
0-1 Multiple knapsack

problem

6.1 INTRODUCTION

The 0-1 Multiple Knapsack Problem(MKP) is: given a set of n items and a set of
m knapsacks (m < n), with

Pj =
profit of item j,

Wj
= weight of item j,

Ci = capacity of knapsack /,

select m disjoint subsets of items so that the total profit of the selected items is a

maximum, and each subset can be assigned to a different knapsack whose capacity
is no less than the total weight of items in the subset. Formally,

m n

maximize ^ =/_]/_] Pj^ij F1)
/=i ;=i

subject to y^^y-^y < c,, / G M = {1, ... ,m}. F.2)
;=i

where

J2^
< 1' j eN = {h... ,n}, F.3)

/=i

jcy=0orl, ieMJeN, F.4)

1 if item) is assigned to knapsack /;

0 otherwise.

When m = 1, MKP reducesto the 0-1 (single) knapsack problem consideredin

Chapter 2.

We will suppose, as is usual, that the weights wj are positive integers.Hence,
without loss of generality, we will also assume that

157

158 6 0-1Multiple knapsack problem

Pj and Ci are positive integers, F.5)

Wj
< max;gM{c/} for j EN, F.6)

Ci > minyg/v{vvy} for i EM, F.7)

n

y^vvy > c; for / G M. F.8)

If assumption F.5) is violated, fractions can be handled by multiplying through

by a proper factor, while nonpositive values can easily be handled by eliminating all

items with pj < 0 and all knapsacks with c; < 0. (There is no easy way, instead, of

transforming an instance so as to handle negative weights, since the Glover A965)

technique given in Section 2.1 does not extend to MKP. All the considerations in

this Chapter, however, easily extend to the case of nonpositive values.) Items j
violating assumption F.6), as well as knapsacks/ violating assumption F.7), can
be eliminated. If a knapsack, say /*, violates assumption F.8), then the problem
has the trivial solution x,-.; = 1 for 7 EN. Xy

= 0 for / \302\243M\\{i*] and 7 G A^.

Finally, observe that if m > n then the (m
\342\200\224

n) knapsacks of smallest capacity can
be eliminated.

We will further assume that the items are sorted so that

^>^>...>^. F.9)

In Section 6.2 we examine the relaxation techniques used for determining upper

bounds. Approximate algorithms are consideredin Sections 6.3 and 6.6 . In Section

6.4 we describe branch-and-bound algorithms, in Section 6.5 reduction techniques.
The results of computational experiments are presented in Section 6.7.

6.2 RELAXATIONSAND UPPER BOUNDS

Two techniques are generally employed to obtain upper bounds for MKP: the

surrogate relaxation and the Lagrangian relaxation. As we show in the next section,
the continuous relaxation of the former also gives the value of the continuous
relaxation of MKP.

6.2.1 Surrogaterelaxation

Given a positive vector (tti, ... , tt^^) of multipliers, the standard surrogate
relaxation,S{MKP .it), of MKP is

6.2 Relaxations and upper bounds 159

maximize EE^i-^'^ F.10)
/=i y=i

subject to E^'E^^'^y - E^'*^' F11)

m

J2^,j<l, jeN, F.12)

Xij =0or 1, / eMJ eN. F.13)

Note that we do not allow any multiplier, say ttj, to take the value zero, since this
would immediately produce a useless solution

(Xy
= \\forjeN) of value Yll=iPj-

The optimal vector of multipliers, i.e. the one producing the minimum value of
z{S{MKP,tt)) and hence the tightest upper bound for MKP, is then defined by the

following

Theorem 6.1 (Martello and Toth, 1981a) For any instance of MKP, the optimal

vector of multipliers for S(MKP.tt) is tt, = k (k any positive constant) for all i E M.

Proof Let 1 = arg minJTr, : i e M], and suppose that (x*-) defines an optimal
solution to S(MKP, it). A feasible solution of the same value can be obtained by

setting x*j
= 0 and x-* = 1 for each j \302\243N such that

x*j
= 1 and / ^ 1 (since the only

effect is to decrease the left-hand side of F.11)). Hence S(MKP,it) is equivalent

to the 0-1 single knapsack problem

n

maximize
Z_\\Pj^ij

subject to
2_\\\"^j^ij

<

;=i L/=i
^TT/Q/tTj

JCy =0 or 1, j e N.

Since
[Y17=\\ ^'^'/^~\\ - Yl7=i^'^ the choice tt,- = k (k any positive constant)

for all / G M produces the minimum capacity and hence the minimum value of
z(S(MKP.Tr)).n

By setting tt, = A: > 0 for all i eM, and yj
=

J27=\\ ^u for aWj eN, S (MKP, tt)

becomes

160 6 0-1 Multiple knapsack problem

maximize
Y.pjyj
i=i

subject to z^i^J^J \342\200\2247^*^'^

M '=1

j^ =0 or 1, j eN,

which we denote simply with S(MKP) in the following. Loosely speaking, this

relaxation consists in using only one knapsack, of capacity

c = J]q. F.14)
/=i

The computation of upper bound z (S iMKP)) for MKP has a non-polynomial time

complexity, although many instances of the 0-1 knapsack problem can be solved
very quickly, as we have seen in Chapter 2. Weaker upper bounds, requiring 0{n)

time, can however be computed by determining any upper bound on ziSiMKP))
through the techniques of Sections 2.2 and 2.3.

A different upper bound for MKP could be computed through its continuous

relaxation, CiMKP), given by F.1), F.2), F.3) and

0<JCy < 1, / eM, j eN. F.15)

This relaxation, however, is dominated by any of the previous ones, since it can be

proved that its value is equal to that of the continuous relaxation of the surrogate

relaxation of the problem, i.e.

Theorem 6.2 z(C(MKP)) = ziCiS(MKP))).

Proof. It is clear that, by setting tt,-
= /: > 0 for all /, C(S(MKP)),which is obtained

from F.10)-F.13) by relaxing F.13) to F.15), coincides with S{C{MKP)), which

is obtained from F.1), F.2), F.3) and F.15) by relaxing F.2) to F.11). Hence
we have z(C{SiMKP))) > z{CiMKP)). We now prove that z{C{MKP)) >
z ids (MKP)))alsoholds.

The exact solution (Jj) of the continuous relaxation of S(MKP) can easilybe
determined as follows. If Ylj=i ^j ^ <^' where c is given by F.14), then Jj

= 1 for

7 = 1, ... ,n and z{C{S{MKP))) =
T.\"j=\\Pj- Otherwise, from Theorem 2.1,

6.2 Relaxations and upper bounds 161

jy
= 1 for y = 1, ... ,5 - 1,

y^
= 0 for j = s + I, ... ,n,

ys=
{^-J2^j]

/^^'

where

F,16)

and

,5-1 / ,5-1
z(C(S(MKP)))=Y,Pj+ c -

J]wJ ps/ws. F,17)

It is now easy to show that there exists a feasible solution (Jy) to CiMKP) for

which Yl^r^x ^'j
~

^j f\302\260^^11 J ^ ^ \342\226\240Such a solution, in fact, can be determined by

consecutively inserting items j = 1,2,... into knapsack 1 (and setting Ji y
= 1,

Jij = 0 for / ^ 1), until the first item, say j*, is found which does not fit

since the residual capacity ci is less than Wj*. We then insert the maximum

possible fraction of Wj* into knapsack 1 (by setting Ji j. =
ci/vvy.)

and continue

with the residual weight vv).
= wy.

- ci and knapsack 2, and so on. Hence
z (C (MKP))>z(C (S {MKP))). n

Example 6.1

Considerthe instance of MKP defined by

n = 6;

m = 2;

{Pj) = A10,150,70,80,30,5);

(Wj)
= (40, 60, 30, 40, 20, 5);

(Ci)
= F5, 85).

The surrogate relaxation is the 0-1 single knapsack problem defined by (Pj). (wj)
and c = 150. Its optimal solution can be computed through any of the exact

algorithms of Chapter 2:

162 6 0-1Multiple knapsack problem

(Xj)
= A, 1, 1,0, 1,0),z{S{MKP))

= 360.

Less tight values can be computed, in 0(n) time, through any of the upper
bounds of Sections2.2,2.3.Using the Dantzig A957) bound (Theorem 2.1), we

get

s = 4, (xj) =
A, 1, 1, i, 0, 0), Ui = 370 (= z(C(MKP))).

This is also the value produced by the continuous relaxation of the given problem
since, following the proof of Theorem 6.2, we can obtain, from (J/),

(r,,,) = (l, -^,0,0,0,0),

(^2,,)= @, ^, 1, ^,0,0).

Using the Martello and Toth A977a) bound (Theorem 2.2), we get U2 = 363. D

6.2.2 Lagrangian relaxation

Given a vector (Ai,..., A\342\200\236)of nonnegative multipliers, the Lagrangian relaxation
L{MKP.A) of MKP is

m n n / m \\

maximize ^ J^Py-^y
\" I] ^n Jl^'-J\" ^ ^^l^)

n

subject to y^^/-^y < <^M ' ^ ^' F.19)

jCy=Oorl, ieMJeN. F.20)

Since F.18) can be written as

m n n

maximize
T^ y^^j-^iy + T^''^i' F21)

where

Pj=Pj-\\^ yeM F.22)

the relaxed problem can be decomposed into a series of m independent 0-1 single
knapsack problems{KPi.i = 1,... ,m), of the form

6.2 Relaxations and upper bounds 163

maximize z, = Y1pj'''j
y=l

subject to z_]^j^ij ^ Q'

Xy
= 0 or 1, j E N.

Note that all these problems have the same vectors of profits and weights, so the

only difference between them is given by the capacity. Solving them, we obtain

the solution of L{MKP.A), of value

m n

z{L{MKP. A)) = ^ z, + ^ A,. F.23)

For the Lagrangian relaxation there is no counterpart of Theorem 6.1, i.e. it is not

known how to determine analytically the vector (A^) producing the lowest possible
value of z(L(MKP. X)). An approximation of the optimum (Xj) can be obtained

through subgradient optimization techniques which are, however, generally time

consuming. Hung and Fisk A978) were the first to use this relaxation to determine
upper bounds for MKP, although Ross and Soland A975) had used a similar

approach for the generalized assignment problem (see Section7.2.1),of which

MKP is a particular case. They chose for (Xj) the optimal dual variables associated
with constraints F.3) in C(MKP). Using the complementary slackness conditions,
it is not difficult to check that such values are

F.24)
if; > s,

where s is the critical item of S(MKP),defined by F.14) and F.16). (For S(MKP),
Hung and Fisk A978) used the same idea, previously suggested by Balas A967)

and Geoffrion A969), choosingfor (tt,) the optimal dual variables associatedwith

constraints F.2) in C(MKP), i.e. \302\245,=Ps/^s for all /. Note that, on the basis of
Theorem 6.1, this is an optimal choice.)

With choice F.24), in each KPj (i = l,...,m) we have Pj/wj
= Ps/^s for

/ < s and pj/wj < Ps/w,, for ; > s. It follows that z(C(L(MKP , X))) =

iPs/'^s)Z^,=i Ci + Z^/li Ay, SO from F.17) and Theorem 6.2,

z(C(L(MKP , A)))= z(C(S(MKP)))= z(C(MKP)),

i.e.both the Lagrangian relaxation with multipliers Xj and the surrogate relaxation

164 6 0-1Multiple knapsack problem

with multipliers tt,
= /: > 0 for all /, dominate the continuous relaxation. No

dominance exists, instead, between them.

Computing z(L(MKP. A)) requires a non-polynomial time, but upper bounds on
this value, still dominating z(C(MKP)), can be determined in polynomial time,

by using any upper bound of Sections 2.2 and 2.3 for the m 0-1 single knapsack
problemsgenerated.

Example 6.1 (continued)

From F.24), we get

(\\j) = C0, 30, 10,0,0, 0), (pj)
= (80, 120, 60, 80, 30, 5).

By exactly solving KPi and KP2, we have

(jci,y)
= @, 1,0,0,0, 1), zi = 125,

{X2,j)
= A,0,0, 1,0, 1), Z2= 165.

Hencez(L(MKP,A))
= 360, i.e. the Lagrangian and surrogate relaxation produce

the same value in this case.
By using Ui or U2 (see Sections2.2.1and 2.3.1) instead of the optimal solution

values, the upper bound would result in 370 (= 130-1-170-1- 70). \342\226\241

It is worth noting that feasibility of the solution of L(MKP.A) for MKP can

easily be verified, in 0(nm) time, by checking conditions F.3) (for the example

above, xi (, + X2,(, < 1 is not satisfied). This is not the case for S{MKP), for
which testing feasibility is an NP-complete problem. In fact, determining whether

a subset of items can be inserted into knapsacks of given capacities generalizes the

bin-packing problem (see Chapter 8) to the case in which containers of different

capacity are allowed.

We finally note that a second Lagrangian relaxation is possible. For a given
vector {fjt\\,...,fim)of positive multipliers, L{MKP,fi) is

maximize

subjectto
y^Xij

< I, j \302\243N,

i=\\

Xij =0 or 1, i eM,j eN.

Note that, as in the case of S(MKP , tt), we do not allow any multiplier to take

6.2 Relaxations and upper bounds 165

the value zero, which again would produce a useless solution value. By writing

F.25) as
m n m

maximize ^ Yl^PJ
~

A''^/)-^y
+

Yl ^'^\"

it is clear that the optimal solution can be obtained by determining /* = arg min{/i, :
/ \302\243M], and setting, for each j \302\243N : xi*j

= 1 if pj \342\200\224
^i*Wj > 0, Xi\302\273j

= 0

otherwise, and Xy
= 0 for all / G M\\{i*]. Since this is also the optimal solution of

C{L{MKP ,yt)), we have z{L{MKP,^i))> z(C{MKP)),i.e.this relaxation cannot

produce, for MKP, a bound tighter than the continuous one. (Using /J-
=

p^/vv^

for all / G M, we have z(L(MKP ,JI)) =
Yl'j=\\(Pj

-
iPsl^s)^]) + cp^M =

z{C{MKP)),with c and s given by F.14) and F.16), respectively.)

6.2.3 Worst-caseperformance of the upper bounds

We have seen that the most natural polynomially-computable upper bound for MKP

is

(/, =
\\z{C{MKP))\\

=
[z{C{S(MKP)))\\

= [z(C(L(MKP.m\\.

Theorem 6.3 p{U\\)
= m + I.

Proof. We first prove that p(Ui) < m + 1, by showing that

z (C (S (MKP))) < (m + 1)z (MKP).

Consider the solution of C{S{MKP)) and let us assume, by the moment, that

Yl\"j=\\ ^j > Y^=\\ ^'- ^^^ ^' denote the critical item relative to knapsack i (i EM)

defined as

s; = min < k : Y^ w, > Y^ ci >. F.26)

Note that, from Theorem 6.2, the only fractional variable in the solution is _y^, with

s = Sm. Hence the solution value can be written as

^1 \342\200\2241 ^2\342\200\2241 Sm\342\200\224l

z{CiSiMKP))) =
J2Pj+Ps.+ Y. PJ^P^^^---^ Jl Pj

F.27)

166 6 0-1 Multiple knapsack problem

from which we have the thesis, since

(a) Selecting items {si^i + l,...,^, \342\200\224
1} (where ^o = 0) for insertion into

knapsack / (/ = l,...,m), we obtain a feasible solution for MKP, so

(b) From assumption F.6), z(MKP) > p^_ for all i e M, hence also z(MKP) >

(c-t:m^j)ps/^s-

If
Yll=\\ ^j \342\200\224Yl?=\\ ^i ^^^ result holds a fortiori, since some terms of F.27) are

null.

To see that m + 1 is tight, consider the series of instances with: n > 2m; ci =
2k (k > 2),C2 = ... = Cm = k; pi = ... =

p^+i =k,wi = ... =
w\342\200\236,+i=k + l; pm+2 =

... =
p\342\200\236

= l,Wm+2 = ... =
w\342\200\236

= k. We have s < m + \\,z{C{S{MKP))) =

(m + l)k{k/{k + \\)),z{MKP)
= k + (m - I), so the ratio Ui/z{MKP) can be

arbitrarily close to (m + 1), for k sufficiently large. \342\226\241

Any upper bound U, computable in polynomial time by applying the bounds

of Sections 2.2 and 2.3 to S{MKP) or to L(MKP , X), dominates Uu hence

piU) < m + I. Indeed, this value is also tight, as can be verified through

counterexamples obtained from that of Theorem 6.3 by adding a sufficiently large number
of items with pj

= k and Wj
= k + I.

Finally note that, obviously, p(U) < m + I also holds for those upper bounds
U which can be obtained, in non-polynomial time, by exactly solving S{MKP) or

L{MKP,J).

6.3 GREEDY ALGORITHMS

As in the case of the 0-1 single knapsack problem (Section 2.4),also for MKP the

continuous solution produces an immediate feasible solution, consisting (see F.26),
F.27))of the assignment of items 5,_ i -i-1,..., 5, - 1 to knapsack i {i = \\, ... ,m)
and having value

m Si \342\200\224\\

z' =
J2 Y. Pj- F.28)

Sincez' < z < Ui < z' +
Yl?=\\Ps,'>

where z = z{MKP), the absolute error of

z' is less than Y^=\\Psr The worst-case relative error, instead, is arbitrarily bad,

as shown by the series of instances with n = 2m ,Ci = k > m for / = 1, ... , m,

Pj
=

Wj
= I and pj+i =

Wj+\\
= k for j = 1,3,...,n \342\200\224

1, for which z' = m and

z = mk, so the ratio z'/z is arbitrarily close to 0 for k sufficiently large.
In this case too we can improve on the heuristic by also considering the solution

consisting of the best critical item alone, i.e.

6.4 Exact algorithms 167

z^ =max(z'.max,gM{Pi,}).

The worst-caseperformance ratio of z^ is l/(w + 1).Since,in fact, z'^ > z' and

^^ > Ps, for / = 1, ... ,m, we have, from z < ^' + X^^iP^,, that z <{m + l)z^. The
series of instances with n =2m +2,c\\ = 2k(k > m),Ci

= k for i = 2, ... ,m,pj =

Wj
= 1 and

pj+\\
=

Wj+\\
= k for j = 1, 3, ... ,n - 1proves the tightness, since

z^ = k + m + 1 and z =
(m + l)k, so the ratio z'^/z is arbitrarily close to

l/(m + 1) for k sufficiently large. Notice that the \"improved\" heuristic solution
z^ =

max(z',maxyg/v{py}) has the same worst-case performance.
For the heuristic solutions considered so far, value z' can be obtained, without

solving C(MKP), by an 0(n) greedy algorithm which starts by determining the

critical item s =
Sm through the procedure of Section 2.2.2, and re-indexing the

items so that) < s (resp.j > s) if pj/wj > Ps/wg (resp. Pj/wj < Ps/ws).Indices

/ and j are then initialized to 1 and the following steps are iteratively executed:

A) if
wy

< c, (c, the residual capacity of knapsack /), then assign) to / and set

j =7 + 1; B) otherwise, (a) reject the current item (by setting) =) + 1),(b) decide

that the current knapsack is full (by setting i = i + 1), and (c) waste (!) part of the

capacity of the next knapsack (by setting c, = c, \342\200\224
(wy_ i

\342\200\224
c,_ i)). Clearly, this is a

\"stupid\" algorithm, whose average performance can be immediately improved by

eliminating step (c). The worst-case performance ratio, however, is not improved,

since for the tightness counter-example above we still have z^ = k + m + 1.

Trying to further improve the algorithm, we could observe that, in case B), it

rejects an item which could fit into some other knapsack and \"closes\" a knapsack
which could contain some more items. However, if we restrict our attention to 0(n)

algorithms which only go forward, i.e. never decreasethe value of) or /, then by

performing, in case B), only step (a) or only step (b), the worst-case performance is

not improved. If just) is increased, then for the same tightness counter-example we

continue to have z^ = k+m+ l. If just / is increased, then for the series of instances
with n = m + 3,c\\

= 2k (k > I),Ci = k for i =2, ... ,m, p\\ =w\\ = p2=W2= k + l
and Pj

=
Wj

= k for j =3, ... ,n, -we have z = (m + l)k and z^ = k + \\.

Other heuristic algorithms which, for example, for each item) perform a search

among the knapsacks, are considered in Section 6.6.

6.4 EXACT ALGORITHMS

The optimal solution of MKP is usually obtained through branch-and-bound.

Dynamic programming is in fact impractical for problems of this kind, both as

regards computing times and storage requirements. (Note in addition that this

approach would, for a strongly NP-hard problem, produce a strictly exponential

time complexity.)
Algorithms for MKP are generally oriented either to the case of low values of the

ratio n/m or to the case of high values of this ratio. Algorithms for the first class

(which has applications, for example, when m liquids, which cannot be mixed.

168 6 0-1 Multiple knapsack problem

have to be loaded into n tanks) have been presented by Neebe and Dannenbring

A977) and by Christofides, Mingozzi and Toth A979). In the following we will

review algorithms for the second class, which has been more extensively studied.

6.4.1 Branch-and-boundalgorithms

Hung and Fisk A978) proposed a depth-first branch-and-bound algorithm in which
successive levels of the branch-decision tree are constructed by selecting an item

and assigning it to each knapsack in turn. When all the knapsacks have been

considered, the item is assigned to a dummy knapsack, m + l, implying its exclusion

from the current solution. Two implementations have been obtained by computing

the upper bound associated with each node as the solution of the Lagrangian

relaxation, or the surrogate relaxation of the current problem. The corresponding

multipliers, A and \302\245,have been determined as the optimal dual variables associated
with constraints F.3) and F.2), respectively, in the continuous relaxation of the

current problem (see Section 6.2.2). The choiceof the item to be selected at each

level of the decision-tree dependson the relaxation employed: in the Lagrangian

case, the algorithm selects the item which, in the solution of the relaxed problem,
has been inserted in the highest number of knapsacks; in the surrogate case, the
item of lowest index is selected from among those which are still unassigned (i.e.,
at each level j, item j is selected).The items are sorted according to F.9), the

knapsacks so that

Ci >C2> ...>Crr,.

Oncethe branching item has been selected, it is assigned to knapsacks according to
the increasing order of their indices. Figure 6.1 shows the decision nodes generated,
when m = 4, for branching item j.

Xs,j=l{X\\,j=X2.j=X3,j=X4.j=0)

Figure 6.1 Branching strategy for the algorithms of Hung and Fisk A978)

Martello and Toth A980a) proposed a depth-first branch-and-bound algorithm

using a different branching strategy based on the solution, at each decision node,
of the current problem with constraints F.3) droppedout. From F.18)-F.20) it is
clear that the resulting relaxed problem coincides with a Lagrangian relaxation with

6.4 Exact algorithms 169

Xj
= 0 fory = 1,... ,n.In the following, this is denoted by L(MKP.O). For the

instance of Example 6.1, we obtain: (xi j) = @, 1, 0, 0, 0, 1), zi
= 155, fey) = A,

0, 0, 1,0, 1),Z2 = 195, so_z(L(MKP,0))
= 350. In this case L(MKP,0) gives a

better result than L(MKP, A). It is not difficult, however, to construct examples
for which z(L(MKP,X)) < z(L(MKP.,0)), i.e. neither of the two choices for A

dominates the other. In general, one can expect that the choice A = A produces

tighter bounds. However, use of A = @,..., 0) in a branch-and-bound algorithm

gives two important advantages:

(a) if no item is assigned to more than one knapsack in the solution of L(MKP , 0),
a feasible and optimal solution of the current problem has been found,

and a backtracking can be immediately performed. If the same happens for
L{MKP,A), with A ^ @,..., 0), the solution is just feasible (it is also optimal

only when the corresponding value of the original objective function F.1)
equals z(L(M/i:F,A)));

(b) since {pj) does not change from one level to another, the computation of the

upper bounds associated with the decision nodes involves the solution of a

lesser number of different 0-1 single knapsack problems.

The strategy adopted in Martello and Toth A980a) is to select an item for

branching which, in solution (iy) to the current L(MKP,0), is inserted into
m > 1 knapsacks(namely, that having the maximum value of (Pj/wj)Yli^M^U

is selected), m nodes are then generated, by assigning the item in turn to m \342\200\2241

of such knapsacks and by excluding it from these. Suppose that, in the case of

Figure 6.1, we have, for the selected item j, xi j =
X2.j

=
X2j

= 1 and X4 j
= 0.

Figure 6.2 shows the decision nodes generated.

Xl,j=X2,j=0

Figure 6.2 Branching strategy for the Martello and Toth A980a) algorithm

In order to compute the upper bound associated with node ki it is sufficient

to solve two single knapsack problems: the former for knapsack 2 with condition

X2,j
= 0, the latter for knapsack 3 with condition X2.j

= 0 (the solutions for

knapsacks 1 and 4 are unchanged with respect to those corresponding to the father

node k). The upper bound associated with node k2 can now be computed by solving
only the single knapsack problem for knapsack 1 with condition xi j = 0, the

170 6 0-1 Multiple knapsack problem

solution of knapsack 3 with condition xj, j
= 0 having already been computed.

Obviously, no single knapsack need now be solved to compute the upper bound

associated with node k^. In general, it is clear that m \342\200\224l single knapsacks have to be
solvedfor the first node considered, then one for the second node and none for the

remaining m \342\200\2242 nodes. Hence, in the worst case (m = m), only m single knapsack

problems have to be solved in order to compute the upper bounds associated with

the nodes which each node generates.
In addition we can compute, without solving any further single knapsack

problem, the upper bound corresponding to the exclusion of the branching item

j from all the m knapsacks considered: if this bound is not greater than the best

solution so far, it is possible to associate a stronger condition with the branch

leading to the mth node by assigning the object to the mth knapsack without

changing the corresponding upper bound. In the example of Figure 6.2, condition

x\\.j
=

X2,j
= 0 would be replaced by X2,j = 1.

A further advantage of this strategy is that, since all the upper bounds associated
with the m generated nodes are easily computed, the nodes can be explored in

decreasing order of their upper bound values.

6.4.2 The \"bound-and-bound\" method

In Martello and Toth A981a), MKP has been solved by introducing a modification

of the branch-and-bound technique, based on the computation at each decision node
not only of an upper bound, but also of a lower bound for the current problem. The
method, which has been called bound-and-bound, canbe used, in principle, to solve

any integer linear program. In the next section we describe the resulting algorithm

for MKP. Here we introduce the method for the general 0-1 Linear Programming

Problem (ZOLP)

maximize YIpj^'j
J\302\243N

subject to 2_]^ij^j < bi, i eM,

Xj =0 or 1, j eN.

Let us suppose,for the sake of simplicity, that all coefficients are non-negative.
We define a partial solution 5 as a set, represented as a stack,containing the indices

of those variables whose value is fixed: an index in S is labelled if the value of
the corresponding variable is fixed to 0, unlabelledif it is fixed to 1. The current

problem induced by S, ZOLP(S), is ZOLP with the additional constraints Xj
= 0

(j e S,j labelled),Xj
= I (j e S,j unlabelled).

Let U(S) be any upper bound on z(ZOLP(S)). Let H be a heuristic procedure

which, when applied to ZOLP(S), has the following properties:

6.4 Exact algorithms 171

(i) a feasible solution (xj) is always found, if one exists;

(ii) this solution is maximal, in the sense that no Xj having value 0 can be set to

1 without violating the constraints.

The value of the solution produced by H, L(S) =
J2j^nPj^J' ^^ obviously a

lower bound on z(ZOLP(S)).
A bound-and-bound algorithm for the optimal solution of ZOLP works as

follows.

procedure BOUND. AND. BOUND:

inpux: N.M.(pj).{aij).(b,y,
output: z .(xj);
begin
1. [initialize]

S :=0;
z := \342\200\224oc;

2. [heuristic]

apply heuristic procedure H to ZOLP(Sy,
if ZOLP(S) has no feasible solution tlien go to 4;
if LE) > z then

begin
z :=LE);
for eacli j eN do Xj := Xj]
if z = GE) then go to 4

end;
3. [define a new current solution]

let) be the first index in A^\\5' such that xj
= I;

if no such j then go to 4 ;
push j (unlabelled) on S;
if UiS) > z then goto 3;

4. [backtrack]

while 5 5\302\253^0do

begin
let j be the index on top of S;
if j is labelled then pop j from S;

else

begin
label y;
\\i U(S) > z then go to 2 else goto 4

end

end

end.

The main conceptual differencebetween this approach and a standard depth-first

branch-and-bound one is that the branching phase is here performed by updating

the partial solution through the heuristic solution determining the current lower

bound. This gives two advantages:

172 6 0-1 Multiple knapsack problem

(a) For all S for which L(S) = U(S), (Xj) is obviously an optimal solution to

ZOLP(S), so it is possible to avoid exploration of the decision nodes descending
from the current one;

(b) For all S for which L{S) < U(S), S is updated through the heuristic

solution previously found by procedure H, so the resulting partial solution

can generally be expectedto be better than that which would be obtained by a

series of forward steps, each fixing a variable independently of the following
ones.

On the other hand, in case (b) it is possible that the computational effort spent

to obtain L(S) through H may be partially useless: this happens when, after few

iterations of Step 3, condition U(S) < z holds.

In general, the bound and bound approach is suitable for problems having the

following properties:

(i) a \"fast\" heuristic procedure producing \"good\" lower bounds can be found;

(ii) the relaxation technique utilized to obtain the upper bounds leads to solutions
whose feasibility for the current problem is difficult to check or is seldom
verified.

6.4.3 A bound-and-bound algorithm

Martello and Toth A981a) have derived from the previous framework an algorithm
for MKP which consists of an enumerative scheme where eachnode of the decision-

tree generates two branches either by assigning an item j to a knapsack / or by

excluding j from /. For the sake of clarity, we give a descriptioncloseto that of

the general algorithm of the previous section, although this is not the most suitable
for effectiveimplementation. Stack Sk (k = I, ... ,m) contains those items that are

currently assigned to knapsack k or excludedfrom it.

Let S = {Si,... ,Sm]. At each iteration, / denotes the current knapsack and

the algorithm inserts in / the next item j selected, for knapsack /, by the current

heuristic solution. Only when no further item can be inserted in / is knapsack / + 1
considered. Hence,at any iteration, knapsacks 1,...,/ \342\200\2241 are completely loaded,
knapsack / is partially loaded and knapsacks / + 1,..., m are empty.

Upper bounds U = U(S) are computed, through surrogate relaxation, by

procedure UPPER. Lower bounds L = L(S) and the corresponding heuristic

solutions X are computed by procedure LOWER, which finds an optimal solution
for the current knapsack, then excludes the items inserted in it and finds an optimal
solution for the next knapsack, and so on. For both procedures, on input / is
the current knapsack and (xkj) (k = 1,... ,/; j = 1, ... ,n) contains the current

solution.

6.4 Exact algorithms 173

procedure UPPER:
input: n.m.ipj). (wj). (c^). (xkj). (Sk).i;
output: U;

begin

^:=
(c, -

Ylj^s,^J^'J)+ Ilt,+\\ Ck\\

N := {;\342\226\240ijc^^ =OforA: = 1 /};
determine the optimal solution value F of the 0-1 single knapsack problem

defined by the items in A^ and by capacity c;

end.

procedure LOWER:

input: n.m.(pj).(Wj).(c^).{xkj).{Sk).i\\

output: L.(xkj);
begin

N' :={j -.Xkj =0\\ork = \\ /};

W \342\226\240=N'\\Sr,

C-=Ci-J2j^S.^J^'J'
k := i;
repeat

determine the optimal solution value I of the 0-1 single knapsackproblem

defined by the items in A^ and by capacity c, and store the solution

vector in row k oi x;
L :=L + Y;

N^:=N'\\{j:xkj
=

\\};

N :=N';

k :=k + l;
c :=Ck

untii k > m
end.

The bound-and-bound algorithm for MKP follows. Note that no current solution

is defined (hence no backtracking is performed) for knapsack m since, given Xkj for

^ = 1, ... ,m- 1,the solution produced by LOWER for knapsack m is optimal.

It follows that it is convenient to sort the knapsacks so that

C\\ <C2 < ... <Cm.

The items are assumed to be sorted accordingto F.9).

procedure MTM:

mpuW n.m. {pj).{wj),{c,)\\
output: z.(xy);
begin
1.[initialize]

for /: := 1 to m do Sk := 0;

174 6 0-1 Multiple knapsack problem

for ^ := 1 to m do for; := 1to n do Xkj := 0;
z := 0;
/ := 1;
callUPPER yielding U;

UB :=U;
2. [heuristic]

call LOWER yielding L and x;
If L > z then

begin
z :=L;
for k := I \\o m do for 7 := 1 to n do Xkj := Xkj',
for k := / to m do for j := 1 to n do

if Xkj
= 1 then Xkj

:= 1;

\\^ z = UB then return ;

If z = (/ then go to 4
end;

3. [define a new current solution]
repeat

/ :={I:x,i
=

l];
while/5\302\253^ 0 do

begin
let; =

min{/ : / G /};
/:=/\\{y};
push j on Si;

iy := 1;
call UPPER yielding U;
\\i U < z then go to 4

end;
/ :=/ + 1

until i = m;
i := m \342\200\224

I;

4. [backtrack]
repeat

while5;5\302\253^0do

begin

let j be the item on top of Si;
if Xij

= 0 then pop j from Si;

else

begin

Xij
= 0;

call UPPER yielding U;

if (/ > z then go to 2
end

end;
/ :=/ \342\200\2241

until / = 0
end.

6.4 Exact algorithms 175

The Fortran implementation of procedure MTM (also presented in Martello
and Toth A985b)) is included in the present volume. With respect to the above

description, it also includes a technique for the parametric computation of upper
bounds U. In procedures UPPER and LOWER, the 0-1 single knapsack problems
are solved through procedure MTl of Section 2.5.2. (At each execution, the items
are already sorted according to F.9), so there would be no advantage in using
procedure MT2 of Section 2.9.3.)

Example 6.2

Consider the instance of MKP defined by

n = 10;

m = 2;

(Pj) = G8,35,89,36,94, 75, 74, 79, 80, 16);

(Wj)
= A8, 9, 23, 20, 59, 61,70,75,76,30);

(q) =
A03, 156).

Applying procedure MTM, we obtain the branch decision-tree of Figure 6.3. At

the nodes, z gives the current solution value, (c,) the current residual capacities.

f,=103.C2=156.t/fl=t/=452
z=0

L=z=451
1 0 1 0 1 0 0 0 0 Os

ci=3
z=261

ci=53
z=202

U=45l<z z=UB

Figure 6.3 Decision-tree of procedure MTM for Example 6.2

176 6 0-1Multiple knapsack problem

The value of U is not given for the nodes for which the parametric computation
was able to ensure that its value was the same as for the father node. The optimal
solution is

/I 0 1 00 10000
y^ij)

-

1^0 001 100010

z = 452. D

A modified version of procedure MTM, in which dominance criteria among
nodes of the decision-tree are applied, has been proposedby Fischetti and Toth

A988). Its performance is experimentally better for low values of the ratio njm.

6.5 REDUCTION ALGORITHMS

The size of an instance of MKP can be reduced, as for the 0-1 knapsack

problem (Section 2.7), by determining two sets, /1 and JO, containing those items

which, respectively, must be and cannot be in an optimal solution. In this case,
however,only JO allows one to reduce the size of the problem by eliminating the

corresponding items, while /1 cannot specify in which knapsack the items must
be inserted,so it only gives information which can be imbedded in an implicit
enumeration algorithm.

Ingargiola and Korsh A975) presented a specific reduction procedure, based on

dominance between items. Let y'D/: indicate that item 7 dominates item k, in the

sense that, for any feasible solution that includes k but excludes/, there is a better
feasible solution that includes 7 and excludes k. Consequently,if we can determine,
for y

= 1, ... ,n, a set Dj of items dominated by 7, we can exclude all of them

from the solution as soon as item j is excluded.If the items are sorted according
to F.9), Dj obviously contains all items k > j such that Wk >

Wj and pk < Pj,
plus other items which can be determined as follows.

procedure IKRM:

\\npu\\:n.ipk).iwk).j;

output: Dj-,

begin

Dj := {k : k > j. Wk > Wj and pk < Pj]',
repeat

d :=
\\Dj\\;

for each k e {I :pi/wi < pj/wj}\\(Dju {j})do
'rt3ACDj:wj+ J2^^^Wa

< Wk and

Pj+Yla^APa >Pk

\\\\\\ex\\Dj \342\200\224DjU {k]
until \\Dj\\=d

end.

6.6 Approximate algorithms 177

The items added to Dj in the repeat-until loop are dominated by j since, for
any solution that includes k but excludes j and, hence, all a \302\243A, there is a better
solution that includes {j} UA and excludes k. Once sets Dj (j = 1,... ,n)have

been determined, if a feasible solution of value, say, F is known, a set of items
which must be in an optimal solution is

(keN\\({j}uDj) J

since the exclusion of any item j \302\243J \\, and hence of all items in Dj, would not

leave enough items to obtain a better solution. Observe now that, for any item k,
set

h = {j:jDk,j ^J\\]

contains items which must be included in any solution including k. Hence a set of

items which must be excluded from an optimal solution is

(jeh ieM jej\\ J

The time complexity of IKRM is 0{n^ip{n)), where (f{n) is the time required

for the search of a suitable subset A C Dj. Exactly performing this search,

however, requires exponential time, so a heuristic search should be used to obtain
a polynomial algorithm. In any case, the overall time complexity for determining

J 1 and 70 is 0(n^(f(n)), so the method can be useful only for low values of n or

for very difficult problems.

6.6 APPROXIMATE ALGORITHMS

6.6.1 On the existence of approximation schemes

Let P be a maximization problem whose solution values are all positive integers.

Let length(I) and max(I) denote, for any instance / G /*, the number of symbols
required for encoding/ and the magnitude of the largest number in /, respectively.
Let z (/) denotethe optimal solution value for /. Then

Theorem 6.4 (Garey and Johnson, 1978) IfP is NP-hard in the strong sense and
there exists a two-variable polynomial q such that, for any instance I \302\243P,

z(I) < q(length(I), max(I)).

then P cannot be solved by a fully polynomial time approximation scheme unless
V=MV.

178 6 0-1 Multiple knapsack problem

Proof. Suppose such a scheme exists. By prefixing X/e
= q(length(I), max(I)),

it would produce, in time polynomial in length(I) and \\/e (hence in pseudo-

polynomial time) a solution of value z^(/) satisfying (z(/)
- z^(I))/z^(I) < \302\243<

\\/z{I), i.e. z(/) - z^(/) < 1,hence optimal. But this is impossible, P being NP-

hard in the strong sense. Q (The analogous result for minimization problems also

holds.)

Theorem6.4 rules out the existence of a fully polynomial-time approximation

scheme for MKP, sincethe problem is NP-hard in the strong sense (see Section 1.3)
and its solution value satisfies z < n maxy{/?y }-i-l. Note that the same consideration
applies to MKP in minimization form (defined by minimize F.1), subject to:

F.2) with < replaced by >, F.3) and F.4)), since its solution value satisfies

z > m\\r\\j{pj}
- 1.

As for the existence of a polynomial-time approximation scheme, the following

general property can be used:

Theorem 6.5 (Garey and Johnson, .1979) Let P be a minimization

(resp. maximization) problem whose solution values are all positive integers and
supposethat, for some fixed positive integer k, the decision problem \"Given I \302\243P,

is z(I) < k (resp. z{I) > k) ?\" is NP-complete. Then, ifV ^ NV, no polynomial-
time algorithm for P can produce a solution of value z'^(I) satisfying

z'il) / , 1 / HI) ^ ,
1

--\342\200\224< 1 + - resp. -\342\200\224\342\200\224< 1 + -r
z(/) k \\

^
z^(/) k

and P cannotbe solved by a polynomial-time approximation scheme.

Proof. We prove the thesis for the minimization case. Suppose such an algorithm

exists. If z^(/) < k then, trivially, z(/) < k. Otherwise, z^(/) > k + I, so

z(/) > z'^{I)k/{k+1)> k.Hence a contradiction, since the algorithm would solve

an NP-complete problem in polynomial time. (The proof for the maximization case

is almost identical.) D

We can use Theorem 6.5 to exclude the existence of a polynomial-time

approximation scheme for MKP in minimization form. We use the value ^ = 1.
Given any instance (vvi w\342\200\236)of PARTITION (see Section 1.3), define an

instance of MKP in minimization form having p\\ = \\. p2 = ... =
Pn

= 0, an

additional item with /?\342\200\236+i
= 2 and w\342\200\236+i=

Xl/=i ^i' ^^i^ two knapsacks with

c\\ = C2 =
\\ Y^i=\\ ^i- Deciding whether the solution value is no greater than 1

is NP-complete, since the answer is yes if and only if the answer for the instance

of PARTITION is yes.
For MKP in maximization form, instead, no proof is known, to our knowledge,

for ruling out the existence of a polynomial-time approximation scheme, although
no such scheme is known.

6.6 Approximate algorithms 179

6.6.2 Polynomial-timeapproximation algorithms

In Section 6.3 we have examinedthe worst-case performance of an 0(n) greedy
algorithm for MKP. In Section 6.4.3 we have introduced an approximate algorithm

(LOWER) requiring exact solution of m single knapsack problems,hence, in the

worst case, a non-polynomial running time. A different non-polynomial heuristic

approach has been proposed by Fisk and Hung A979), based on the exact solution

of the surrogate relaxation, S(MKP), of the problem. Let Xs denote the subset of

items producing z(S(MKP)). The algorithm considers the items of Xs in decreasing

order of weight, and tries to insert each item in a randomly selected knapsack or, if

it does not fit, in any of the remaining knapsacks. When an item cannot be inserted
in any knapsack, for each pair of knapsacksit attempts exchanges between items

(one for one, then two for one, then one for two) until an exchange is found which

fully utilizes the available space in one of the knapsacks. If all the items of Xs are

inserted, an optimal solution is found; otherwise, the current (suboptimal) feasible

solution can be improved by inserting in the knapsacks, in a greedy way, as many

items of A^ \\Xs as possible.
Martello and Toth A981b) proposed a polynomial-time approximate algorithm

which works as follows. The items are sorted according to F.9), and the knapsacks

so that

ci <C2< ...<c^. F.29)

An initial feasible solution is determined by applying the greedy algorithm
(Section 2.4) to the first knapsack, then to the second one by using only the

remaining items, and so on. This is obtained by calling m times the following

procedure, giving the capacity c, = c, of the current knapsack and the current

solution, of value z, stored,for y
= 1, ... ,n, in

f 0 if item j is currently unassigned;

[index of the knapsack it is assigned to, otherwise.

procedure GREEDYS:

input: n. (pj). (Wj). z. (yj). i. c,-;

output: z.{yj);

begin
for j := 1 to \302\253do

if yj
= 0 and Wj

< c, tiien

begin
yj :=

/_;

Ci := Ci -
Wj;

z := z + Pj
end

end.

After GREEDYS has been called m times, the algorithm improves on the solution

180 6 0-1 Multiple knapsack problem

through local exchanges. First, it considers all pairs of items assignedto different

knapsacks and, if possible, interchanges them should the insertion of a new item
into the solution be allowed. When all pairs have been considered,the algorithm

tries to exclude in turn each item currently in the solution and to replace it with

one or more items not in the solution so that the total profit is increased.
Computational experiments (Martello and Toth, 1981b) indicated that the

exchanges tend to be much more effective when, in the current solution, each

knapsack contains items having dissimilar profit per unit weight. This, however,
is not the case for the initial solution determined with GREED YS. In fact, for

the first knapsacks, the best items are initially inserted and, after the critical item
has been encountered,generally other \"good\" items of smaller weight are selected.

It follows that, for the last knapsacks, we can expect that only \"bad\" items are
available. Hence, the exchange phases are preceded by a rearrangement of the
initial solution. This is obtained by removing from the knapsacks all the items

currently in the solution, and reconsidering them according to increasing profit

per unit weight, by trying to assign each item to the next knapsack, in a cyclic

manner. (In this way the items with small weight are considered when the residual

capacities are small.)
The resulting procedure follows. It is assumed that items and knapsacks are

sorted accordingto F.9) and F.29).

procedure MTHM:

input: \302\253.m.(/?;). (wy).(c/);

output: z .(yj);
begin
1. [initial solution]

z :=0;

fory := Ho n do yj := 0;
for / := 1 to m do

begin
C^' '.^ C''

call GREEDYS
end;

2. [rearrangement]

z :=0;

for / := 1 to m do c, := c,;
/ := 1;
fory \342\200\242=n\\o\\ step-1 do if yj > 0 then

begin
let / be the first index in {/ m} U {1 / - 1} such that

Wj <Ci\\
if no such / then yj := 0 else

begin

y;:=/_;
ci :=ci -

Wj;

z := z + pj]
if / < m then /:=/ + ! else/ := 1

6.6 Approximate algorithms 181

end
end;

for / := 1 to m do call GREEDYS;
3. [first improvement]

fory := Ho n do if yj > 0 then
for k :=] + 1 \\o n do \\iO < yk ?^ yj then

begin
h := arg maxJH'y.w^};
/ := arg min{w;.w^};
d :=Wh \342\200\224

wi;

\\i d <
Cyi and Cy^ + d > minlvv,, : _y\342\200\236

= 0} then

begin
t := arg max{/?\342\200\236: Jm = 0 and w^ < Cy,, +d};

CjH
\342\226\240.='Cy,+d -Wr]

Cyi
:= Cyi

\342\200\224
d;

yt \342\226\240=yh;

yh \342\226\240=yr,

yi \342\226\240=yt\\

1 := z + pt

end

end;
4. [second improvement]

fory := n to 1 step-1 do if yj > 0 then

begin
c:=Cy^+Wj;
Y := 0;
for ^ := 1 to \302\253do

\\i yk =0 and w/, <c then

begin
Y =Y U{k];
c := c \342\200\224

Wk

end;

'^^JlkerPk >Pj til\302\256\"

begin

for each ^ g 1^ do yk := yj;
Cy^

:= c;

yj--=0;
^

\342\200\242=^+J2keYPk -Pj
end

end
end.

No step of MTHM requires more than 0(n^) time. This is obvious for Steps
1 and 2 (since GREEDYS takes 0(n) time) and for Step 4. As for Step 3, it is

enough to observe that the updating of min{w\342\200\236: y^^
=

0} and the search for t (in

the inner loop) are executedonly when a new item enters the solution, hence 0(n)
times in total.

The Fortran implementation of MTHMis included in the present volume. With

182 6 0-1 Multiple knapsack problem

respect to the above description: (a) at Step 1 it includes the possibility of using, for

small-size problems, a more effective (and time consuming) way for determining

the initial solution; (b) Step 3 incorporates additional tests to avoid the examination
of hopelesspairs;(c)the execution of Step 4 is iterated until no further improvement
is found. (More details can be found in Martello and Toth A981b).)

Example 6.3

Considerthe instance of MKP defined by

n =9 ;

m = 2 ;

(Pj) = (80,20,60,40, 60, 60, 65, 25, 30);

(Wj)
= D0, 10, 40, 30, 50, 50, 55, 25, 40);

(c,) = A00, 150).

After Step 1 we have

(yj) =
A, 1, 1, 2, 2, 2, 0, 0, 0),

z = 320 .

Step 2 changes (yj) to

(yj)
= B, 1, 2, 1, 2, 1,0, 0, 0),with (c,) = A0, 20).

Step 3 interchanges items 1 and 4, and produces

(yj) =
A, 1, 2, 2, 2, 1, 0, 2, 0), with (c,) = @, 5),

z = 345 .

Step 4 excludes item 5, and produces

(yj)
= A, 1, 2, 2, 0, 1,2, 2, 0), with (c,) = @, 0),

z = 350,

which is the optimal solution. \342\226\241

6.7 COMPUTATIONAL EXPERIMENTS

Tables 6.1 and 6.2 compare the Fortran IV implementations of the exact algorithms

of the previous sections on randomly generated test problems, using uncorrelated
items with

6.7 Computational experiments 183

Table6.1 Uncorrelated items; dissimilar capacities. CDC-Cyber 730 in seconds. Average
times over 20 problems

m

2

3

4

Table 6.2

m

2

3

4

n

25

50

100
200

25
50

100
200

25

50

100
200

Uncorrelatec

n

25

50
100
200

25
50

100
200

25

50

100
200

HF

0.221

0.694

1.614
6.981

4.412
54.625

\342\200\224

\342\200\224

time limit
\342\200\224

\342\200\224

\342\200\224

items; similar

times (

HF

0.280

0.671

1.666
6.109

3.302
44.100

\342\200\224

\342\200\224

13.712

time limit
\342\200\224

\342\200\224

MT

0.143

0.278
1.351
7.182

9.363
17.141

\342\200\224

\342\200\224

time limit
\342\200\224

\342\200\224

\342\200\224

capacities. CDC-

3ver 20 problems

MT

0.141

0.473
0.810
4.991

1.206
2.362

6.101

39.809

6.341
26.100

\342\200\224

__

MTM

0.076
0.112
0.159
0.223

0.458

0.271

0.327

0.244

1.027
0.952
0.675
0.518

Cyber 730 in

MTM

0.191
0.329
0.152
0.313
1.222
0.561
0.428

0.585

3.690

12.508
3.936
9.313

IKRM + MTM

0.119
0.333
1.297
6.551

0.463

0.472

1.542

6.913

0.921
1.102
1.892
7.084

seconds. Average

IKRM + MTM

0.215
0.490
1.295

6.733

1.101

0.757

1.622
7.190

3.351
9.516
3.064

7.412

Pj and Wj uniformly random in [10, 100],

and two classes of capacities: dissimilar capacities,having

c, uniformly random in

and similar capacities,having

0, 0.5^w,-^Q
for / = 1, ... ,m \342\200\2241,

184 6 0-1 Multiple knapsack problem

Cj uniformly random in 0.4 ^wy/m, 0.6^wy/m for / = 1, ... , m \342\200\2241,

For both classes, the capacity of the mth knapsack was set to

Cm =0.5^Wy
-

^Q.

Whenever an instance did not satisfy conditions F.5)-F.8), a new instance
was generated.The entries in the tables give averagerunning times, expressed in

seconds, comprehensive of the sorting times.

For each value of m and n, 20 instances were generatedand solved on a CDC-

Cyber 730. Eachalgorithm had a time limit of 300 secondsto solve the 80 instances

generated for each value of m. When this limit was reached, we give the average

time only if the number of solved instances was significant.

Tables 6.1 and 6.2 compare, on small-size problems, the branch-and-bound

algorithms of Hung and Fisk A978) and Martello and Toth A980a) (Section 6.4.1)
and the bound-and-bound algorithm MTM (Section 6.4.3).Three implementations

of the Hung and Fisk A978) algorithm are possible, accordingto the relaxation

used (Lagrangian, surrogate, or a combination of the two). In addition, the algorithm

can be run with or without previous application of the Ingargiola and Korsh A975)

reduction procedure IKRM (Section6.5).Each entry in columns HF gives the

lowest of the six average times obtained.Similarly, columns MT give the lowest of
the four times obtained for the Martello and Toth A980a) algorithm (Lagrangian or

combination of Lagrangian and surrogate relaxation, with or without the application
of IKRM). The last two columns refer to algorithm MTM, without and with the

application of IKRM, respectively.For all the algorithms, the solution of the 0-1

single knapsack problemswas obtained using algorithm MTl of Section2.5.2.
The tables show that MTM is the fastest method, and that use of the reduction

procedure generally produces a considerable increase in the total computing
time (except for very difficult problems). MT is generally faster than HF. The

different capacity generations have little effect on HF and MT. For MTM,
instead, problems with dissimilar capacities are considerablyeasier.This can be

explained by observing that the algorithm generates no decision nodes for the last

knapsack, so it is at an advantage when one of the capacities is much greater
than the others. We used problems with dissimilar capacities to test MTM on
larger instances.

Table 6.3 compares the exact algorithm MTM with the approximate algorithm

MTHM. In addition, we analyse the behaviour of MTM when used to produce
approximate solutions, by halting execution after B backtrackings (with B = 10or
50).For each approximate algorithm we give, in brackets, the average percentage
error. The table shows that the time required to find the exact solution increases
much more steeplywith m than with n and tends to become impractical for m > 10.

6.7 Computational experiments 185

Table 6.3 Uncorrelated items; dissimilar capacities. CDC-Cyber 730 in seconds. Average
times (average percentage errors) over 20 problems

m n

50

100
2 200

500
1000

50

100

5 200
500

1000

50
100

10 200

500
1000

MTM exact
time

0.082

0.129

0.153
0.243
0.503

1.190
1.014
1.178
0.862

1.576

3.852

7.610
32.439
5.198
9.729

MTHM

time (% error)

0.013@.170)
0.031@.147)
0.057@.049)
0.132@.020)

0.266@.003)

0.018@.506)

0.040@.303)
0.074@.148)
0.186@.031)
0.391@.016)

0.035@.832)

0.057@.437)

0.106@.219)

0.535@.078)
0.870@.031)

MTM (B = 10)
time (% error)

0.049@.028)
0.089@.018)
0.143@.000)
0.242@.000)
0.502@.000)

0.157@.344)

0.268@.076)

0.327@.018)
0.659@.001)
1.231@.001)

0.162@.287)
0.324@.174)

0.659@.060)

1.760@.009)

3.846@.003)

MTM (B = 50)
time (% error)

0.070@.004)
0.127@.000)
0.152@.000)
0.242@.000)
0.502@.000)

0.434@.312)

0.601@.027)

0.687@.012)
0.705@.001)
1.576@.000)

0.477@.211)
0.950@.092)

1.385@.039)

3.836@.003)

7.623@.001)

When used as a heuristic, MTM gives solutions very close to the optimum; the

running times are reasonable and increase slowly with n and m. MTHMis faster

than MTM but its solutions are clearlyworse.
Tables 6.4 and 6.5 show the behaviour of approximate algorithms (MTM halted

after 10 backtrackings and MTHM) on very large-size instances. The Fisk and Hung

A979) algorithm is not considered, since extensive computational experiments
(Martello and Toth, 1981b) showed that it is generally dominated by MTHM. All

runs were executed on an HP 9000/840 with option \"-o\" for the Fortran compiler.
We used the same capacity generations as in the previous tables. For all data

generations, for n > 5000 the execution of MTHM was halted at the end of

Step 3, so as to avoid the most time consuming phase (this is possible through an

input parameter in the corresponding Fortran implementation).

Table 6.4 refers to uncorrelated items, obtainedby generating

Pj and Wj uniformly random in [1, 1000].

The percentage errors were computed with respect to the optimal solution value

for m < 5, with respect to the initial upper bound determined by MTM for larger
values. With few exceptions in the case of very large problems, both algorithms

require acceptable computing times. The approximation obtained is generally very

good. The times of MTM (B = 10)are one order of magnitude larger than those of

MTHM, but the errors produced are one order of magnitude smaller. Computational

experiments on weakly correlated items (wy uniformly random in [1, 1000], pj

uniformly random in [wy
- 100. wy

+ 100]) gave similar results, both for computing

times and percentage errors.

186 6 0-1 Multiple knapsack problem

Table 6.4 Uncorrelated items. HP 9000/840 in seconds. Average times (

m n

200

500
2 1000

2000
5 000

10000

200
500

5 1000
2000
5 000

10000

200
500

10 1000
2 000

5 000
10000

200
500

20 1000

2000

5 000
10000

200
500

40 1000

2 000
5 000

10000

errors) over 20 problems

Dissimilar

MTHM

0.266@.0694)
0.085@.0208)
0.177@.0048)

0.359@.0017)

0.806@.0009)

1.730@.0004)

0.418@.1796)
0.104@.0278)
0.214@.0105)
0.455@.0038)

0.968@.0010)

1.998@.0004)

0.064@.1826)
0.154@.0344)
0.300@.0143)
0.685@.0041)
1.273@.0009)

2.527@.0004)

0.100@.1994)

0.245@.0471)
0.426@.0136)
0.796@.0059)
1.676@.0015)
3.191@.0005)

0.188@.2865)

0.446@.0752)

0.910@.0255)

1.411@.0081)
3.085@.0022)
5.733@.0008)

capacities
MTM (B = 10)

0.131@.0049)
0.382@.0006)
0.877@.0001)
1.354@.0001)
3.716@.0000)

4.962@.0000)

0.283@.0235)
0.942@.0037)
2.009@.0014)
3.510@.0003)
7.348@.0000)
9.138@.0000)

0.500@.0582)

1.172@.0094)

2.517@.0022)
6.608@.0004)
8.502@.0000)

15.773@.0000)

0.706@.0865)

1.671@.0181)

4.285@.0051)

7.332@.0012)
17.980@.0002)
30.608@.0000)

1.218@.1923)
3.501@.0477)

7.575@.0137)

12.689@.0039)

27.718@.0009)
37.310@.0004)

Similar

MTHM

0.277@.0441)

0.086@.0197)
0.173@.0059)
0.392@.0023)
0.802@.0007)
1.691@.0003)

0.529@.2152)

0.109@.0408)

0.203@.0146)

0.409@.0048)
0.888@.0011)
1.843@.0005)

0.052@.3051)
0.132@.0762)

0.262@.0189)

0.531@.0079)

1.143@.0022)
2.294@.0007)

0.088@.9004)
0.198@.1393)
0.403@.0448)

0.754@.0113)

1.659@.0028)

3.466@.0010)

0.179B.4654)
0.378@.4732)
0.696@.1219)
1.289@.0364)

2.761@.0065)

5.364@.0020)

average percentage

capacities

MTM (B = 10)

0.157@.0081)
0.387@.0011)
0.728@.0002)

1.638@.0000)

3.346@.0000)

5.250@.0000)

0.328@.0275)
1.022@.0069)
1.976@.0012)
3.994@.0003)

9.849@.0000)

23.932@.0000)

0.046@.1024)
1.373@.0135)
2.561@.0032)
7.030@.0008)

14.127@.0001)
45.760@.0000)

0.614@.2619)

1.783@.0327)

4.065@.0075)
11.717@.0016)
27.829@.0002)
84.605@.0000)

0.995A.1246)

2.748@.0808)

6.049@.0173)

13.608@.0041)
44.538@.0004)

124.637@.0001)

Table6.5 shows the behaviour of MTHM on strongly correlated items, obtained

with

Wj uniformly random in [1, 1000],

Pj =
Wj

+ 100.

MTM was not run since it requires the exact solution of 0-1 single
knapsack problems,which is practically impossible for this data generation (see
Section 2.10.1). The percentage errors were computed with respect to an upper

6.7 Computational experiments 187

bound on the solution value of the surrogate relaxation of the problem (we used

upper bound U2 of Section 2.3.1). The computing times are slightly higher than

for uncorrelated items; the percentage errors are higher for large values of n.

Table 6.5

m

2

5

10

20

40

Algorithm MTHM. Strongly correlated items. HP 9000/840 in seconds. Average
times (average percentage errors) over 20 problems

n

200

500
1000
2 000
5000

10000

200

500

1000

2 000
5 000

10000

200

500

1000
2 000
5 000

10000

200

500

1000

2000
5 000

10000

200

500

1000

2000
5 000

10000

Dissimilar capacities

0.124@.0871)

0.829@.0422)
1.546@.0157)
5.333@.0069)
0.823@.0236)
1.618@.0144)

0.165@.1085)
0.683@.0364)

1.832@.0155)

3.500@.0072)

1.068@.0272)
2.173@.0142)

0.158@.1466)
0.636@.0383)
1.583@.0167)

9.943@.0090)

1.697@.0278)

3.246@.0134)

0.154@.6698)
0.491@.0624)
1.172@.0187)
7.293@.0091)
2.624@.0237)

5.307@.0096)

0.249D.2143)

0.807@.4680)
1.460@.0491)
6.481@.0137)
4.799@.0241)
9.695@.0141)

Similar capacities

0.114@.0803)

0.460@.0278)
1.078@.0138)
7.498@.0083)
0.805@.0191)
1.571@.0110)

0.130@.1061)
0.373@.0313)

1.214@.0133)

6.662@.0076)

0.917@.0245)
1.919@.0097)

0.091@.1498)
0.668@.0443)
1.217@.0132)
7.862@.0079)

1.214@.0255)

2.507@.0112)

0.194@.3539)
0.480@.0558)
1.833@.0195)
5.728@.0082)
1.802@.0285)

3.686@.0179)

0.446B.3671)

1.369@.1365)
3.477@.0302)
9.776@.0108)
2.986@.0432)
6.031@.0186)

