights differing from each other by at least a threshold value depending on e.
The schemecan be conveniently defined using procedure RECSof Section 4.2.1.

Note that the algorithm results similar to procedure DPS for the exact dynamic

programming solution of SSP (Section4.2.1).The main difference consists in

determining, after each RECS call, reduced lists W\\ and XI, instead of simply
renaming Wl and XI as W \\ and XI.

procedure GL(\302\243):

input: n.c. (w,);

output: zVX^
begin

determine a = maxjy : ^^.^j w, < c};
z := max(^J^[Wj. maxy{wy}) (comment: z <z < Iz);
c :=c;
Wlo :=0;

Xlo:=0;
s := 1;
b :=2;
W l\\ := w\\;
Xli := 1;
m := 2;

repeat

126 4 Subset-sum problem

call REGS ;
h :=0;
j :=0;
repeat

if 1^2^+1 > Wlh + \302\243zthen 7 :=] + 1

else7 := max{q :
Wl^ <Wlh +\302\243z];

h:=h + \\;

W\\h \342\226\240.=W2j\\

X\\h \342\226\240.=X2j
until y = s;
m := m + I;
s := h

until m > n or Wig = c;
z^ \342\226\240.=W\\s;

determine X^ by decoding X1^
end.

At each iteration, the reduced dynamic programming lists clearly satisfy W Ih+i \342\200\224

W Ifi > \302\243zfor h = I, ... ,s \342\200\2242. Hence the number of states is always bounded

by 5 < 2z/(\302\243z), that is, from z < 2z, by 5 < D/s). It follows that the scheme

has time and space complexity 0{n/e). The proof that the solution determined by

GL(\302\243)has worst-case relative error not greater than e is given in Levner and Gens

A978) and Gens and Levner A978).
The time and space complexity of GL(\302\243)can be better or worse than that of the

Lawler A979) scheme,according to the values of n and e.

Example 4.2 (continued)

Calling GL@ , we initially find a = \\ . z = 81 and the weight list Wl given in

the first column of Figure 4.4. No state is eliminated for m =2.3. For m = 4.W24
is eliminated since W25 \342\200\224

W2-i = 3 < sz =27. The approximate solution found

has the final value of W I4, i.e. z^ = 96 (with X^ = {4, 5,6}).D

4.3.4 Probabilistic analysis

As for the 0-1 knapsack problem (Section2.8.3),we give a brief outline of the

main results obtained in probabilistic analysis.
The first probabilistic result for SSP was obtained by d'Atri and Puech A982).

Assuming that the weights are independently drawn from a uniform distribution
over {l,2y... ,c(n)} and the capacity from a uniform distribution over {1,

2,...,nc(n)], where c(n) is an upper bound on the weights value, they proved
that a simple variant of the greedy algorithm solves SSP with probability tending

to 1.

Lagarias and Odlyzko A983) considered SSP with equality constraint and

assumed that the weights are independently drawn from a uniform distribution

4.3 Approximate algorithms 127

ON

II

S

00
II

s

t^
II

s

NO

II

s

>n
II

S

^
II

s

m
II

s

(N

II

s

,

II

s

^-,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

-s:

O\342\200\224'NOt^r<-)^0\342\200\224'NO
^(Nm^int^ooON

ONOOr<-)NOONOr<-)NO
(Nm^inNOt^ooON

o

o

o

o

o

o

o

o

m
^

m
^

o
00

O
00

m^

m̂

o
00

O
00

00

00

o
00

o
00

00

00

00

00 00

CI.
S
X

[Ih

(N m ^ in NO t^ 00

128 4 Subset-sum problem

2
over {1,2, ... ,2*^\" } and the capacity is the total weight of a randomly chosen
subset of the items. They presented a polynomial-time algorithm which finds the

solution for \"almost all\" instances with c > 1. The result was extended to c > ^
by Frieze A986).

The probabilistic properties of a \"bounded\" variant of SSP were investigated by

Tinhofer and Schreck A986).

4.4 COMPUTATIONALEXPERIMENTS

In the present section we analyse the experimental behaviour of exact and

approximate algorithms for SSP on random and deterministic test problems.
The main class of randomly generated test problems we use is

(i) problemsP{E) :
Wj uniformly random in [1, 10^];

10^
c = n .

4

For each pair (n, E), the value of c is such that about half the items can be expected
to be in the optimal solution. In all algorithms for SSP, execution is halted as soon
as a solution of value c is found. Hence the difficulty of a problem instance is related
to the number of different solutions of value c. It follows that problems P{E) tend

to be more difficult when E grows. As we will see, truly difficult problems can be
obtained only with very high values of 10^.This confirms, in a sense, a theoretical
result obtained by Chvatal A980), who proved that, for the overwhelming majority

of problems P{n/2) (with n large enough), the running time of any algorithm

based on branch-and-bound and dynamic programming is proportional at least to

2\302\253/io jj^g Chvatal problems, as well as problemsP{E) with very high values of

E, cannot be generated in practice because of the integer overflow limitation. A
class of difficult problems which does not have this drawback is

(ii) problems EVEN/ODD :
Wj even, uniformly random in [1, 10-^];

nlO^
c = + 1 (odd).

Since these problems admit no solution of value c, the execution of any enumerative

algorithm terminates only after complete exploration of the branch-decision tree.

Deterministic problems with the same property have been found by Todd A980)
and Avis A980):

(iii) problems TODD :
Wj

= 2^+\"+' + I'^^J + 1, with k = [log^n];

c =
LO-5 E;=i ^yJ

=
(\302\253+ 1J'\"\" - 2^ +

[|J.

4.4 Computational experiments 129

(iv) problems AVIS : Wj
= n(n + I) +j

n - 1
c = \342\200\224z\342\200\224n{n + 1) +

4.4.1 Exact algorithms

We first compare, on small-size difficult problems, the Fortran IV implementations
of the dynamic programming algorithm of Ahrens and Finke A975) and of

algorithm MTSL (Section 4.2.3). We used a CDC-Cyber730 computer, having

48 bits available for integer operations, in order to be able to work with the large
coefficients generated.

Table4.1gives the results for problems P(E), with E = 3, 6, 12, Table4.2 those

for problems EVEN/ODD, TODD, AVIS. Each entry gives the average running

Table 4.1 Problems P(E). CDC-Cyber730 in seconds. Average times over 10 problems

n

8
12
16
20
24
28

32

36

40

n

8

12

16
20
24
28
32

36

40

POy.Wj uniformly

random in [1, 10^];
c =

Ahrens

and Finke

0.012
0.023
0.040
0.069
0.137
0.349

0.940

2.341

5.590

Table 4.2

\342\226\2407103/4

MTSL

0.004
0.010
0.011
0.007
0.010
0.010
0.009

0.009

0.011

PF): Wj uniformly
random in [1, 10^];

c =/7lOV4

Ahrens

and Finke

0.012
0.029
0.091
0.322

0.640

1.341

2.284
4.268
9.712

Problems EVEN/ODD, TODD

EVEN/ODD;
average times over

10 problems

Ahrens
and Finke

0.013

0.028
0.090
0.392
1.804
7.091

21.961
time limit

\342\200\224

MTSL

0.005

0.021
0.053
0.190
0.525
0.969

1.496

2.184
2.941

MTSL

0.004
0.013
0.049

0.185

0.513

0.647
0.661
0.605
0.663

AVIS. CDC

TODD;

singl

Ahrens
and Finke

0.013

0.050
0.199
0.785
3.549

15.741
70.677

308.871
\342\200\224

s trials

MTSL

0.002
0.005
0.020
0.257

0.400

0.403

0.407
0.409

\342\200\224

Piuy.wj
random ir

c = n

Ahrens

and Finke

0.013
0.029
0.092
0.422

2.070

9.442

time limit

\342\200\224

\342\200\224

uniformly

[1, 10'2];
10'2/4

MTSL

0.004
0.013
0.050

0.232

1.098
6.306

time limit

\342\200\224

\342\200\224

-Cyber 730 in seconds

AVIS;

single trials

Ahrens
and Finke

0.016

0.041

0.111
0.326
0.815
2.010
4.348

8.345

15.385

MTSL

0.002
0.005
0.012
0.046

0.126

0.291

0.579
1.146
1.780

130 4 Subset-sum problem

time, expressed in seconds, computed over 10 problem instances(except for the

deterministic TODD and AVIS problems, for which single runs were executed).

Each algorithm had a time limit of 450 seconds to solve the problems generated
for each data set. MTSL was always faster than the Ahrens and Finke A975)

algorithm. Table 4.1 shows that problems P{E) become really hard only when

very high values of 10^are employed. Table 4.2 demonstrates that the \"artificial\"

hard problems can still be solved, in reasonable time, by MTSL. (Problems TODD

cannot be generatedfor n > 40 because of integer overflows.)
We used a 32-bit HP 9000/840 computer, having a core memory limitation of

10 Mbytes, to test MTSL on very large \"easy\" P{E) instances. Since the Fortran

implementation of MTSL requires only two vectors of dimension n, we were
able to solve problems up to one million variables. Because of integer overflow

limitations, the capacity was set to n 10^/50, hence E could not be greater than 5.
Table 4.3 gives the average times, computed over 20 problem instances, relative

to problems FB), FC), FD), FE). The results show very regular times, growing

almost linearly with n. No remarkable differencecomes from the different values

of E used. The initial value of ^ (^ = 45) always produced the optimal solution.
All runs were executed with option \"-o\" for the Fortran compiler, i.e. with the

lowest optimization level.

Table 4.3

n

1000

2500

5 000
10000
25000
50000

100000

250000

500000
1000000

Problems P{E).

Pi2)
Wj uniformly

random in

[1, 102];
C =/7 102/50

0.007
0.009
0.016
0.028
0.070

0.136

0.277

0.691
1.361
2.696

HP 9000/840 in seconds.

PO)
Wj uniformly

random in

[1, 10-^];
c = n 10V50

0.010

0.014
0.020
0.032
0.071
0.138
0.272

0.674

1.360

2.720

Average times over 20 problems

Pi4)
Wj uniformly

random in

[1, 104];
c =n\\0V50

0.022

0.025

0.031
0.046
0.088
0.156
0.295

0.716

1.418

2.857

Pi5)
Wj uniformly

random in

[1, 10^];
c = n 10V50

0.125

0.116
0.121
0.126
0.173
0.252

0.392

0.801
1.527
2.948

4.4.2 Approximate algorithms

We used the hard problems of the previous section to experimentally compare
approximate algorithms for SSP. The runs were executed on a CDC-Cyber 730
computer, with values of n ranging from 10 to 1000 for problems EVEN/ODD and

FA0) (E = 10being the maximum value not producing integer overflows), from

10 to 35 for problemsTODD.We compared the Fortran IV implementations of the

4.4 Computational experiments 131

polynomial-time approximation schemes of Johnson A974) and Martello and Toth

A984b) and those of the fully polynomial-time approximation schemes of Lawler
A979) and Gens and Levner A978, 1980) (referredto as J{k), MTSS(A:), L(f) and

GL(f), respectively). The size of the approximate core for MTSS(^) was set to
200/A:.

We used the values \\, | and ^ of the worst-case performance ratio r. These are
the smallest values which can be imposedon all the schemes. Table 4.4 shows the

parameters used and the time and space complexities.

r k

Kk)

time space

Table 4.4 Time and space complexities

MTSS(A:) L(\302\243)

k time space e time space

GL(\302\243)

time space

i 1 0{n) 0{n) 1 0{n) 0{n) \\ 0(n-H ^) 0(n-H ^) 0(f) 0(f)

I 3 0{n^) 0{n) 2 0{n'^) 0{n) \\ 0(n-H ^) 0(n-H ^) 0(f) 0(f)

f
6 0{n^) 0{n) 3 0{n^) 0{n) \\ 0(n-H ^) 0(n-H ^) 0(f) 0(f)

For each triple (type of problem, value of r, value of n), we generated ten

problems and solved them with the four algorithms. The tables give two types

of entries: average running times and average percentage errors. The errors were

computed with respect to the optimal solution for problems TODD. For problems
FA0) and EVEN IODD we used the optimal solution when n < 50, and the upper

bound c (for FA0)) or c- 1 (for EVEN/ODD) when n > 50. When all ten problems

were exactly solved by an algorithm, the corresponding error entry is \"exact\" (entry
0.0000 means that the average percentage error was less than 0.00005).

Table 4.5 gives the results for problems FA0). L(\302\243)has, in general, very short

times and very large errors. This is because the number of large items is very small

(for n < 50) or zero (for n > 100). MTSS(^) dominates the other algorithms,

i(k) dominates GL(\302\243). For any n > 25, i(k) gives exactly the same results,

independently of r since, for all such cases, set L is empty, so only the greedy
algorithm is performed. The running times of GL(\302\243)grow with n and with r, those

of J(^) only with n, those of MTSS(^) only with r (for n > 50), while L(\302\243)has

an irregular behaviour.
Table 4.6 gives the results for problems EVEN/ODD. As in Table 4.5, L(\302\243)

always has very short times and very large errors, MTSS(/:) dominates the other

algorithms and J(^) dominates GL(\302\243). The running times and the growing rates

of errors are the same as in Table 4.5 while the absolute errors are different. In

many cases MTSS(yt) found the optimal solution; since, however, the corresponding

value does not coincide with c, execution could not stop, so the running times grow
with r.

Table 4.7 gives results for problems TODD. Since these problems are

deterministic, the entries refer to single trials. MTSS(/:) dominates all the

132 4 Subset-sum problem

Table 4.5 Problems PA0): Wj uniformly random in [1, lO'^];c = /7lO'0/4. CDC-Cyber
730 in seconds. Average values over 10 problems

n

10

25

50

100

250

500

1000

r

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

J(A:)

0.001

0.001

0.003

0.002

0.002

0.003

0.004

0.004

0.004

0.009

0.009

0.010

0.020

0.022

0.022

0.049

0.042

0.047

0.100

0.102

0.102

Time

MTSS(A:)

0.001

0.001

0.006

0.003

0.005

0.035

0.005

0.009

0.166

0.014

0.020

0.207

0.022

0.029

0.158

0.022

0.033

0.180

0.024

0.030

0.224

L(\302\243)

0.004

0.012

0.025

0.001

0.008

0.069

0.001

0.001

0.016

0.002

0.001

0.001

0.003

0.003

0.003

0.008

0.006

0.007

0.013

0.013

0.013

GL(\302\243)

0.005

0.009

0.014

0.014

0.020

0.037

0.029

0.050

0.079

0.061

0.093

0.157

0.112

0.235

0.374

0.254

0.438

0.685

0.540

0.909

1.374

Kk)

2.0871

2.0044

0.8909

0.3515

0.3515

0.3515

0.0833

0.0833

0.0833

0.0082

0.0082

0.0082

0.0032

0.0032

0.0032

0.0010

0.0010

0.0010

0.0002

0.0002

0.0002

Percentage error

MTSS(A:)

2.0871

0.4768

0.1894

0.3515

0.0467

0.0049

0.0833

0.0058

0.0002

0.0082

0.0004

0.0001

0.0039

0.0004

0.0000

0.0040

0.0001

0.0000

0.0014

0.0001

0.0000

He)

5.5900

3.7928

2.8857

5.3916

1.9958

1.5973

0.8870

0.8870

0.9902

1.0991

1.0991

1.0991

0.7441

0.7441

0.7441

0.2890

0.2890

0.2890

0.1954

0.1954

0.1954

GL(\302\243)

2.0307

1.2864

0.9088

1.8044

0.6695

0.6100

0.2519

0.1008

0.0794

0.0611

0.0708

0.0541

0.0077

0.0070

0.0059

0.0016

0.0016
0.0015

0.0005

0.0006

0.0005

4.4 Computational experiments 133

Table 4.6 Problems EVEN/ODD. CDC-Cyber 730 in

10 problems

seconds. Average times over

Time Percentage error

n

10

25

50

100

250

500

1000

r

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

J(A:)

0.001

0.001

0.003

0.002

0.002

0.002

0.004

0.004

0.004

0.009

0.009

0.008

0.022

0.021

0.021

0.047

0.047

0.047

0.104

0.104

0.104

MTSS(A:)

0.001

0.002

0.007

0.003

0.005

0.048

0.006

0.011

0.287

0.011

0.028

0.274

0.022

0.028

0.242

0.026

0.031

0.257

0.029

0.033

0.293

He)

0.005

0.012

0.025

0.001

0.011

0.077

0.001

0.001

0.019

0.002

0.002

0.002

0.003

0.004

0.003

0.007

0.007

0.007

0.013

0.014

0.014

GL(\302\243)

0.005

0.009

0.013

0.015

0.026

0.042

0.030

0.051

0.084

0.060

0.100

0.166

0.141

0.235

0.380

0.291

0.483

0.774

0.595

0.992

1.567

i{k)

2.2649

2.3209

0.9202

0.2432

0.2432

0.2432

0.0400

0.0400

0.0400

0.0160

0.0160

0.0160

0.0019

0.0019

0.0019

0.0003

0.0003

0.0003

exact

exact

exact

MTSS(A:)

2.2649

0.8325

0.0720

0.2432

0.0384

exact

0.0400

0.0016

exact

0.0160

exact

exact

0.0006

exact

exact

0.0006

exact

exact

0.0010

exact

exact

L(\302\243)

7.5859

3.1369

2.5209

7.6416

2.3360

1.9808

2.4480

2.4480

1.1232

0.7352

0.7352

0.7352

0.4221

0.4221

0.4221

0.2682

0.2682

0.2682

0.1325

0.1325

0.1325

GL(\302\243)

1.5131

0.8403

0.9041

1.0688

0.4288

0.3584

0.1424

0.1680
0.0816

0.0792

0.0792

0.0520

0.0080

0.0070

0.0058

0.0021

0.0021

0.0024

0.0002

0.0002

0.0001

134 4 Subset-sum problem

Table 4.7 Problems TODD.CDC-Cyber730 in seconds. Single trials

Time Percentage error

i{k) MTSS(A:) L(\302\243) GL(\302\243) i{k) MTSS(A:) L(\302\243) GL(\302\243)

^ 0.001 0.001 0.002 0.005 9.9721

10 I 0.001 0.002 0.013 0.008 9.9721

I 0.004 0.006 0.022 0.011 exact

9.9721

exact

exact

8.2795

4.4157

2.1366

exact

exact

exact

15

0.001 0.001 0.001 0.008 exact

0.002 0.002 0.016 0.016 exact

0.001 0.012 0.033 0.023 exact

exact 12.3660 6.1343

exact 6.2072 3.0185

exact 1.4548 exact

20

25

30

35

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

0.001

0.001

0.002

0.001

0.001

0.001

0.002

0.003

0.002

0.003

0.002

0.002

0.003

0.003

0.018

0.003

0.004

0.028

0.003

0.005

0.038

0.004

0.004

0.045

0.001

0.006

0.036

0.001

0.001

0.048

0.001

0.001

0.017

0.001

0.001

0.015

0.014

0.023

0.040

0.016

0.036

0.059

0.017

0.030

0.052

0.021

0.035

0.062

4.7761

4.7761

4.7761

exact

exact

exact

3.2261

3.2261

3.2261

exact

exact

exact

4.7761

exact

exact

exact

exact

exact

3.2261

exact

exact

exact

exact

exact

4.7482

4.7482

2.3787

7.6896

7.6896

3.3638

3.2255

3.2255

0.8063

5.5555

5.5555

1.3888

4.7482

exact

exact

7.6896

exact

1.9210

3.2255

3.2253

exact

2.7777

2.7777

exact

algorithms, while h{e) is generally dominated by all the algorithms. J(^) dominates
GL(\302\243) for n odd (J(l) always finds the optimal solution). For n even, GL(\302\243)

has higher times but much smaller errors than]{k), MTSSB) always finds the

optimal solutions, MTSS(l) only for n odd. This behaviour of the algorithms can

be explained by analysing the structure of the optimal solution to problems TODD.
Let m =

[n/2J, so c =
(n + 1J^\"^\" - 2^ + m. Hence the number of items in any

feasible solution is at most m since, by algebraic manipulation, the sum of the

m + 1 smallest weights is
m + \\

^w,
= 2(m + 1J^^\"+ 2^'^'B'\"^'

- 1) + (m + 1)> c
/=i

4.4 Computational experiments 135

(in problems TODD the vv/'s are given for increasing values). For n odd in =

2m + I), the sum of the m largest weights is feasible, since

n

and hence optimal. So, after sorting, the greedy algorithm (J(l) or MTSS(l))finds

the optimal solution. For n even (n = 2m), (a) any solution including w\342\200\236includes

at most m \342\200\2242 further items, since

w\342\200\236+ ^ Wi
= Bm + 1J^^\" + 2^B'\"- 2)+ m > c;

(b) it follows that the best solution including w\342\200\236has value

n

i=n \342\200\224m+2

(c) the best solution not including w\342\200\236has value

n-\\

Z2= Y ^' =
^^'^ + ^^^^^\" ~ ^^^\"\"'^ + ^ < C''

i=n \342\200\224m

and Z2 > z\\. So Z2 is the optimal solution value and MTSSB) finds it when, after

sorting, it applies the greedy algorithm starting from the second element.
We do not give the results for problems AVIS, for which the algorithms have

a behaviour similar to that of problems TODD.In fact, let s =
\\{n

--
1)/2J, so

c = sn{n + \\) + n{n - l)/2. Since the sum of the 5 + 1 smallestweights is

5+1

y^w,
= sn{n + \\) + n{n + 1)+ ^ {s + \\){s +2) > c,

/=i

any feasible solution will include, at most, s items. The sum of the s largest weights

is feasible, since

n

y^ Wi = sn(n + l) +s{n- s)+ ^ s{s + 1) < c,
i=n\342\200\224s+l

hence optimal. So, after sorting, the greedy algorithms 7A) and MTSS(l) always

find the optimal solution.
The computational results of this section (and others, reported in Martello and

Toth A985a)) show that all the polynomial-time approximation schemes for SSP

136 4 Subset-sum problem

have an average performance much better than their worst-case performance. So,
in practical applications, we can obtain good results with short computing times,
i.e. by imposing small values of the worst-case performance ratio.

Although polynomial-time approximation schemes have a worse bound on

computing time, their average performance appears superior to that of the fully

polynomial-time approximation schemes, in the sense that they generally give better
results with shorter computing times and fewer core memory requirements.

The most efficient scheme is MTSS(/:).For n > 50, the largest average error of

MTSSB) was 0.0075 per cent, that of MTSSC) 0.0005 per cent. So, for practical

purposes, one of these two algorithms should be selected while using higher values

of k would probably be useless.

