
Change-making problem

5.1 INTRODUCTION

In Chapter 1 the change-making problem has been presented, for the sake of

uniformity, as a maximization problem with bounded variables. However, in the

literature it is generally considered in minimization form and, furthermore, the main

results have been obtained for the case in which the variables are unbounded. Hence

we treat the bounded case in the final section of this chapter, the remaining ones

being devoted to the Change-Making Problem (CMP) defined as follows.Given n

item types and a knapsack, with

Wj
= weight of an item of type j;

c =
capacity of the knapsack,

select a number Xj (j
= I, ... ,n) of items of each type so that the total weight is

c and the total number of items is a minimum, i.e.

minimize z =
J2^j E.1)
y=i

subject to y]vvyX/=c. E.2)

Xj
> 0 and integer, j \302\243N = {I n}. E.3)

The problem is NP-hard also in this version, since Lueker A975) has proved
that even the feasibility question E.2)-E.3) is NP-complete. The problem is

called \"change-making\" since it can be interpreted as that of a cashier having
to assemble a given change, c, using the least number of coins of specified values

Wj (j = 1, ... ,n) in the case where, for each value, an unlimited number of

coins is available. CMP can also be viewed as an unbounded knapsack problem

(Section 3.6) in which pj
= \342\200\2241 for all j and, in the capacity constraint, strict

equality is imposed. (On the other hand, imposing inequality ^\"^i WjXj
> c gives

rise to a trivial problem whose optimal solution is xi =
[c/vv/] (where / is the item

type of maximum weight) and Xj
= 0 for; e N\\{1], since item type / \"dominates\"

all the others in the sense of Theorem 3.2.) Note that, because of E.2), a feasible

137

138 5 Change-making problem

solution to the problem does not necessarily exist.
It is usual in the literature to consider positive weights Wj. Hence, we will also

assume, without loss of generality, that

Wj
and c are integers; E.4)

Wj < c for j e N; E.5)

Wi^Wj
if i^j. E.6)

Violation of assumption E.4) can be handled by scaling. If assumption E.5) is

violated, then we can set Xj
= 0 for all j such that Wj > c and, if there is an

item type (say k) with w^ = c, immediately determine an optimal solution {x^ = I,

Xj
= 0 for j G N\\{k]). If assumption E.6) is violated then the two item types

can be replaced by a single one. Note that, on the contrary, the assumption on
the positivity of

Wj (j EN) produces a loss of generality, because of the equality
constraint.

CMP can arise, in practice, in some classes of unidimensional cargo-loading and

cutting stock problems. Consider,for example, a wall to be coveredwith panels:

how is it possible, given the available panel lengths, to use the least possible number

of panels?
In the following sections we examine lower bounds (Section 5.2), greedy

solutions (Sections 5.3, 5.4), dynamic programming and branch-and-bound

algorithms (Sections 5.5, 5.6), and the results of computational experiments
(Section5.7).Section 5.8 analyses the generalization of the problem to the case

where, for eachj, an upper bound on the availability of items of type j is given

(Bounded Change-Making Problem).

5.2 LOWER BOUNDS

Assume, without loss of generality, that the item types satisfy

vvi > W2 > W3 > Wj for 7 =4, ... ,n. E.7)

Let us consider the continuous relaxation of CMP,i.e.E.1),E.2)and

Xj > 0, j e N.

From E.7), its optimal solution J is straightforward (Ji = c/wi.Xj = 0 for
j =2, ... ,n)and provides an immediate lower bound for CMP:

Lo =
\\^'

.

5.2 Lower bounds 139

If we also impose, similarly to what has been done for the unbounded knapsack

problem (Section 3.6.1), the obvious condition Ji < [c/vvij, which must hold in

any integer solution, the continuous solution becomes

X\\ =
c

Xj
= 0 for j =3, ... ,n.

X2
= ,

W2

where

c = c(mod vvi)

This gives an improved lower bound:

E.8)

c
VVi

+
c

W2

Suppose now that [c/vviJ items of type 1 and [c/w2j items of type 2 are initially
selected, and let

E.9)

E,10)

z' = c
VVi

+
c

W2

c' = c(mod W2).

In the optimal solution to CMP, either X2 < [c/w2\\ or X2 > [c/w2\\. In the former
case the continuous relaxation gives a lower bound

L'> = z' +

while in the latter a valid lower bound is

L'=z' -1 +

c
W3

C + VVi

W2

E,11)

E,12)

since the condition implies xi < [c/wij - 1.We have thus proved the following

Theorem 5.1 (Martello and Toth, 1980b). The value

L2 = min(L^L'),

where LP and O are defined by E.8)-E.12), is a lower bound for CMP.

140 5 Change-making problem

Since L\\ can be re-written as z' +
\\c'/w2\\, we have LP > L\\. Also, by noting

that L' = z' + \\{c' + vvi - W2)/w2] and vvi
-

W2 > 0, we have L' > Li. Hence Li

is dominated by the new bound.

The time complexity for the computation of the above bounds is clearly 0(n).
No sorting is in fact needed, since only the three largest weights are required.

Example 5.1

Consider the instance of CMP defined by

n = 5;

(wy)
= A1, 8, 5,4, 1);

c =29.

We obtain

Lo =3.

L, =2+[|l=3.

LO =2-h[|1=4;

L' =2- 1+ [fl =4;

^2 =4. D

Lower bounds Lq. L\\ and L2 are the respective conceptualcounterparts of

upper bounds Uq.U\\ and Uj, introduced for the unbounded knapsack problem
(Section3.6.1),for which we have proved that the worst case performance ratio is

2. As often occurs, however, maximization and minimization problems do not have

the same theoretical properties for upper and lower bounds (see, e.g.. Section 2.4).
For CMP, the worst-case performance of the lower bounds above is arbitrarily

bad. Consider in fact the series of instances with n = 3, w\\ = k, W2
= k \342\200\224

1,

W3 = 1 and c = 2k \342\200\2243 (k > 3): we have Lq
= L\\ = L2 = 2, while the optimal

solution has value z = /: \342\200\224
2, so the ratio Lj/z ii = 1,2 or 3) can be arbitrarily

close to 0 for k sufficiently large.

5.3 GREEDY ALGORITHMS

In the present section we consider both the change-making problem E.1)-E.3) and

the generalization we obtain by associating an integer non-negative cost
qj

with

each item type j E N and changing the objective function to

minimize z = 2_]qjXj. E.13)

5.3 Greedy algorithms 141

We obtain an Unbounded Equality Constrained Min-Knapsack Problem(UEMK).
UEMK contains, as special cases:

(i) CMP,when qj
= 1 for all j eN;

(ii) the unbounded knapsack problem (Section 3.6) in minimization form, when an

extra item type n + 1 is added, with q^+i = 0 and w\342\200\236+i= -1.

For convenience of notation, we assume that the item types are sorted according

to decreasing values of the cost per unit weight, i.e.

^>^> ... >^, E.14)

and note that, for CMP, this implies

Wi < W2 < ... < W\342\200\236.

A greedy algorithm for UEMK can be derived immediately from procedure
GREEDYU of Section3.6.1as follows.

procedure GREEDYUM:

\\npu\\:n.c,{qj).{wjy,
output: z^.(xj).c;
begin

c :=c;
z^ :=0;

for; := n to 1 step -1 do
begin

Xj :=[c/wj\\;
c

\342\226\240=c-WjXj;

z^ := z*' +qjXj
end

end.

The time complexity of GREEDYUM is 0(n), plus 6>(nlogn) for the preliminary

sorting. By replacing the last statement with

z^ := z^ +Xj

we obtain a greedy algorithm for CMP.
On return from GREEDYUM, if c = 0 then z^ and (Xj) give a feasible (not

necessarily optimal) solution. If c > 0 then no feasible solution has been found by

the procedure.

Example 5.1 (continued)

Applying GREEDYUM we obtain ixj) = B. 0. 1.0. 2),z^ = 5 and c = 0, while

the optimal solution has value z = 4 (as will be seen in Section 5.5.2). Q

142 5 Change-making problem

The case in which at least one item type has weight of value 1, has interesting

properties. First, a feasible solution to the problem always exists. Furthermore,
GREEDYUM always returns a feasible solution, since the iteration in which

this item is considered producesc = 0. The worst-case behaviour of the greedy
algorithm, however, is arbitrarily bad, also with this restriction. Consider in fact
the series of instances (both of CMP and UEMK) with: n = 3.

qj
= \\ for

ally, vvi = 1. W2 = k. W2
= k + l and c = 2k > 2, for which z = 2 and z^ = k, so the

ratio z^/z goes to infinity with k. (The absolute error producedby GREEDYUM

for UEMK has been investigated by Magazine, Nemhauser and Trotter A975), the

relative error produced for CMP by Tien and Hu A977).)
Consider now a change-making problem for the US coins, i.e. with: n = 6.

vvi
= 1.W2 = 5. W3

= 10. W4 = 25. W5
= 50. W(,

= 100. It is not difficult to be

convinced that GREEDYUM gives the optimal solution for any possible value of
c (expressedin cents). Situations of this kind are analysed in the next section.

5.4 WHEN THE GREEDY ALGORITHM SOLVESCLASSESOF
KNAPSACK PROBLEMS

We consider instances of CMP and UEMK in which at least one item type has

weight of value 1.
For CMP, this implies that, after sorting,

1 =
wi < W2 < ... < w\342\200\236. E.15)

A weight vector (vvi,.. .,w\342\200\236)is called canonical if the greedy algorithm exactly

solves all instances of CMP defined by the vector and any positive integer c.

Chang and Gill have given the following necessary and sufficient condition for

testing whether a vector is canonical.

Theorem 5.2 (Chang and Gill, 1970a) A vector (vvi,... ,w\342\200\236)satisfying E.15) is

canonical if and only if for all integers c in the range

w\342\200\236(w\342\200\236w\342\200\236_ 1 + w\342\200\236
-

3w\342\200\236_ 1)
W3 < C <

Wn
-

W\342\200\236_ 1

the greedy solution is optimal.

The proof is quite involved and will not be reported here. Furthermore,
application of the theorem is very onerous, calling for optimality testing of a usually

high number of greedysolutions.

5.4 When the greedy algorithm solves classes of knapsack problems 143

Example 5.2

Considerthe instance of CMP defined by

n =7;

(wy) = (l, 2, 4, 8, 10,16).

This vector can be proved to be canonical.However, application of the Chang
and Gill A970a) test requires us to solve, both in an exact and greedy way, 386

instances. \342\226\241

We now turn to instances of UEMK. Let j* denote an item type such that

Wj*
= 1 and qj*

= min {qj :
Wj

= I] and note that all item types k for which

Qk/'^k > '?/*/^y* ^re \"dominated\" by j* so they can be eliminated from the

instance. Hence we assume, without loss of generality, that the item types, sorted
accordingto E.14), satisfy

\\ = w\\ <Wj for y
= 2, ... ,n, E.16)

For k = I, ... ,n and for any positive integer c, let/^(c) and gk(c) denote,

respectively, the optimal and greedy solution value to

k

mmimize
I]^y-^y
;=i

subject to 2, ^j^j - <^'

Xj > 0 and integer, j = 1,... ,k.

When/^(c)
= gk{c) for all c\342\200\224or,more concisely,/^t =

gk\342\200\224wesay that the pair of
vectors({q\\,...,qk), (wi,... ,Wk)) is canonical. The following theorem provides a

recursive sufficient condition for checking whether a pair of vectors is so.

Theorem 5.3 (Magazine, Nemhauser and Trotter, 1975) Assume that (qi,... ,qn)

and (vvi,... ,w\342\200\236)satisfy E.14) and E.16). If for fixed k (l < k < n). fk
= gk and

Wk+\\ > Wk, then, by defining m =
\\wk+\\/wk^ and 7 = mwk

\342\200\224
Wk+i, the following

are equivalent:

(i) fk+i
= gk+i,

(ii) fk+\\imwk)
= gk+\\imwk),

(Hi) qk+\\ +gkG) < mqk.

144 5 Change-making problem

Proof. It is obvious that (ii) follows from (i). Since gk+\\ijnwk)
= qk+\\ + gkil)

and fk+\\{mwk) < mqk, (iii) follows from (ii). To prove that (i) follows from

(iii), suppose, by absurdity, that (iii) holds but there exists a value c for which

fk+\\ic) < gk+\\ic). It must be c > Wk+\\, since for c < w^+i we have/;t+i(c) =

fkic) = gkic) =
gk+\\(c) while for c = Wk+i we have/^+i(W;t+i) = gk+ii^k+i) =

qk+\\-

Let p = [c/wk\\ and 6 = c \342\200\224
pwk, and note that p > m \342\200\224I.

If Xk+\\ > 0 in an optimal solution, then/^+i(c) -
gk+i(c) =fk+\\(c

-
Xk+\\Wk+i)

-

gk+i(c \342\200\224
Xk+iWk+i) (since the greedy solution includes at least Xk+\\ items of type

^ + 1),sowe can assume that c is such that Xk+\\ = 0 in any optimal solution. Hence

fk+i(c) =fk(c) = gk(c)=pqk+fk{^)
= mqk + (p -

m)qk +fk{S). E.17)

From the definition of 6, by algebraic manipulation we can write c = Wk+\\ + (p
\342\200\224

m)wk + 'J + 6. Hence:(a) if p > m then

fk+i{c) < qk+\\ +{p
- m)qk+gk{-f)+fki^y, E.18)

(b) ifp =m - 1then -f + 6-Wk =c -Wk+\\ > 0 and fkij + 6)=fk(j+ 6-Wk)+ qk,

so

fk+\\(c) < qk+\\ +fk{l + b -Wk) < qk+i -
qk + gkif)+fki^),

showing that E.18) holds for all p > m - 1. Combining E.17) and E.18) we obtain

tnqk < qk+i +gki'y), a contradiction. D (An alternative proof has been given by Hu

and Lenard A976).)

Theorem 5.3 is known as the \"one-point theorem\" since, given a canonical pair

{(qi,... ,qk), (vvi,... ,Wk)) and a further item, k + I, satisfying qk+\\/wk+\\ > qk/^k
and Wk+\\ > Wk, the canonicity of {(qi,... ,qk+\\), (wi,... ,Wk+\\)) is guaranteed by

optimality of the greedy solution for the single value c = mwk. Moreover, this

check does not require exact solution of the instance, since execution of the greedy

algorithm for the value c = 7 (requiring 0(k) time) is sufficient to test condition

(iii).
Given qj, Wj G

= 1, ... ,n) satisfying E.14) and E.15), the following procedure

checks condition (iii) for k = I, ... ,n \342\200\224I. Note that condition E.15), always

satisfied by CMP, is not necessarily satisfied by an instance of UEMK.

procedureMNT:

input: n.(^y).(wy);

output: opt,
begin

n := n;

n := 1;
optimal := \"yes\";
wliile n < n and optimal =

\"yes\" do

begin
m :=

[w\342\200\236+i/w\342\200\236];

5.5 Exact algorithms 145

c \342\226\240.=mw\342\200\236-w\342\200\236+i;

call GREEDYUM;
if q^+i + z^ < mqn then n := n + 1 else optimal := \"no\"

end;

opt := n;
n := n

end.

The time complexity of MNT is clearly 0{n^). On return, we know that the

pairs ((Gi,... ,G,t), (wi,... ,W;t)) are canonical for all k < opt. If opt < n, then the

pair with k = opt + 1 is not canonical, while, for the pairs with k > opt + 1 the

situation is undecided.

Example 5.2 (continued)

By setting qj
= I for 7 = 1, ... ,6,and applying MNT, we have

n = 1, 2, 3 :m =2, c =0, z\302\253=0;

n = 4 : m = 2, c = 6, z^ = 2, opt
= 4.

Hence the greedy algorithm exactly solves all the instances induced by items

A,...,/:) with k < 4, while it fails for at least one instance with k = 5 (see, e.g.,
the case with c = 16). The situation for (vvi,... ,W6) cannot be decided through

procedure MNT, although the vector is canonical,as can be proved using Theorem
5.2. D

Further characterizations of instances for which the greedy solution is optimal
have been given by Chang and Korsh A976) and Tien and Hu A977).

5.5 EXACT ALGORITHMS

Chang and Gill A970a) have presented a recursiveprocedure for the exact solution
of those instances of CMP in which one item type has weight of value 1. An Algol

implementation of this method has been given by Chang and Gill A970b) and

corrected by Johnson and Kemighan A972).The resulting code is, however, highly

inefficient, as shown in Martello and Toth A977c, 1980b) through computational
experiments, so no account of it will be taken in the following.

In the following sections we consider algorithms for the exact solution of CMP
with no special assumption.

5.5.1 Dynamic programming

Given a pair of integers m (l < m < n) and c @ < c < c), consider the

sub-instance of CMP consisting of item types 1,..., m and capacity c, and denote

146 5 Change-making problem

v/ithfm(c) the corresponding optimal solution value (fmic) = ex: if no solution of
value c exists).Then, clearly.

/i(c)=<^

'
ex: for all positive c < c such that c(mod vvi) 5<^0;

/ for c =
Iwi, with / = 0, ..

c

fm(c) can be computed, by considering increasing values of m from 2 to n and,
for each m, increasing values of c from 0 to c, as

frr,(c)
= min

<^ fm-\\{c
-

Iwm) + 1:1 integer. 0 < / <
w\342\200\236

The optimal solution value of CMPis then given by/\342\200\236(c).The time complexity
for this computation is 0(nc^), the space complexity 0(nc).

By adapting to CMP the improved recursionproposedby Gilmore and Gomory

A965) for the unbounded knapsack problem (Section 3.6.2), we obtain

(fm-\\ic) for c =0, ... ,w\342\200\236,
- 1;

fmic)=<
[mm {fm-\\(c),fm(c- w^)+ 1) for c = w^, ... ,c,

which reduces the time complexity to 0{nc). Wright A975) has further noted that,

if the items are sorted accordingto increasing weights, only values of c not greater

than Wm^Vrri+x need be considered at each stage m. In fact, w^ items of type m + 1

give the same weight as Wm+\\ items of type m and a better value for the objective

function. A specialized dynamic programming algorithm for CMP can be found in

Wright A975).

5.5.2 Branch-and-bound

In the present section we assume that the item types are sorted so that

wi > W2 > ... > w\342\200\236. E.19)

To our knowledge, the only branch-and-bound algorithms for CMP are those in

Martello and Toth A977c, 1980b).We give a description of the latter, which has a

structure similar to that of MTUl (Section 3.6.2), with one important difference.

As in MTUl, at a forward move associated with the yth item type, if a lower
bound on the best solution obtainable is less than the best solution so far, the

largest possible number of items of type j is selected. As usual, a backtracking
move consists in removing one item of the last inserted type. Before backtracking
on item type /, let x, G = 1, ... ,/) be the current solution, c = c \342\200\224

J2i=\\ ^j^i

and z = ^.'^j Xj the corresponding residual capacity and value, and z the best
solution value so far. The following is then true (Martello and Toth, 1980b):

5.5 Exact algorithms 147

if c < Wi, the value l^ = z \342\200\224z is a lower bound on fnic) (= number of items

needed to obtain a change c with item weights (vvi,... ,w\342\200\236),see Section 5.5.1). In

fact: (a) only item types / + 1,..., n can produce c(< w,), so (b) if the solution of

value z has been obtained at a decision node descending from the current one, then,

clearly, k-
= fnic)', otherwise, at each leaf A of the decision sub-tree descending

from the current node, the lower bound, say z + Lx, allowed the search to be

stopped, so a valid lower bound on/\342\200\236(c)is min;^{LA} > z \342\200\224z = Ic.
The consideration above leads to a dominance criterion which is particularly

strong, since it allows one to fathom nodes of the decision tree basing oneself
on a value depending only on the current residual capacity, independently of the

variables currently fixed. In the resulting algorithm, Ic- is defined at Step 5, and

tested at Steps 2a and 5.

Also, it is useful to initially define a vector (m^)such that m^- = min {j '\342\226\240Wj < c],
so that, for each residual capacity c produced by branch-and-bound, the next

feasible item type is immediately known. Vectors (Ic) and (mc) clearly require

pseudo-polynomial space, hence, in the following implementation, their size is
limited by a constant parameter 7. It is assumed that the item types are sorted
according to E.19), and that 7 < vvi. (Note that vector (mc) can be used only after

a forward move, i.e. when c < vvi, while after a backtracking, say on item type /,

the next feasible item type is / + 1.)

procedure MTC1:
input: n.c. {Wj).'y;

output: z, (Xj);

begin

1. [initialize]
z := c + 1;
w\342\200\236+i:= 1;

for ^ := 1 to n do Xk := 0;

compute the lower bound L = L2 (Section 5.2) on the optimal solution value;
j \342\226\240=n;

wliiley > 1 and Wj
< 7 do

begin
for h := Wj to minG,vv/_i

- 1)do m/, :=];

end;

for h := \\ \\o minG, w\342\200\236
- 1) do //, := ex:;

for h := Wn to 7 do 4 := 0;
xx := [c/wij;
z := X\\;

c := c \342\200\224
wiXi;

J :=2;
if c > 0 tlien go to 2a;
z := Xi;
for y := 1 to n do Xj

:= Xj;
return ;

2a. [dominance criterion]

148 5 Change-making problem

if c < 7 tlien
if /^ > z - z then go to 5 elsej :=m^

else

if c < w\342\200\236then go to 5 else find; =
min{^ >j : w^. < c};

2. [build a new current solution]

y \342\226\240=Lc/w;J;
c := c \342\200\224

ywj;
if z < z +y + Ic/wj+i]then go to 5;
if c = 0 then go to 4;
ify

= n then go to 5;
3. [save the current solution]

c := c;
z := z +y;

Xj
\342\226\240.=y;

J-=J + U

go to 2a;
4. [update the best solution so far]

z := z +y;
for ^ := 1toy - 1do Xk := x/,;

Xj -y;
for ^ :=y + 1to n do Xk := 0;

if z = L then return;
5. [backtrack]

find / = max{k < j : Xk > 0};
if no such / then return ;

if c < minG,w, - 1) then /^ := max(/f.z - z);
c :=c + Wi;

z :=z - 1;
Xi := Xi

\342\200\224
I;

if z < z + [c/w,+i] then (comment: remove all items of type /)

begin
c := c + WiXi;

z := z \342\200\224
Xi',

X, := 0;

j \342\226\240=i;

go to 5

end;
j :=/ + !;
if c < 7 and l^. > z - z then go to 5;
if c -

Wi > Wn then go to 2;
h := /;

6. [try to replace one item of type / with items of type h]

h \342\226\240.=h + l;
if z < z +

\\c/wh] or h > n then go to 5;
W c -Wh <w\342\200\236then go to 6;
j:=h-
goto 2

end.

5.6 An exact algorithm for large-sizeproblems

Example 5.1 (continued)

Recall the instance

149

n = 5,

iwj)
= A1, 8, 5,4, 1),

c =29.

Figure 5.1 gives the decision-tree produced by MTCl (with 7 = 10). \342\226\241

w=E.5.5.4.3.3.3.2.2.2) ^\"n L=4
I =@.0.0.0.0.0.0.0.0.0) (0] z=30

f=2 \302\251

z=5

x=B.0,l

f=2 /Z\\ /2=2

c^7 \\fy
z<z + 1+[3/h'5]

1,0.2)

z=3
c-2

b>Z-2 z=4=L

x=(l.1.2.0.0)

Figure 5.1 Decision-tree of procedure MTCl for Example 5.1

The Fortran implementation of procedure MTCl is included in that of procedure

MTC2, which is described in the next section.

5.6 AN EXACT ALGORITHM FOR LARGE-SIZE PROBLEMS

Computational experiments with algorithm MTCl (Martello and Toth, 1980b) show

that, similarly to what happens for other knapsack-type problems(seeSections 2.9,

3.6.3, 4.2.3), many instances of CMP can be solved efficiently even for high

values of n and, in such cases, the number of item types used for the solution

is considerably smaller than n.
For CMP,however, the core problem does not consist of the most \"favourable\"

item types (those with highest weight), since the equality constraint often forces
the optimal solution to include also some items with medium and small weight.

An experimental analysis of the structure of the solutions found by MTCl shows

two facts: (a) the optimal solution value is often equal to the value of bound L2
(Section 5.2); (b) many equivalent solutions usually exist. Hence we define the

core as

150 5 Change-making problem

C = {j\\, ... Jn],

with

ji^ J2,73 = the three item types of maximum weight,

J4,...,jn =
any 71\342\200\2243other item types,

and the core problem as

minimize

subject to V^ WjXj
= c,

Xj
> 0 and integer, j E C.

Noting that 71,72 and 73 are the only item types needed to compute L2, the

following procedure attempts to solve CMP by sorting only a subset of the item

types. In input, 71 < n \342\200\2243 is the expected size of the core, 7 the parameter needed

by MTCl.

procedure MTC2:

input: n.c. (wj).'y.n;
output: z.ixj);

begin
determine the three item types (jijij^) of maximum weight;

compute lower bound L2;

C :={1 n]U{ji.J2.J2];
sort the item types in C in order of decreasing weights;
solve the core problem exactly, using MTC1, and let z and (xj) define the

solution;

if z = L2 tlien for eacli7 e {1 n]\\CdoXj
:= 0

else

begin
sort item types 1 n in order of decreasing weights;

solve CMP exactly, using MTC1, and let z and (xj) define the
solution

end

end.

\"Good\"'values for 71 and 7 were experimentally determined as

71 = min (n.max E00. \342\200\224

V V L20

7=minA0000, wi - 1),

5.7 Computational experiments 151

The Fortran implementation of algorithm MTC2 is included in the present
volume.

5.7 COMPUTATIONAL EXPERIMENTS

In the present section we analyse the computational behaviour of the Fortran IV

implementations of algorithms for CMP on data sets having

Wj uniformly random in [1, M],

In Table 5.1 we compare the dynamic programming approach of Wright

(Section 5.5.1), algorithm MTCl (Section 5.5.2) and the approximate algorithm
GREED YUM (Section 5.3) on problems with M =

An, for two values of c.
The recursive approach of Chang and Gill (Section 5.5) is not considered since

computational experiments (Martello and Toth, 1980b) showed that it is very much
slower than the Wright algorithm. For each value of n and c, we generated 100
problems admitting of a feasible solution. Each algorithm had a time limit of 250
secondsto solve them. The entries give the average running times (including sorting

times) obtained by the three algorithms on a CDC Cyber 730, the percentages of

approximate solutions which are sub-optimal, infeasible and optimal, respectively,
and the average running time of MTCl when GREED YUM finds the optimum.
The table shows that MTCl clearly dominates the Wright algorithm. The greedy
algorithm is about twice as fast as MTCl, but the quality of its solutions is rather

poor. In addition, for the instances in which it gives the optimal solution, the running

Table 5.1

c

\\0n

T^U^j

Wj uniformly random in [1,

n

25

50

100
200
500

1000

25

50

100

200
500

1000

Wright

(time)

0.135

0.451
1.612
time

\342\200\224

\342\200\224

0.166

0.518

1.768
time

\342\200\224

\342\200\224

4a7].CDC -Cyber 730
100 feasible problems

MTCl

(time)

0.006
0.011
0.022
0.045
0.119
0.241

0.006

0.011
0.022

0.045
0.121
0.240

Greedy

(time)

0.002

0.006
0.013
0.029
0.078
0.155
0.002

0.006

0.013

0.030
0.078
0.154

in seconds . Average

Greedy solutions

Sub-
optimal

(%)

35

35
35
40
42
33

35

32
29
40
29
24

Not

feasible

(%)

43
38
47
42
35

40

43
45
44
37
43
41

Optimal

(%)

22

27
18
18
23
27

22

23

27

27
28
35

values over

MTCl
When

Greedy is
optimal

(time)

0.004

0.009
0.018
0.035
0.098
0.202

0.004

0.009

0.018

0.035
0.096
0.204

152 5 Change-making problem

time of MTCl is only slightly higher. The running times of all the algorithms are

practically independent of the value of c.

Table 5.2 gives the average times obtained, for larger problems, by MTCl

and MTC2 (Section 5.6) on an HP 9000/840 (with option \"-o\" for the Fortran

compiler). The problems,not necessarily feasible, were generated with M = 4n

and c = 0.5
Yl\"j=i ^j- The sorting times, included in the entries, are also separately

given. The table shows that, forn > 1000, i.e.when the core problem is introduced,
MTC2 is considerablyfaster than MTCl.

Table 5.3 analyses the behaviour of MTC2 when M varies,and shows that higher
values of M tend to produce harder problems. This can be explained by noting

that increasing the data scattering makes it more difficult to satisfy the equality
constraint. Hence, in order to evaluate MTCl and MTC2 on difficult problems, we
set M = 10^for all values of n. Table 5.4 confirms the superiority of MTC2 also

Table 5.2 Wj uniformly random in [1, 4n]; c = 0.5
Y.j=i^j-

HP 9000/840 in seconds.
Average times over 20 problems

Sorting MTCl MTC2

50
100
200
500

1000
2 000

5 000
10000
20000

0.003
0.006

0.013

0.036

0.079
0.165
0.468
0.963
2.073

0.007

0.010

0.021
0.054
0.114
0.237
0.595

1.198

12.860

0.003
0.008
0.019
0.051
0.064

0.087

0.121

0.179
0.370

Table 5.3 Algorithm MTC2. Wj uniformly random in [1,M]; c =0.5E\"=i^i-
HP 9000/840

in seconds. Average times over 20 problems

M = 4n M =^n M = \\ln

100

1000

10000

0.008
0.064
0.179

0.013
0.081
0.309

0.017

0.096

4.743

Table 5.4 w^ uniformly random in [1, lO^];c = 0.5
J2\"=i^j-

HP 9000/840 in seconds.
Average times over 20 problems

n Sorting MTCl MTC2

50
100
200
500

1000

2000

5 000
10000
20000

0.004
0.007

0.012

0.037

0.082
0.171
0.456
0.948
2.124

1.205
0.754

0.862

2.321

3.078
7.778

11.141
time

1.172

0.744

0.855
2.306
1.098
1.654
0.810
1.939

5.480

5.8 The bounded change-making problem 153

for this generation. Note that, for n > 1 000, the time difference is considerably
higher than the sorting time, indicating that MTC2 takes advantage of the lesser

number of item types also in the branch-and-bound phase. For n = 10000, MTCl

could not solve the generated problems within 250 seconds.

5.8 THE BOUNDED CHANGE-MAKING PROBLEM

The Bounded Change-Making Problem (BCMP) is the generalization of CMP we
obtain by introducing

bj
= upper bound on the availability of items of type j,

and formulating the problem as

minimize z =
1]^; E.20)
;=i

subjectto
Y^vvyX/=c, E.21)

0 <
Xj

< bj and integer, j = I, ... ,n. E.22)

We will maintain the assumptions made in Section 5.1. In addition we will

assume, without loss of generality, that values
bj (positive integer for ally) satisfy

n

^bjWj>c, E.23)

bj^Vj<c, j = l,...,n. E.24)

Violation of assumption E.23) produces an infeasible or trivial problem, while for

eachy not satisfying E.24), we can replacebj
with [c/wj\\.

By assuming that the item types are sorted so that

vvi > W2 > ... > w\342\200\236, E.25)

the continuous relaxation of BCMP can easily be solved, as for the bounded

knapsack problem, through a straightforward adaptation of Theorem 2.1. Define
the critical item type s as

s = min < j :
2_]biWi

> c >,

154

and
^-1

5 Change-making problem

E.26)

Then the optimal solution J of the continuous relaxation is

x'j =
bj for j = I, ... ,s \342\200\224I,

for j = s + I, ... ,n,
c

J, =0

X, =

and the corresponding value produces a lower bound for BCMP:

^-1

LB, = Y,bj +

A tighter bound, conceptually close to bound L2 of Section 5.2, can be obtained

by noting that, in the optimal solution, either Xs < [c/vv^J or x^ > [c/vv^J. By
defining

^-1

c' = c (mod Ws),

the respective lower bounds are

Ws+\\

LB' = z' -1 +

E.27)

E.28)

E.29)

E.30)

Hence,

Theorem 5.4 (Martello and Toth, 1977c) Thevalue

LB2 = mm (LB^, LB^),

where LB^and LB
*

are defined by E.26)-E.30), is a lowerbound for BCMP.

LB2 clearly dominates LBi, since LBi = z' + \\c'/wg] < LB^ and LB^ =
z' + \\{c' +Ws-1 \342\200\224

Ws)/ws'\\ > LBi. The time complexity for the computation of LBi

5.8 The bounded change-making problem 155

or LB2 is 0{n) if the item types are already sorted accordingto E.25). If this is
not the case, the computation can still be done \\r\\0{n) time, through an adaptation
of procedure CRITICAL, ITEMof Section 2.2.2.

A greedy algorithm for BCMP immediately derives from procedure
GREEDYUM of Section 5.3, by replacing the definition of Xj and z^ with

Xj := min ([c/vvyj, bj) and z^ := z^ +Xj, respectively. In this case too, the worst-
case behaviour is arbitrarily bad, as shown by the counterexample of Section 5.3
with bi = k, b2 = 2, b^

= 1. To our knowledge, no further theoretical result on the
behaviour of greedyalgorithms for BCMP is known.

Exact algorithms for BCMP can also be obtainedeasily from those for CMP.
In particular, a branch-and-bound algorithm MTCB derives from procedure MTC1

of Section 5.5.2 as follows. Apart from straightforward modifications at Step 1

(bn+i := +cx:; L = LB2\\ x\\ := min([c/wij, ^1); if c > 0 then go to 2), the
main modification concernsSteps2 and 4. For BCMP it is worth building a new
current solution by inserting as many items of types jj + 1,... as allowed by their

bounds, until the first is found whose bound cannot be reached. In order to avoid
uselessbacktrackings, this solution is saved only if its value does not represent the

minimum which can be obtained with item type j. The alteredstepsare then as

follows.

2. [build a new current solution]
y' :=0;
c :=c;
i:=J-U
repeat

/ :=/ + !;

y :=min([c/w,J.^,);

y' \342\200\242\342\226\240=y'+y;

c := c \342\200\224
ywi;

if y = bi then W := w,+i else W := w,;
if z < z +y' + [c/vv] then go to 5;
if c = 0 then go to 4;
if / = n then go to 5

until y < bi;
z := z +(y' -y);
for k :=] to / - 1 do Xk := bk]

j \342\226\240=i;

4. [update the best solution so far]
z := z +y';
for /: := 1 to y

- 1 do Xk := Xk',

for k :=j to / - 1do Xk := bj;

Xi :=y;
for k := i + I Xo n do Xk := 0;

if z = L then return;

The Fortran code of algorithm MTCB is included in the present volume.

156 5 Change-making problem

Table 5.5 Algorithm MTCB. c =
0.5^\"^jW,.

HP 9000/840 in seconds. Average times over

20 problems

n

50

100

200

500
1000
2000
5 000

10000

Wj uniformly

hj in [1,5]

0.009
0.016
0.038
0.100
0.213
0.453

1.207

2.429

randorr

bj

I in [1,

in [1,

0.010
0.019
0.036

0.099

0.210

0.449
1.201
2.377

4n]

10]

Wj uniformly random

hj in [1, 5]

1.646
1.230
1.073
1.233
9.894

6.145

18.622
\342\200\224

bj

in [1, 105]

in [1, 10]

1.442

1.033
0.934
2.051

11.377
20.145

35.799

\342\200\224

Table 5.5 gives the results of computational experiments performed on the data

generation of Tables5.2and 5.4, with values bj uniformly random in ranges [1.5]

and [1. 10]. The solution of BCMP appears harder than that of CMP. The times in

the first two columns are approximately twice as high as those obtained by MTCl

in Table 5.2. Increasing the range of values bj did not alter the difficulty. The times
in the third column are higher than those of MTCl in Table 5.4. Larger values of

bj considerably increased in this case the difficulty, especially for large values
of n.

