
Generalized assignment

problem

7.1 INTRODUCTION

The Generalized Assignment Problem (GAP) can be described,using the

terminology of knapsack problems, as follows. Given n items and m knapsacks,
with

Pij
= profit of item j if assignedto knapsack /,

Wy
= weight of item j if assignedto knapsack /,

c, = capacity of knapsack /,

assign each item to exactly oneknapsack so as to maximize the total profit assigned,
without assigning to any knapsack a total weight greater than its capacity, i.e.

m n

maximize ^=yjyjPy-^y G1)

n

subject to /_]^ij^'j ^ <^\" / G M = {1, ... ,m}, G.2)

2^^ = 1'

Xij
= 0 or 1,

1 if item j is

0 otherwise.

j eN = {i,...

i e M,j e N,

assigned to knapsack /;

,n}. G.3)

G.4)
where

The problem is frequently described in the literature as that of optimally assigning

n tasks to m processors (n jobs to m agents, and so on), given the profit pij and

the amount of resource Wy corresponding to the assignment of task j to processor
/, and the total resource c, available for each processor/.

189

190 7 Generalized assignment problem

The minimization version of the problem can also be encountered in the

literature: by defining Cy as the cost required to assign item j to knapsack /,
MINGAP is

m n

minimize
v=y^y^CyjCy G.5)

,=1 y=i

subject to G.2), G.3), G.4).

GAP and MINGAP are equivalent. Setting/?y = -Cy (orCy
=

-pij) for all / G M

and j \302\243N immediately transforms one version into the other. If the numerical data
are restrictedto positive integers (as frequently occurs), the transformation can be

obtained as follows. Given an instance of MINGAP, define any integer value t

such that

r > max/gM ye/v{cy} G.6)

and set

Pij=t-Cij fori eMJ eN. G.7)

From G.5) we then have

n m m n

where, from G.3), the first term is independent of (Xy). Hence the solution (Xy)

of GAP also solves MINGAP. The same method transforms any instance of GAP
into an equivalent instance of MINGAP (by setting Cy =t\342\200\224pij for / \302\243M, j \302\243N,

with i > maXi^M ;e/v{Ay})-

Because of constraints G.3), an instance of the generalized assignment problem
does not necessarily have a feasible solution. Moreover, even the feasibility

question is NP-complete. In fact, given an instance (wi,...,w\342\200\236) of PARTITION

(see Section 1.3), considerthe instance of GAP (or MINGAP) having m = 2, w\\ j
=

\"^i.j
= ^j and Pi j

= P2 j = ^ for j =
\\, ... ,n, and ci = C2 =

5 Zl/\"=i ^j- Deciding
whether a feasible solution (of value n) to such instance exists is an NP-complete

problem, since the answer is yes if and only if the answer to the instance of

PARTITION is yes.
The following version of the problem (LEGAP), instead, always admits a feasible

solution.

m n

maximize
^~y^y^A>-^y (^\342\200\242^)

subject to G.2), G.4) and

m

Y,Xij<\\, jeN. G.9)

7.1 Introduction 191

LEGAP too is equivalent to GAP. Given any instance of LEGAP, an equivalent
instance of GAP will have an additional knapsack of capacityc^+i = n, with

Pm+\\j
= 0 and Wm+i.j

= 1 for y \302\243N, while pij
= pij for / G M and y G A^.

(Knapsack m + \\ gives no extra profit and always allows a feasible solution, so
z = z.) Conversely, given any instance of GAP, we can define an integer constant

q such that

q > y^max/gMJA)},

and set

Pij
=

Pij +q for i e M,j e N.

With these profits, any set of n items has a higher value than any set of k < n items.

Hence, by solving LEGAP we obtain the solution for GAP (of value z = z \342\200\224
nq)

if G.3) is satisfied, or we know that the instance of GAP has no feasiblesolution

if Y17=\\ ^'j
~ ^ ^\302\260^some j.

LEGAP is a generalization of the 0-1 multiple knapsack problem (Chapter 6), in

which Pij
= Pj and

Wy
=

Wj for all / G M and j \302\243N (i.e. the profit and weight of

each item are independent of the knapsack it is assigned to). Lagrangian relaxations

for LEGAP have been studied by Chalmet and Gelders A977).
The best known special case of generalized assignment problem is the Linear

Min-Sum Assignment Problem (or Assignment Problem), which is a MINGAP
with n = m, Ci = I and Wy

= 1 for all / G M and j E N (so, becauseof G.3),

constraints G.2) can be replacedby XlLi-^y
= 1 for ' G ^)- The problem can

be solved in O(n^) time through the classical Hungarian algorithm (Kuhn A955),
LawlerA976);efficient Fortran codes can be found in Carpaneto, Martello and Toth

A988)). The assignment problem, however, is not used in general as a subproblem
in algorithms for the generalized case.

Another special case arises when Wy
=

Wj for all / G M and j \302\243N. Implicit

enumeration algorithms for this case have been presented by De Maio and Roveda

A971) and Srinivasan and Thompson A973).
Facets of the GAP polytope have been studied by Gottlieb and Rao A989a,

1989b).
We will suppose, as is usual, that the weights Wy

of any GAP instance are

positiveintegers. Hence, without loss of generality, we will also assume that

Pij and Ci are positive integers, G.10)

|{/ : Wy <q}| > 1 for j eN, G.11)

c, >
minyg/v{wy} for i \302\243M. G.12)

If assumption G.10) is violated, (a) fractions can be handled by multiplying

through by a proper factor; (b) knapsackswith c, < 0 can be eliminated; (c) for

each item j having mini^m{Pij] < 0. we can set pij
=

Pij + | min,g^/{/?y }| + 1

192 7 Generalized assignment problem

for / G M and subtract | min,\302\243^/{/?y }| + 1 from the resulting objective function

value. As is the case for the 0-1 multiple knapsack problem, there is no easy way of

transforming an instance so as to handle negative weights, but all our considerations

easily extend to this case too. If an item violates assumption G.11) then it cannot
be assigned,so the GAP instance is infeasible. Knapsacks violating assumption

G.12) can be eliminated from the instance.

In Section 7.2 we introduce various types of relaxations. Exact and approximate

algorithms are described in Sections 7.3 and 7.4, reduction procedures in Section

7.5. Section 7.6 presents the results of computational experiments.

7.2 RELAXATIONS AND UPPER BOUNDS

The continuous relaxation of GAP, C(GAP), given by G.1)-G.3) and

Xij>0. ieM,jeN, G.13)

is rarely used in the literature since it does not exploit the structure of the problem
and tends to give solutions a long way from feasibility.

7.2.1 Relaxation of the capacity constraints

Ross and Soland A975) have proposed the following upper bound for GAP. First,

constraints G.2) are relaxed to

WjjXij <Ci, i eM,j eN.

and the optimal solution x to the resulting problem is obtained by determining, for

each j \302\243N,

i(j) = arg max {p/j : i eM, Wy
< c,}

and setting Xj(j)j = 1 and x/j
= 0 for all / G M\\{i(j)]. The resulting upper bound,

of value
n

is then improved as follows. Let

Ni={j eN \342\226\240.x,j
= \\}, i eM,

dj =
2_] Wij

\342\200\224Ci, i e M,
jeN,

7.2 Relaxations and upper bounds 193

M' ={i eM -.di >0},

Given a set S of numbers, we denote with max2 S (resp. min2 S) the second

maximum (resp. minimum) value in S, and with arg max2 S (resp.arg min2 S) the

corresponding index. SinceM' is the set of those knapsacks for which the relaxed

constraint G.2) is violated,

^j =Pi(j)j -
max2{/?y

: / G M ,Wij < c,}, j eN'

gives the minimum penalty that will be incurred if an item j currently assigned to

a knapsack in M' is reassigned. Hence, for each / G M', a lower bound on the

loss of profit to be paid in order to satisfy constraint G.2) is given by the solution

to the 0-1 single knapsack problem in minimization form (see Section2.1),^P/
(/ G M'), defined by

minimize v, =
\\J Qjy/j

ye/v,

subject to 2_] ^ijyij ^ ^Z'

yij =0 or \\, jeNi,

where
y/j

= 1 if and only if item j is removedfrom knapsack /. The resulting Ross
and Soland A975) bound is thus

Ui = Uo- J2vi. G.15)

This bound can also be derived from the Lagrangian relaxation, L(GAP. A), of
the problem, obtained by dualizing constraints G.3) in much the same way as

described in Section 6.2.2 for the 0-1 multiple knapsack problem. In this case too

the relaxed problem,
m n n I m \\

maximize ^ ^^Ay-^y -^^i 51-^'>
~ ^

; = 1 y=l y=l \\ ;= 1 /

subject to G.2), G.4),

separatesinto m 0-1 single knapsack problems {KP^,i = 1,... ,m) of the form

n

maximize z, =
/^^pijXjj

y=i

194 7 Generalized assignment problem

n

subject to
V^ WyjCy

< Ci,

Xij
= 0 or 1, j e N,

where p/j
= pij

\342\200\224
Xj , and its solution value is

m n

z{L{GAP,X)) =
^Zi

+ ^Xj. G.16)

It is now easy to see that, by choosing for Xj the value

Xj
= max2{Pij : i e M. Wy

< c,}, j G N,

we have z(L(GAP, X)) = Ui.ln fact, by transforming each KP^ into an equivalent

maximization form (as describedin Section 2.1), and noting that, in each KP/^,

Pij
< 0 if y ^ A^, and Wy < c,, we have v,

=
Xl/e/v ^j

~ ^' (' ^ ^')- Hence, from

G.14) and G.15),

;e/v ye/v' ye/v /eM'

observing that, for / ^ M', by definition we have
Xl/e/v ^y \342\200\224*-\" hence

z, = J2jeN,P'J' th^ Lagrangian solution value G.16) can be written as

ieM' ieM\\M' ye/v, ye/v

=
I]^'+ I] A(y)y- Y. ^J

+
Y^J

ieM' ye/v\\/v' ye/v\\/v' ye/v

Example 7.1

Consider the instance of GAP defined by

n =1;

m = 2;

6 9 4 2 10 3 6
(/^y) 14 8 9 1 754;'

4 12 1 4 3
sy

/ll
9 9 8 1 3 8 7/' ^^''^\" I 22

7.2 Relaxations and upper bounds 195

The initial bound is Uq = 41. Then we have

A^i ={1,2,4,5,7}, N2 = {3,6], (J,) = G,-6);
M' = {1},A^' = {1, 2,4,5,7};

qi =2, q2 = l, <?4
= 1, <?5

= 3, q7=2.

Solving KPI we obtain

vi=2, C;i,) = @, 0, -, 0, 0, -, 1),

sothe resulting bound is

t/i =
t/o

- vi = 45 . D

7.2.2 Relaxation of the semi-assignment constraints

Martello and Toth A981c) have obtained an upper bound for GAP by removing

constraints G.3). It is immediate to see that the resulting relaxed problem coincides
with L(GAP. 0), hence it decomposes into a series of 0-1 single knapsack problems,
KP^ (i GM), of the form

maximize z, = \\J PijXjj

7 = 1

n

subject to 2_] ^ij^ij \342\200\224^i'

y=i

Xij
=0 or 1, j eN.

In this case too, the resulting upper bound, of value

Uo = J2zi, G.17)

can be improved by computing a lower bound on the penalty to be paid in order

to satisfy the violated constraints. Let

A^\" =

196 7 Generalized assignment problem

{ ieM J

be the sets of those items for which G.3) is violated, and define

M>U) = {i eM :
Xij

= 1} for all y G A^>;

we can compute, using any of the methods of Sections2.2-2.3,

M,y
= upper bound on z, if

Xy =0. j \302\243N^, i e M^(j),

ujj
= upper bound on z, if

Xy
= 1, j \302\243N^, i e M

and determine, for each item j \302\243N^ U N^, a lower bound Ij on the penalty to be

paid for satisfying G.3):

imin/gM

{z,
- min (z,. m^)} if y G N^;

T.ieM>(j)(^'
-min (Zi.ufj))

-max, eM > (j){zi
- min (z, .up} ifjeN>.

The improved upper bound is thus

t/2 =
t/o-maxyg;vou/v>{(/\342\226\240}\342\200\242 G.18)

Example 7.2

Consider the instance of GAP defined by

n = 5;

m = 2;

, , /7 3 3 8 7\\
^^^\342\200\242^

=(,5 3 8 4 ij'

K) = 8 2 8 9 1

2 2 6 4 4/'

(Q) =
(

^7

The solutions to KP^ and ^P| are

zi = 17, (xij) =
A, 1, 0, 0, 1);

Z2
= 9, (X2.j) = A, 0, 0, 1,0),

7.2 Relaxations and upper bounds 197

SOUo = 26 and

N^ = {3],N> = {1}, M>A) = {1.2}.
We compute ufj

and
ujj through the Dantzig bound (Section 2.2.1),but, for

M,y,

we skip those items k for which w,^ > c, \342\200\224
Wy. Hence

'i.i = 7 + 3 +
64

\"9\"

= 17;

/O, = 3 +
40
~6

= 9;

MI3 = 3 + G + 3 + [0J)= 13;

\022.3
- 8-

It follows that /i = 0 and It, = min {4. 1} = 1, so the resulting upper bound is

U2=TJo-h =25.

For this instance the Ross-Soland bound initially gives Uq = 33, and, after the

solution of KP}, U\\ =31. Hence Uq > U\\ > Uq > U2. On the other hand,

computing the Martello-Toth bound for Example 7.1 gives Uq = 54, I2
= 2,

/3 = 1, /g = 5, k = 1, h ^2, and U2 = 49, i.e. Ui < Uq < U2 < Vq. Thus while,

obviously, Uq > U\\ and t/o > ^2, no dominance existsbetween the other pairs of
these bounds.\342\226\241

7.2.3 The multiplier adjustment method

Fisher, Jaikumar and Van Wassenhove A986) have developedan upper bound,

based on the Lagrangian relaxation L{GAP .\\) and dominating the bound proposed

by Ross and Soland A975). Obviously, the continuous and integer solutions of a
knapsack problem may differ; this implies (see Fisher A981)) that, for the optimal
Lagrangian multiplier A*,

z{L{GAP.y))<z{C{GAP))\\

there is no analytical way, however, to determine A*. One possibility is the

classical subgradient optimization approach. The novelty of the Fisher-Jaikumar-

Van Wassenhove bound consists of a new technique {multiplier adjustment method)
for determining \"good\" multipliers. The method starts by setting

Xj
= max2 {pij lieM, Wy

< c,], j e N;

as shown in Section 7.2.1, the corresponding Lagrangian relaxation produces the

value U\\ of the Ross-Soland bound. Note, in addition, that, with this choice, we

198 7 Generalized assignment problem

have, for each j \302\243N, pij (= p/j
-

Xj) > 0 for at most one / G M, so there is an

optimal Lagrangian solution for this X which satisfies YlT^i^ij < 1 for ally G A^.

If some constraint G.3) is not satisfied, it is, under certain conditions, possibleto

select ay* for which Yl?=i^'j* ~ ^ ^^^ decrease Xj* by an amount which ensures

that in the new Lagrangian solution Yl7=i^ij*
- 1' while Yl?=i^ij \342\200\224^ continues to

hold for all other y. Thisphaseis iterated until either the solution becomes feasible
or the required conditions fail.

The following procedure, ADJUST, is an efficient implementation of the

multiplier adjustment method. After the initial solution has been determined, a
heuristic phase attempts to satisfy violated constraints G.3) through pairs (i.j)
such thai pij

\342\200\224
Xj

= 0. The adjustment phase then considers items y* violating G.3)

and computes, for i \302\243M, the least decrease Ay* required in
Xj*

for itemy* to be
included in the optimal solution to KPf^. If an item y

*
is found for which

(a) minz {Ai j*,... ,Amj*} > 0;

(b) decreasing Xj* by min2 {Ai y*,..., A^y* } the new Lagrangian solution

satisfies Yl7=i^ij ^ ^ ^^^ ^^^ J ^ ^'

then such updating is performed (decreasing the current upper bound value by

minjAi y*,..., A^y*}) and a new heuristic phase is attempted. If no such y*

exists, the process terminates.
The output variables define the upper bound value

m n

,=1 y=i

if opt =
\"yes\", this value is optimal and (x,y) gives the corresponding solution.

procedure ADJUST :
input: \302\253.m.(/?,y).(w,y).(c/);

output: (z,), (Ay), (xij), U3, opt;

begin

comment: initialization;
A^ := {1 n];
M := {1 m};
for / := 1 to m do fory := Ho n do jc,y := 0;

fory := \\ Xo n do
Ay

:= max2{/?y : i e M, w,y
< c,};

for / := 1 to m do
begin

Nr.= {j eN -.pij-XjyO];
set Xij (y G M) to the solution to

max Zi
=

J2jeNSPij
-

\\)xij
subject to

Xlye/v, ^y-^y < c, ,

Xij
=0 or 1. y G M ;

7.2 Relaxations and upper bounds 199

end;

opt := \"no\";

if
J2ieM ^ij

= 1 ^o\"\" ^\"V \342\202\254^ tlie\" op^ := \"yes\"

else

repeat
comment: heuristic phase;
IJ :={(i.j) :

Y.k^M ^kj
= 0. Pij

-
Xj

= 0};
for each (i.j) e IJ,\\norder of decreasing pij, do

'*
Y.k^M ^kj

= 0 and Wij
+

J2ieN ^>i^>i < <^' ^'^^'^ -^y \342\200\242=!>

comment: adjustment ;
if

J2ieM ^ij
~ 1 ^o\"\" ^\"-/ ^ ^ ^'^^'^ \302\260P^'\342\226\240=\"yes\"

else

begin
J \342\226\240={JeN \342\226\240.J:keM^kj=0}\342\226\240

found := \"no\";

repeat

lety* be any index in J;

J:=j\\{r};
Mj* := {i e M : Wy* < q};
for each / e Mj* do

begin

Ni := {j eN\\{j*] : ptj
-

Xj > 0.
Wy

< c,-
-

Wy-};
determine the solution to

(KPj) max z, =
Y^j^N^Pti

-
\\)yi

subject to
\302\243yg/v,̂ ijyj < Ci -

Wij*,

yj =0 or 1. j GM;
Ay* := Zi

- izi + {pij* -
Xj*))

end;

if min2{Ay* : / G Mj*} > 0 then

begin
/* := arg min {Ay* : / G Mj*];
let {yj). j G A^,*, be the solution found for KPi*;
for each j eN \\Ni* do yj := 0;

'f>'i + E,eM\\{,-}-^y< 1 for ally G A^ then

begin
found := \"yes\";

Xj* := Ay*
-

min2{Ay* : / G My*};

replace row /* of x with (yj);

Zi* \342\226\240.=Zi* +ipi*j*
- Xj*);

t/3 := U3 - Ai*j*
end

end
until y = 0 or found = \"yes\"

end
until opt = \"yes\" or found = \"no\"

end.

200 7 Generalized assignment problem

Example 7.2 (continued)

The initial solution is obtained by setting

(Ay)
= E, 3, 3, 4, 1) :

zi
= 10, (jci.y) = @, 0, 0, 1, 1);

Z2 = 5, {X2.j) = @, 0, 1, 0, 0);

t/3 =16 + A0 + 5) = 31= Ux.

The heuristic phase has no effect, henceJ = {12}.Fory*
= 1 we obtain

M, ={1,2};

A^i ={5}, zi= 6,^5 = 1, Ai.i =2;

N2 = 0, Z2
= 0, A2.1 =5,

hence /* = 1. Replacing {x\\ j) with A, 0, 0, 0, 1),condition
J2ieM ^'i \342\200\224^ continues

to hold for all j G A^, so we have

(Ay)
= @, 3, 3, 4, 1);

zi
= 13 , (xi j) =

A, 0, 0, 0, 1);

U3 =29.

The heuristic phase sets xi 2 = 1,hence J = {4}. Fory* = 4 we have

M4 = {1. 2};

A^i = {5}, zi=6,};5 = l, Ar.4
= 3;

A^2 = {1}, Z2=5, yi =1, A2.4=0,

so the execution terminates with t/3 = 29. For this instance we have U3 < U\\(=3\\),

but U3 > Vo (= 26) > U2 (= 25). On the other hand, applying procedure ADJUST

to the instance of Example 7.1, we initially have U3 = 45, then the first adjustment

improves it to 43 and the second to 42 (with two further adjustments producing no

improvement). Hence U3
= 42 < U2 (= 49) < T/q (= 54). D

Examples 7.1 and 7.2 prove that no dominance exists between the Fisher-

Jaikumar-Van Wassenhove bound (t/3) and the Martello-Toth bounds (U 0 and

7.2 Relaxations and upper bounds 201

U2), nor between the Ross-Soland {Uq and U\\) and the Martello-Toth bounds. As

already shown, the only dominances among these bounds are U3 < Ui < Uq and

U2 < TJq.

7.2.4 The variable splitting method

Jomsten and Nasberg A986) have introduced a new way of relaxing GAP in

a Lagrangian fashion. (A general discussionon this kind of relaxation can be
found in Guignard and Kim A987).) By introducing extra binary variables yij

(i \302\243M. j e N) and two positive parameters a and /3, the problem is formulated,

through variable splitting, as

maximize ^\"^Yl P'J^'J\"^ ^ 51 51 ^'J^'J ^^'^^^

n

subject to 'S^^WijXij < Ci, ieM, G.21)

m

Y.yij
= i, jeN, G.22)

Xij=yij, ieMJeN, G.23)

jcy=0orl, ieMJeN, G.24)

yij
=0 or \\, ieMJeN. G.25)

We denote problem G.20)-G.25) by XYGAP. It is immediate that XYGAP is

equivalent to GAP in the sense that the corresponding optimal solution values,

z(XYGAP) and z(GAP), satisfy

z (XYGAP) = (a + l3)z(GAP). G.26)

The new formulation appears less natural than the original one, but it allows a

relaxation of constraints G.23) through Lagrangian multipliers (/iy). The resulting

problem, L(XFGAP,/i),

m n m n m n

maximize a ^ ^PijXij + /^ ^ YPiiJii + 5Z 5Z ^'>^-^'>'
~

^'>^ ^^'^^^

subject to G.21), G.22), G.24),G.25),

202 7 Generalized assignment problem

keeps both sets of GAP constraints, and immediately separates into two problems,
one, XGAP(fi), in the x variables and one, YGAP(fi), in the _y variables. The

former.

maximize z(XGAP(fi))
=

V^ y^(a/?y + fiij)Xij

n

subject to 2_]^'j-'^'j \342\200\224^'' i & M,

Xij
=0 or 1, i e M,j e N,

has the same structure as L(GAP.X) (Section 7.2.1), hence separates into m 0-1

single knapsack problems (KPj^. / = 1,... ,m) of the form

n

maximize z, =\\^(apij +
fiij)Xij

n

subject to y^ ^ijXij
< Ci,

Xij
= 0 or 1, y G A^;

the latter
m n

maximize z {YGAP(/i)) = ^ ^WPij -
f^ij)yij

m

subject to y^ yij
= 1, j \302\243N,

yij =0 or 1, i e MJ eN,

has the same structure as the initial Ross-Soland relaxation (Section 7.2.1), hence
its optimal solution is

yij
= < for jeN.

K 0 Otherwise,

where

i(j) =
arg max {/3pij

- ^ij : i e M, Wy
< c,}.

By solving problems KP^^ (/ e M), we obtain the solution to L(XYGAP. /i), of
value

7.2 Relaxations and upper bounds 203

m n

ziUXYGAP,fi)) =
^z,- + J2(^Pi(J) J

-
/^'(i) i)' G.28)

hence the upper bound

U4 = [z(L(XYGAP,fi))/(a + /3)\\. G.29)

Jomsten and Nasberg A986) have provedthat, for a + 0 = 1 and for the optimal

Lagrangian multipliers A*. /i*,

z(L(XYGAP,n*)) < z{L{GAP,y)).

However,there is no analytical way to determine /i*, and the multiplier adjustment
method of Section 7.2.3 does not appear adaptable to XYGAP. Jomsten and

Nasberg have proposed using a subgradient optimization algorithm to determine a

\"good\" /i. At each iteration, the current /i is updated by setting /iy
=

/iy
+ r(_yy

-

Xij) (i \302\243M, j \302\243N), where t is an appropriate positive step.

Example 7.2 (continued)

Using a = C =
\\

and starting with /iy
= 0 for all / \302\243M. j \302\243N, we obtain

/I 1 0 0 1\\
^\342\226\240^'^^\021^1 0010;'

i.e., the same solution found for Uq (Section 7.2.2), and

110 11
^^'j^ ^ 0 0 1 0 oy

i.e., the same solution found for Uq. The initial upper bound value is thus

U4= L13+16.5J =29 (=U3).

Assuming that the initial step is r = 1, we then have

,,,000 1 0
1 0 1-1 or

A3357
222^2
2 2-^2

,,,11001
0 0 10 0/'

204 7 Generalized assignment problem

A3

3

2 2 2

2 2-^

. . /I 1 0
^^'J^

1^0 0 1 0 0

and the upper bound becomes

U4= [13.5+ 14.5J=28.

Further improvements could be obtained by iterating the procedure. \342\226\241

7.3 EXACT ALGORITHMS

The most commonly used methods in the literature for the exact solution of GAP
are depth-first branch-and-bound algorithms.

In the Ross and Soland A975) scheme, upper bound Ui (see Section 7.2.1)
is computed at each node of the branch-decision tree. The branching variable is

selected through the information determined for computing U\\. In fact, the variable
chosento separate, Xj*j*, is the one, among those with yij

= 0 (/ e M',j e N') in

the optimal solution to problems KP^ (i G M'), for which the quantity

is a maximum. This variable representsan itemy
*

which is \"well fit\" into knapsack
/ *, considering both the penalty for re-assigning the item and the residual capacity
of the knapsack. Two branches are then generated by imposing Xi*j*

= 1 and

Xi*j*
= 0.

In the Martello and Toth A981c) scheme,upper bound min (Ui. U2) (see Sections
7.2.1,7.2.2)is computed at each node of the branch-decision tree. In addition, at the

root node, a tighter upper bound on the global solution is determined by computing

min (U3, U2) (see Section7.2.3).The information computed for U2 determines the

branching as follows. The separation is performedon item

j* = arg max {Ij :j eN^UN>},

i.e.on the item whose re-assignment is likely to produce the maximum decrease

of the objective function. If y* G A^^, m nodes are generated by assigning

j* to each knapsack in turn (as shown in Figure 7.1(a)); if y* e N>, with

M^ij*) = {iiJi,- \342\200\242\342\226\240,ij^}, m \342\200\224\\ nodes are generated by assigning j
*

to knapsacks

/i,..., /^_ 1 in turn, and another node by excluding j
*

from knapsacks /i,..., im-1
(as shown in Figure 7.1(b)). With this branching strategy, m single knapsack

7.3 Exact algorithms 205

problems KPf must be solvedto compute the upper bound associated with the root

node, but only one new KPf for each other node of the tree. In fact if y* \302\243N^,

imposing Xkj*
= 1 requires only the solution of problem KP^, the solutions to

problems KPf^ (i i k) being unchanged with respect to the generating node; if

j* G A^'*, the strategy is the same as that used in the Martello and Toth A980a)
algorithm for the 0-1 multiple knapsack problem (see Section 6.4.1), for which

we have shown that the solution of m problems KPf producesthe upper bounds

corresponding to the m generated nodes.

Figure 7.1(a) Branching strategy when;'* ^N^

-\\'i
*=0

Figure 7.1(b) Branching strategy when ;* G A^''

The execution of the above scheme is preceded by a preprocessing which: (a)
determines an approximate solution through a procedure, MTHG, describedin the

next section; (b) reduces the size of the instance, through two procedures, MTRGl

and MTRG2, described in Section 7.5. (Example 7.3 of Section7.5 illustrates

the branching scheme.) At each decisionnode, a partial reduction is performed.

206 7 Generalized assignment problem

by searching for unassigned items which can currently be assigned to only one

knapsack. The Fortran implementation of the resulting algorithm (MTG) is included
in the present volume.

In the Fisher, Jakumar and Van Wassenhove A986) scheme, upper bound t/3

(Section 7.2.3) is computed at each node of the branch-decision tree.The branching

variable is an x,*y* corresponding to a
w,*y*

which is maximum over all variables
that have not been fixed to 0 or 1 at previous branches. Two nodes are then

generated by fixing Xj*j*
= 1 and Xj*j*

= 0.

No scheme has been proposedby Jomsten and Nasberg A986).

7.4 APPROXIMATE ALGORITHMS

As seen in Section 7.1, determining whether an instance of GAP (or MINGAP) has

a feasible solution is an NP-complete problem. It follows that, unless V = AfV,
these problemsadmit no polynomial-time approximate algorithm with fixed worst-

case performance ratio, hence also no polynomial-time approximation scheme.

The following polynomial-time algorithm (Martello and Toth, 1981c) provides

approximate solutions to GAP. Let/y be a measure of the \"desirability\" of assigning

itemy to knapsack /. We iteratively consider all the unassigned items, and determine

the item j* having the maximum difference between the largest and the second

largest/iy (/ G M);j* is then assigned to the knapsack for which/y* is a maximum.
In the second part of the algorithm the current solution is improved through local

exchanges. On output, \\i feas
= \"no\", no feasible solution has been determined;

otherwise the solution found, of value z ^, is storedin
_yy

= (knapsack to which item

j is assigned),j = I,... ,n.

procedure MTHG:

input: n.m.(pij).(Wy).(c,),(fij);

output: z^.(y;), feas;
begin

M \342\226\240=
{1 m};

U :={L...,\302\253};
comment: initial solution;

feas := \"yes\"

for / := 1 to m do c, :=c,;
z^ :=0;

wiiile U^ 0 and feas =
\"yes\" do

begin
d* := \342\200\224oc;

for eacli j e U do
begin

Fj :={/ eM :
Wij

< c,};
if Fj

= 0 tiien feas := \"no\"

else

7.4 Approximate algorithms 207

begin
/' := arg max {fij : i G Fj}\\
if F^.\\{/'}

= 0then J :=+oc
else d :=fi,j- maxzj /> : i e Fj];
\\i d > d* tiien

begin
d* :=d;

i* :=/';

J* \342\226\240=]

end

end

end;
if feas = \"yes\" tlien

begin
yj* \342\226\240=i*'

z_':=z^+pi.j.-

U:=U\\{r}
end

end;
comment: improvement;

if feas = \"yes\" tiien

fory := 1 to n do

begin

A:={pij :i eM\\{i']. Wij
< c,};

if A ?^ 0 tiien

begin
let/?,//; = max A;

\\i Pi>'j > Pi'j tiien

begin
yj-=i\"-,
zj :=z^ -Pi^j+Pi\"j\\

c,/ :=c// +w,/y;
C,\302\273:=C,// -W;nj

end

end
end

end.

Procedure MTHG can be implemented efficiently by initially sorting in

decreasing order, for each itemy, the values/y (/ \302\243M) such that Wy
< c, (= c,).

This requires0{nm log m) time, and makes immediately available, at each iteration

in the inner loop, the pointers to the maximum and the second maximum element
of {fij : i G Fj]. Hence the main while loop performs the 0{n) assignments
within a total of 0(n^) time. Whenever an item is assigned, the decrease in c,*
can make it necessary to update the pointers. Since, however, the above maxima

can only decrease during execution, a total of O(n^) operations is required by the

208 7 Generalized assignment problem

algorithm for these checks and updatings. By finally observing that the exchange

phase clearly takes 0(nm) time, we conclude that the overall time complexity of

MTHG is 0(nm\\ogm + n^).
Computational experiments have shown that good results can be obtained using

the following choices for/jy:

(a) fij
=

Pij (with this choice the improvement phase can be skipped);
(b)/)- =Pi}/^ij\\
(c)fij

=
-Wy-;

i^) fij
=

-^ij/ci-

Example 7.3

Consider the instance of GAP defined by

m = 3;

ip,j) =

(Wij)
=

A1
14

\\34

/2^
20

\\16

12
5

34

13

8

16

12
37
20

9
18
18

16
9
9
5

25

24

24

36
19

7
6

11

31
25
19
15
6

11

41
1
3

5

9

16

13
34
34
24
6

18
; (c,)=

Let us consider execution of MTHG with
f\\j

= \342\200\224
Wy. The first phase of the

algorithm gives

j* =4:d* = 19, ^4
= 1, ci =21

y* = 8 : J* = 12, yg
= 2,C2= 19

j* =3:d* = 9, ^3
= l,ci = 12

j* = I : d* = +OC, _yi
= 3, C3 = 18

j* =2:d* = 8, y2
= 2,C2= 11

j* = 6 : d* = 5, ^6 = 2, C2= 5:

j* =1 :d* = 11, ^7 = l,ci = 7

y* =5 : J* = 4, ^5 = 1,ci = 0

hence

z^ = 191,(y;) = C. 2. 1. 1. 1.2. 1.2), (c,) = @. 5. 18).

The secondphase performs the exchanges

7.5 Reduction algorithms 209

j =2:y2 = 3, C2 = 13, C3 = 2;

J = 5 : ^5 = 2, ci = 7, C2 = 7;

so the solution found is

z^ = 232, {jj) = C. 3. 1.1.2.2.1.2). Q

A Fortran implementation of MTHG, which determines the best solution
obtainable with choices (a)-(d) for fij, is included in the present volume. A more
complex approximate algorithm, involving a modified subgradient optimization

approach and branch-and-bound, can be found in Klastorin A979).
Mazzola A989) has derived from MTHG an approximate algorithm for the

generalization of GAP arising when the capacity constraints G.2) are non-linear.

7.5 REDUCTIONALGORITHMS

The following algorithms (Martello and Toth, 1981c) can be used to reduce the

size of an instance of GAP. Let (_yy) define a feasible solution (determined, for

example,by procedure MTHG of the previous section)of value z^ =
Ylj=iPyj j-

The first reduction algorithm receives in input the upper bound value Uq of

Section 7.2.1 and the corresponding values i(j) =
arg max {pij : i \302\243M, Wy < c,}

(j \302\243N). The algorithm fixes to 0 those variables Xjj which, if set to 1, would

decrease the bound to a value not greater than z^. (We obviously assume z^ < Uq-)

If, for some j, all
Xy

but one, say x,*y, are fixed to 0, then jc,*y is fixed to 1. We

assume that, on input, all entries of
(Xjj) are preset to a dummy value other than 0

or 1. On output, kj^ (j e N) has the value | {xy : i G M, jc,y
= 0}|, and c, gives

the residual capacity of knapsack / (/ G M); these values are used by the second

reduction algorithm. We also assume that, initially, c, = c, for all i e M. If, for

somey, all
jc,y

are fixed to 0, the feasible solution (_yy)
is optimal, hence the output

variable opt takes the value \"yes\".

procedure MTRG1:

input: n.m.(pij). (Wy).(c,).z^. Uo.(iU))-(xij);

output (Xij).(k^).(ci), opt;
begin

opt := \"no\";

y:=0;

wiiiley < n and opt= \"no\" do

begin

J:=j + U

kf
:= 0;

for / := 1 to m do

if z^ > Uo-pi(j) j +Pij or
Wij > c, tiien

210 7 Generalized assignment problem

begin

Xij := 0;

end
else /* := /;

if
k^

= m - \\ tiien

begin

Xi*j :=_1;
Ci* := Cj*

-
Wi*j

end
else if

kf
= m then opt := \"yes\"

end

end.

The time complexity of MTRGl is clearly 0(nm). When the execution fixes

some variable to 1, hence decreasing some capacity c,, further reductions can be
obtained by reapplying the procedure. Since n variables at most can be fixed to 1,
the resulting time complexity is 0(n^m).

Thesecondreduction algorithm receives in input (Xy), (kj^), (c,), the upper bound

value Uo of Section7.2.2and, for each problem KPf (i EM), the corresponding

solution (x, 1,..., Xjn) and optimal value z,. Computation of the upper bounds of

Section 7.2.2,

ufj
= current upper bound on the solution value of KPf if

Xjj
= 0;

M,y
= current upper bound on the solution value of KPf if

Xjj
= 1,

is then used to fix to Xjj
variables

Xjj which, if set to 1 \342\200\224
Xjj, would give an

upper bound not greater than z^. We assume that MTRGl is first iteratively run,

then Uq and the solutions to problems KPf are determined using the reductions
obtained. Consequently,the new algorithm cannot take decisions contradicting

those of MTRGl. It can, however, fix to 1 more than one variable in a column, or to
0 all the variables in a column. Such situations imply that the current approximate
solution is optimal, hence the output variable opt takes the value \"yes\".

procedure MTRG2: _
input: n.m.Xpij). (w,y). (c,).z^. Uq. (z,). (%). (Xy). {kf);

output: {xij), opt;
begin

opt := \"no\";

j \342\226\240\342\226\240=1;

repeat
if

^^^
< m - 1 then

begin

kl:=0;
for / := 1 to m do

if Xij ^ 0 then

7.5 Reduction algorithms 211

if Wy > c, then

begin
Xij := 0;

end
else _

if Xjj
= 0 and z^ > Uq -

Zj +
u^j

tiien

begin

Xij := 0;

kf := kf + 1
end

else
begin

if ^1 =Othen /* := i^
if Xij

= 1 and z^ > Uq -
Zi +

u^-
then

ilkl =Ot}nenkl := 1
else opt := \"yes\"

end;
if opt = \"no\" then

\\i
k^

= m - I or ^1 = 1 then

begin

for / := 1 to m do Xy := 0;
Xi*j :=_1;
Ci* \342\200\242.=Ci*

-
Wi*j;

kf := m - 1

end
else

if
k'^

= m then opt =
\"yes\"

end;

until j > n or opt =
\"yes\"

end.

If
ufj

and mJ are computed through any of the 0(n) methods of Sections2.2and

2.3, the time complexity of MTRG2is O(mn^).In this case too, when a variable

has been fixed to 1, a new execution can producefurther reductions.

Example 7.3 (continued)

Using the solution value z^ =232 found by MTHG and the upper bound value

Uo = 263, MTRGl gives

j = 7 : JC2.7
= 0, JC3 7

= 0, hence k^ = 2, so

Xi 7
= 1, ci = 21;

7=8: xi.8=0.

212 7 Generalized assignment problem

Solving KPf (i = 1,2,3)for the reduced problem, we get

/O 0 1 1 1 0 \302\256@)\\ /93\\ _
(jcy)= 0 0 0 0 1 1 @) 1 ,(z,)= 95 ,t/o = 256,

\\110000@H/ \\68/

where fixed
Xjj values are circled. Executing MTRG2 we have

7
= 1: xi 1 = 0, X2A

= 0, hence X3 i = 1, C3 = 18;

7=4: JC2.4
= 0\302\273-^3.4 = 0\302\273hence xi 4 = 1, ci = 16.

The execution of the Martello and Toth A981c) branch-and-bound algorithm
(see Section7.3)follows. Computation of U2 and t/3 for the root node gives

N^ = 0. N> ={5},M>E)
= {1,2};

Mfg
= 89, M?5

= 85; /5 =4,U2 = 252;

t/3 = 245.

The branching scheme is shown in Figure 7.2. Sincey* = 5, we generatenodes
1 and 2, and compute the corresponding bounds.

f/2=252

f/3=245

f/2=263

f/o=232=z
f/3=237

Uo=232=z U 0=229 <z' f/2=218<z'

Figure 7.2 Decision-treefor Example 7.3

Node 1 : (h j) = @, 0, 1, 0, 0, 0, 0, 1),Z2 = 71, Z/q = 232 = z\\

Node2 : (Jfj y)
= @, 0, 0, 1,0, 1, 1,0), zj = 88, Z/q = 251;

AfO = {3}, N> = {6}, M>F) = {1, 2};
ul 3

= 69, MJ 3
= 78, m' 3 = 54, h = 14;3.3

^Og =75, m0, = 96, /6 = 0;

7.6 Computational experiments 213

U2 = 237;

Uq =
U\\

= 263 (unchanged).

The highest penalty is Ij,
= 14, hencey* = 3 and nodes 3, 4, 5 are generated.

Node 3 : (xi j) = @, 0, 1, 1,0, 0, 1,0), zj = 69, Z7o = 232 = z\\

Node 4 : (h j) = @, 0, 1,0, 1,0,0,0), Z2
= 73, Z7o = 229< z\\

Node 5 : (h j) =A,0, 1,0,0,0,0,0), Z3 = 54, Z/q = 237;

N^ = {2},N> = {6}, M>F) = {1, 2};

ul 2
= 69, M2 2

= 95, M3 2
= \342\200\224

ex:, /2 = 0;

wffi =69, M?6
= 75, /6= 19;

t/2 =218 < z\\

The approximate solution (_yi)
= C, 3, 1, 1, 2, 2, 1,2),of value z^ = 232, is

thus optimal. Q

7.6 COMPUTATIONAL EXPERIMENTS

Tables7.1 to 7.4 compare the exact algorithms of Section 7.3 on four classes

of randomly generated problems. For the sake of uniformity with the literature

(Ross and Soland A975), Martello and Toth A981c), Fisher, Jaikumar and Van

Wassenhove A986)), all generated instances are minimization problems of the

form G.5), G.2), G.3), G.4). All the algorithms we consider except the Ross

and Soland A975) one, solve maximization problems, so the generated instances
are transformed through G.7), using for t the value

t =max,^M,jeN{cij} + 1.

The classes are

(a) Wjj uniformly random in [5, 25],
Cjj uniformly random in [1, 40],
c, = 9(n/m)+ 0.4 max,eM {Eye/v, ^y 1 for / = 1, ... ,m

(where A', is defined as in Section 7.2.1);

(b) Wjj and Cjj as for class (a),
c, =0.7(9(n/m) +0.4

max,^M{J2j^N, ^yD for \302\253= 1, \342\200\242\342\226\240\342\226\240,m;

(c) Wjj
and c,y as for class (a),

Cj
= 0.8

Xl/\"=i ^li/f^ for / = 1, ... ,m;

214 7 Generalized assignment problem

Oh

O

\342\226\240^(N (^
m m 00o \342\200\224CM

ON ^ ON
\342\200\224o ><o
o o o

r-- r-- 00
00 (^ O
(^ 00 \342\200\224

(N (N >>0
(N \342\200\242*00
o o o

00 O \342\200\224
\342\200\224o r--
o \342\200\224o
o o o

^ o o
r-- ON in
o \342\200\224\342\200\224

\342\200\224r<i ><0
ON

O (N oC
\342\200\224ON 00
o r-- o
d> --^ d

in r-- \342\200\242*
O CM CM
p ON \342\200\224;
o in o

><o ON r--
in ON \342\200\224
o r-- \342\200\224

d> ^ d>

^ 00 O
\342\200\224(^ >>0
o o o
o o o

><o \342\200\242*in
\342\200\224CM r--
o \342\200\224o

r-- 00 \342\226\240*
>>o in (N
O CM CM

(^ O 00
O CM \342\200\224
o o o

><o in in
o (^ \342\200\242*
o o o

r-- r-- \342\226\240*
\342\200\224in \342\200\242*
o o o

7.6 Computational experiments 215

o

e2

T3
C
O
O

c\342\200\242\342\226\240\"

O

00
\302\251\342\226\240
o
o
ON

Dh
K

O
H
s

\302\253
<u

T3
O
z

<u
s
H

><o \342\200\224
CM r<l

CM

\342\200\224(^ 00
\342\200\242*in o

00 \342\200\224

ON r--
r-^ in
O ON

^ o
\342\200\224(^

<N 00
-\342\200\224CM
IT) >>0
O ON

^ S

CM CM
\342\200\22400
d ^'

ON O
ON
ON ^

ON ><0
00 OO ON

CM ^ i^
\342\200\224(^ ON
(^ (N ON
\342\200\224'ON rj

(^ 00

\342\200\224ON r^-i
(^ 00 O^ o

ON o in(^ (^ m
in in r--
d fsi d

^ ON

in c c
CM \"S \"S
ON
d

CM CM
(^ \342\200\224

O
^ .t;

\342\226\240*CM \342\226\240*
in 00 CM

ON 00
in ><o

00 r^ r5^
CM 00 \342\200\242*
CM Tt 00
d cm' r^

in Tt CM
>>0 >>0 ON
\342\200\224CM CM

CM ><0
(^ in

r-- -^ inin o ON
\342\200\22400 >>0

\342\200\242*\342\200\242*(^
r-- \342\226\240*ON

ON ><0

(^ CM

ON r^-i r--(^ CM 00
r-; r-; in
cm' in d

r-- 00

(^ \342\200\224in(^ in CM
in ON

CM

in in iX
>>o in \342\200\224
in r-- ><o
d ^' d

CM 00

O (^ 00
\342\200\224Tt (^
\342\200\224o ^

\342\226\240*\342\200\224CM
On t^ t^
O 00 ON

^ \342\200\224o
ON \342\200\224in

(^ ON
CM in

\342\200\242*><o in
in (^ r--
Tt in pd ON 00

\342\200\224^

ON ^ Ttin ON in
CM \342\200\22400

ON (^

ON m

\342\200\224(^ 00
(^ o in
d r-^ ^'

\342\200\224r--

216 7 Generalized assignment problem

Oh

O

T3
O

O
\302\253
kH
<U

X)
s

fc
o

ooo
ON

X

e2

3: '^^ \342\200\224
^

r-^
>>o r--
in ><o
\342\200\224CM
\342\200\224'^'

^

in o
(N ><0

r--

r-^
r-- ^
o r--
in Tt
O 00^

CM (N
CM Tt

CM

\342\226\240*

in iK
r-- CM
in in
o

ÔN

O 00in 00
r--
^

\\c r--
r-- \342\200\224

\342\200\224;r-^
O 00

\342\200\224r--.
CM m
\342\200\224>\302\253o

(^
-\"

O 00
\342\200\224o
\342\200\224>\302\253o
d

r-;'

o o
\342\200\224CM

CM

in
00
ON

CM

o
00
in
^
00

m
in
00

^
CM
o
^
ON

S

<u
B

CM
^
(^
(^

r?
m^
IT)
IT)
00

o
CM
^
00
^

CM
^

oo'
ON

o
(^

ON

ON
in
ON
d

00
CM

^
r--
in
d

CM
ON

00

><q^

r<n
^

(^
ĈM
d

o
ĈM

in
^
CM

d

o

ĈM
00

00
><o
^
^_
^
(^

(̂^
in

00
ON
><o
r--
(^
(^

s

<u
B

^
o
^

S
iK

CM
oo'

r--
CM
r--
CM
(^

w
>S'
r--
^_
r-^
^

o
CM

m

O
(^
00

in
\342\200\2425^
r--
(^
r-^
^

in
ON

CM

ON
in
^_^
ON

;s

<u
B

^
CM
ON
^

P^
o'
CM
00_
r--'
^

CM

^
CM
in

o
r--
^
cm'
ON

o
(^

^
CM

00
00
^

o
r--

00
o
r-^
^

in
ON
\342\200\224

00
CM
o
^'

ĈM
CM

^
ON
r--
d

m
ON
(^

^
r--
^
d

o

ĈM
in

r-^
>S'
(^
^.
ON
in

^
in

CM
00
00
r-^
^

'b

<u
B

CM
(^
(^

00
ON
><q
in

00
CM
(^

m

w^
><q^
^

o
CM

in

1
<u
B

1
<u

.\302\243

B

<u

.\302\247

1

<u
B

1
<u

.e

o
ro

n

m

Table 7.4 Data set (d). HP 9000/840 in seconds. Average times/Average numbers of nodes over 10 problems

RS MTG FJV MTGFJV MTGJN

n Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

10
20

30

0.150 162
50.575 42321

time limit

0.168
14.344

79.582C)

30
2275
8230

0.254 30

86.809E) 3362
time limit

0.364

62.123G)

97.681A)

25
1405
1475

0.760
21.322
95.702A)

14

290

1076

10
20
30

0.541 575

time limit

time limit

0.350

16.890

97.000A)

48
1587
6267

0.966 80

time limit
time limit

0.870 41

95.024B) 876
time limit

2.244 38
91.181C) 801

time limit

5

10
20
30

0.810 697

time limit

time limit

0.498 73

21.203C) 7722
time limit

1.677 108
time limit

time limit

1.244 55
time limit

time limit

3.481 63
time limit

time limit

218 7 Generalized assignment problem

(d) Wij uniformly random in [1, 100],
Cij uniformly random in

[w/j-.w/j +20],

Ci = 0.8 Yl^i Wij/m for / = 1, ... ,m.

Problems of class (a) have been proposedby Ross and Soland A975) and generally

admit many feasible solutions. Problemsof classes (b), (c) and (d) have tighter

capacity constraints; in addition, in problems of class (d) a correlation between
profits and weights (often found in real-world applications) has been introduced.

The entries in the tables give average running times (expressed in seconds) and

average numbers of nodes generated in the branch-decision tree. A time limit of

100 seconds was imposed on the running time spent by each algorithm for the

solution of a single instance. For data sets for which the time limit occurred,

the corresponding entry gives, in brackets, the number of instancessolved within

100 seconds (the average values are computed by also considering the interrupted

instances). The cases where the time limit occurred for all the instances are denoted

as \"time limit\". The following algorithms have been codedin Fortran IV and run

on an HP 9000/840 computer, using option \"-o\" for the Fortran compiler:

RS =
Algorithm of Ross and Soland A975);

MTG=
Algorithm of Martello and Toth A981c) as describedin Section 7.3;

FJV =
Algorithm of Fisher, Jaikumar and Van Wassenhove A986);

MTGFJV =
Algorithm MTG with upper bound min A/2,1/3) (see Sections 7.2.2,
7.2.3) computed at each node of the branch-decision tree;

MTGJN = Algorithm MTG with upper bound min A/1,1/2,1/4) (see Sections

7.2.1, 7.2.2,7.2.4)computed at each node of the branch-decision tree.

For all the algorithms, the solution of the 0-1 single knapsack problemswas

obtained using algorithm MTl of Section2.5.2.
For the computation of U4, needed by MTGJN, the number of iterations in the

subgradient optimization procedure was limited to 50\342\200\224assuggested by the authors

(Jomsten and Nasberg, 1986)\342\200\224for the root node, and to 10 for the other nodes.

The Lagrangian multipliers were initially set to

. m n

f^ij=p
= \342\200\224

y^y^P'J^ ieMjeN
m n ^-^ ^-^

,=1 ;=i

(as suggested by the authors) for the root node, and to the corresponding values
obtained at the end of the previous computation for the other nodes. (Different
choices of the number of iterations and of the initial values of the multipliers

produced worse computational results.) The step used, at iteration k of the

subgradient optimization procedure, to modify the current /iy values was that

proposed by the authors, i.e.

7.6 Computational experiments 219

r =
k + l'

The tables show that the fastest algorithms are RS for the \"easy\" instances of

class (a), and MTG for the harder instances (b), (c),(d).Algorithms MTGFJV and

MTGJN generate fewer nodes than MTG, but the global running times are larger

(the computation of U3 and U4 being much heavier than that of Ui and U2), mainly

for problems of classes (b), (c) and (d).

Algorithm FJV is much worse than the other algorithms for all data sets,
contradicting, to a certain extent, the results presented for the same classes of

test problems in Fisher, Jaikumar and Van Wassenhove A986). This could be
explained by observing that such results were obtainedby comparing executions

on different computers and using different random instances. In addition, the current

implementation of MTG incorporates, for the root node, the computation of upper
bound t/3.

Table7.5gives the performance of the Fortran IV implementation of approximate
algorithm MTHG (Section 7.4) on large-size instances.The entries give average

running times (expressedin seconds) and, in brackets, upper bounds on the average

percentage errors. The percentage errorswere computed as 100 (U \342\200\224z^)/U, where

U = min (U 1,1/2,U3,U4).Only data sets (a), (b) and (c) are considered, since the

computation of U for data set (d) required excessiverunning times. Errors of value
0.000 indicate that all the solutions found were exact. The table shows that the

running times are quite small and, with few exceptions, practically independent

Table 7.5 Algorithm MTHG. HP 9000/840 in seconds. Average times (average percentage

errors) over 10 problems

m

5

10

20

50

n

50

100

200
500

50
100
200

500

50

100
200
500

50
100

200

500

Data set (a)

0.121@.184)
0.287@.063)

0.887@.029)

2.654@.012)

0.192@.016)
0.457@.019)
1.148@.004)
3.888@.006)

0.393@.062)

0.743@.002)

1.693@.008)

2.967@.000)

0.938@.000)
0.728@.005)
3.456@.002)
2.879@.000)

Data set (b)

0.140E.434)

0.325D.750)

0.869D.547)
3.860E.681)

0.225C.425)
0.521E.160)
1.271D.799)
5.139E.704)

0.399A.228)

0.866A.189)

2.011B.140)

7.442C.453)

0.832@.125)
1.792@.175)
3.849@.296)

12.613@.517)

Data set (c)

0.136F.822)
0.318E.731)
0.852F.150)
3.887F.145)

0.240F.243)
0.550E.908)
1.334E.190)
5.175E.553)

0.438F.479)

0.888E.187)

2.035D.544)

7.351D.367)

0.876B.024)
2.016D.041)
4.131C.248)

12.647C.198)

220 7 Generalized assignment problem

of the data set. For n = 500 and data set (a), the first execution of MTHG (with

fij
~

P'i) alrriost always produced an optimal solution of value z^ =
Uq, so the

computing times are considerablysmaller than for the other data sets. The quality

of the solutions found by MTHG is very good for data set (a) and clearly worse for

the other data sets, especiallyfor small values of m. However, it is not possible to
decide whether these high errors depend only on the approximate solution or also
on the upper bound values. Limited experimentsindicated that the error computed
with respect to the optimal solution value tends to be about half that computed
with respect to U.

