7

Generalized assignment
problem

7.1 INTRODUCTION

The Generalized Assignment Problem (GAP) can be described, using the
terminology of knapsack problems, as follows. Given n items and m knapsacks,
with

pij = profit of item j if assigned to knapsack i,
wy; = weight of item j if assigned to knapsack i,
¢; = capacity of knapsack i,

assign each item to exactly one knapsack so as to maximize the total profit assigned,
without assigning to any knapsack a total weight greater than its capacity, i.e.

maximize z = Zm: Zn:pijx,j (7.1)

i=l j=1

subject to Zw,-jx,j <, ieM={1,...,m}, 7.2)
j=1
> x=1, jeN={1,...,n}, (7.3)
i=1
x;=0orl, i€M,jeN, (7.4)

where
{ 1 if item j is assigned to knapsack i;
X5 =

0 otherwise.

The problem is frequently described in the literature as that of optimally assigning
n tasks to m processors (n jobs to m agents, and so on), given the profit p; and
the amount of resource w;; corresponding to the assignment of task j to processor
i, and the total resource ¢; available for each processor i.
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190 7 Generalized assignment problem

The minimization version of the problem can also be encountered in the
literature: by defining ¢;; as the cost required to assign item j to knapsack i,

MINGAP is
minimize v = Z z CijXij 7.5)

i=l j=1

subject to (7.2), (1.3), (71.4).

GAP and MINGAP are equivalent. Setting p;; = —c;; (or cj; = —p;;) foralli e M
and j € N immediately transforms one version into the other. If the numerical data
are restricted to positive integers (as frequently occurs), the transformation can be
obtained as follows. Given an instance of MINGAP, define any integer value ¢
such that

I > max;epm jEN{Cij} (76)
and set
pij =1t —¢j fori e M,j €N. a.n
From (7.5) we then have
j=1 i=1 i=1 j=1

where, from (7.3), the first term is independent of (x;). Hence the solution (x;)
of GAP also solves MINGAP. The same method transforms any instance of GAP
into an equivalent instance of MINGAP (by setting ¢;; =7 —p;; fori € M, j €N,
with 7 > max;ecm jEN{pij})‘

Because of constraints (7.3), an instance of the generalized assignment problem
does not necessarily have a feasible solution. Moreover, even the feasibility

question is NP-complete. In fact, given an instance (wy,...,w,) of PARTITION
(see Section 1.3), consider the instance of GAP (or MINGAP) having m = 2, w; ; =
wyj=wjandpy j=py;=1forj=1,...,n,and c;=c; =13 ;’:1 w;. Deciding

whether a feasible solution (of value n) to such instance exists is an NP-complete
problem, since the answer is yes if and only if the answer to the instance of
PARTITION is yes.

The following version of the problem (LEGAP), instead, always admits a feasible
solution.

n

maximize £ = i Z[),-jx,-j (7.8)

i=1 j=I

subject to (7.2), (7.4) and

Y <l jeN (7.9)
i=1
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LEGAP too is equivalent to GAP. Given any instance of LEGAP, an equivalent
instance of GAP will have an additional knapsack of capacity c,+; = n, with
Pm+lj = 0 and wyyy ; = 1 for j € N, while p; = p;j fori € M and j € N.
(Knapsack m + 1 gives no extra profit and always allows a feasible solution, so
z =2.) Conversely, given any instance of GAP, we can define an integer constant
q such that

q > ZmaxiEM{py},
JEN
and set
ﬁl.jzpij-f-q fOI‘lEM,]eN

With these profits, any set of n items has a higher value than any set of £ < n items.
Hence, by solving LEGAP we obtain the solution for GAP (of value z = 2 — ng)
if (7.3) is satisfied, or we know that the instance of GAP has no feasible solution
if Y7, x;; =0 for some j.

LEGAP is a generalization of the 0-1 multiple knapsack problem (Chapter 6), in
which p; =p; and wy =w; foralli € M and j € N (i.e. the profit and weight of
each item are independent of the knapsack it is assigned to). Lagrangian relaxations
for LEGAP have been studied by Chalmet and Gelders (1977).

The best known special case of generalized assignment problem is the Linear
Min-Sum Assignment Problem (or Assignment Problem), which is a MINGAP
withn =m, c; =1 and w; =1 foralli € M and j € N (so, because of (7.3),
constraints (7.2) can be replaced by Zj'.'zl x; =1 for i € M). The problem can
be solved in O(n3) time through the classical Hungarian algorithm (Kuhn (1955),
Lawler (1976); efficient Fortran codes can be found in Carpaneto, Martello and Toth
(1988)). The assignment problem, however, is not used in general as a subproblem
in algorithms for the generalized case.

Another special case arises when w; = w; for all i € M and j € N. Implicit
enumeration algorithms for this case have been presented by De Maio and Roveda
(1971) and Srinivasan and Thompson (1973).

Facets of the GAP polytope have been studied by Gottlieb and Rao (1989a,
1989b).

We will suppose, as is usual, that the weights w; of any GAP instance are
positive integers. Hence, without loss of generality, we will also assume that

p;j and ¢; are positive integers, (7.10)
[{i :wy <ci}[>1 for j €N, (7.11)
Ci Z minjeN{w,j} for i e M. (712)

If assumption (7.10) is violated, (a) fractions can be handled by multiplying
through by a proper factor; (b) knapsacks with ¢; < 0 can be eliminated; (c) for
each item j having min;ep {p;} < 0, we can set p; = py + |miniey {p;}| + 1
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for i € M and subtract |min;ep {p; }| + 1 from the resulting objective function
value. As is the case for the 0-1 multiple knapsack problem, there is no easy way of
transforming an instance so as to handle negative weights, but all our considerations
easily extend to this case too. If an item violates assumption (7.11) then it cannot
be assigned, so the GAP instance is infeasible. Knapsacks violating assumption
(7.12) can be eliminated from the instance.

In Section 7.2 we introduce various types of relaxations. Exact and approximate
algorithms are described in Sections 7.3 and 7.4, reduction procedures in Section
7.5. Section 7.6 presents the results of computational experiments.

7.2 RELAXATIONS AND UPPER BOUNDS
The continuous relaxation of GAP, C (GAP), given by (7.1)—-(7.3) and

x; > 0. ie€M,jeN, (7.13)
is rarely used in the literature since it does not exploit the structure of the problem
and tends to give solutions a long way from feasibility.

7.2.1 Relaxation of the capacity constraints

Ross and Soland (1975) have proposed the following upper bound for GAP. First,
constraints (7.2) are relaxed to

wix;y <ci, i €EM,j€N.

and the optimal solution X to the resulting problem is obtained by determining, for
eachj €N,

i(j)y=argmax {p;:i e M, wy; <¢}

and setting £;¢;, ; = 1 and £; = 0 for all i € M\{i(j)}. The resulting upper bound,
of value

Uo= > piciJ» (7.14)
j=1
is then improved as follows. Let
Nj={j€Niff,'j=1}, i EM,

di=§ Wij — Ci, i EM,
JEN;
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M'={i €M :d; >0},
N'=[J N
ieEM!’

Given a set S of numbers, we denote with max, § (resp. min, §) the second
maximum (resp. minimum) value in S, and with arg max; S (resp. arg min; S) the
corresponding index. Since M’ is the set of those knapsacks for which the relaxed
constraint (7.2) is violated,

qj =picj.; —maxa{py i € M,w; <ci}, jEN'

gives the minimum penalty that will be incurred if an item j currently assigned to
a knapsack in M’ is reassigned. Hence, for each i € M’, a lower bound on the
loss of profit to be paid in order to satisfy constraint (7.2) is given by the solution
to the O-1 single knapsack problem in minimization form (see Section 2.1), KP}
(i € M), defined by

minimize v; = Z q;Yij
jENl
subject to Z wijyij > di,
jENl
yj=0orl, j € N;

where y; = 1 if and only if item j is removed from knapsack i. The resulting Ross
and Soland (1975) bound is thus

Uy = U — Zv,. (7.15)

iEM’

This bound can also be derived from the Lagrangian relaxation, L(GAP . }), of
the problem, obtained by dualizing constraints (7.3) in much the same way as
described in Section 6.2.2 for the 0-1 multiple knapsack problem. In this case too
the relaxed problem,

m n n m
maximize E E DijXij — E Aj E X —1
=1 j=1 Jj=1 i=1

subject to (12), (1.4),

separates into m 0-1 single knapsack problems (KP?,i =1, ... ,m) of the form

n
maximize z; = g DijXij
j=1
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n
subject to Z WijXij <c¢i,
J=1

X,‘j=00r 1, jEN,

where p; = p; — A; , and its solution value is

m

z(L(GAP,A)):Zzi+Z/\j. (7.16)
j=1

i=1
It is now easy to see that, by choosing for ); the value
X =maxy{p;:i €M. wy <c}, jEN,

we have z(L(GAP, ))) = U,. In fact, by transforming each KPil into an equivalent
maximization form (as described in Section 2.1), and noting that, in each KPi’\,
Py <0ifj ¢ N; and wy < ¢;, we have v; =3°.\ g; —z; (i € M'). Hence, from
(7.14) and (7.15),

U1=Zpi(j)j— Zpi(i)j+zxf+zz";

JEN JEN' JEN' ieEM’

observing that, for i ¢ M/’, by definition we have ZjeN! wi < ¢, hence

zi =) jen, Dij» the Lagrangian solution value (7.16) can be written as
ZWGAP, ) =Y i+ Y Y (i = A+ DA
ieM’ ieM\M' jEN, JEN
=D at D b= Y NN
ieM’ JEN\N! JEN\N'! JEN
=U,.
Example 7.1

Consider the instance of GAP defined by

n =17,

m =2;

oy — (69 421036

Pi? =\4 8 91 7 5 4)
4121 43 8 1

(W"f')‘(9 98 1 3 8 7)’("')=(22)‘
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The initial bound is Uy = 47. Then we have

Ny ={1,2,4,5,7}, N, ={3,6}, (d)=(7, —6);
M'={1},N'={1,2,4,5,7});
a1 =2, @=1, q4=1, qgs=3, q7=2.

Solving KP| we obtain
Vi =2’ ()’1 j) = (09 09 ) Os Os ) 1)9
so the resulting bound is

U1=U0—V|=45.[]

7.2.2 Relaxation of the semi-assignment constraints
Martello and Toth (1981c) have obtained an upper bound for GAP by removing
constraints (7.3). It is immediate to see that the resulting relaxed problem coincides

with L(GAP . 0), hence it decomposes into a series of 0-1 single knapsack problems,
KP? (i € M), of the form

n
maximize z; =E DijXij
J=1

n
subject to Z wiix; < ¢,
j=1

xj=0o0rl, J EN.

In this case too, the resulting upper bound, of value

Uy = zm:a, (7.17)

i=1

can be improved by computing a lower bound on the penalty to be paid in order
to satisfy the violated constraints. Let

N0={jeN:Zx,-,»=0},

ieEM
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N>={jeN:Zx,~,>1}
ieM
be the sets of those items for which (7.3) is violated, and define
M>(Hy={ieM x;=1} forall j e N7;

we can compute, using any of the methods of Sections 2.2-2.3,

u) = upper bound on z if x; =0. j EN”,i € M>(j),

u;; = upper bound on z; if x; =1, jeN’ ieM

and determine, for each item j € N° UN>, a lower bound [; on the penalty to be
paid for satisfying (7.3):

min; ey {z — min (z;. 1)} if j € NO;
I = .
' Piem> (i — min @i u)
—max, ey > (j){z; — min (z,-_ug.)} ifjenN>.

The improved upper bound is thus

Uz = Ug — max;eyoun> {1 }. (7.18)

Example 7.2
Consider the instance of GAP defined by

n =5;
m =2;
oy = (733 8 T,
Pi) =\s 3 8 4 1)
oy = (828 91
Wi) \2 2 6 4 4)

The solutions to KP? and KP? are

Z1

17, (x1;)=(1,1,0,0, 1)
9, () =(1,0,0,1,0),

)
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so Ug = 26 and

NO={3},N>={1}, M>(1)={1.2}.

1

We compute ug and u} through the Dantzig bound (Section 2.2.1), but, for uy,

we skip those items k£ for which wy > ¢; — w;;. Hence
64
u =7+3+ [?} = 17;

40
ugl =3+ l?J =09

u, =3+ (7 +3+0))=13;
u21.3 = 8.

It follows that /; = 0 and /3 = min {4. 1} = 1, so the resulting upper bound is
Upy=Up—1 =25

For this instance the Ross—Soland bound initially gives Uy = 33, and, after the
solution of KP!, U, = 31. Hence Uy > U, > Uy > U,. On the other hand,
computing the Martello-Toth bound for Example 7.1 gives Uy = 54, L = 2,
L=11s=51=11;=2and U, =49, ie. U < Uy < U < Uy. Thus while,
obviously, Uy > U and U > Us, no dominance exists between the other pairs of
these bounds. []

7.2.3 The multiplier adjustment method

Fisher, Jaikumar and Van Wassenhove (1986) have developed an upper bound,
based on the Lagrangian relaxation L(GAP . \) and dominating the bound proposed
by Ross and Soland (1975). Obviously, the continuous and integer solutions of a
knapsack problem may differ; this implies (see Fisher (1981)) that, for the optimal
Lagrangian multiplier A*,

z(L(GAP . \")) < z(C (GAP));

there is no analytical way, however, to determine A*. One possibility is the
classical subgradient optimization approach. The novelty of the Fisher-Jaikumar—
Van Wassenhove bound consists of a new technique (multiplier adjustment method)
for determining “good” multipliers. The method starts by setting

Aj=maxy {py:i EM,w; <¢}, jEN;

as shown in Section 7.2.1, the corresponding Lagrangian relaxation produces the
value U; of the Ross—Soland bound. Note, in addition, that, with this choice, we
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have, for each j € N, p; (= pj — A;) > 0 for at most one i € M, so there is an
optimal Lagrangian solution for this A which satisfies > ' x; < 1 forall j € N.
If some constraint (7.3) is not satisfied, it is, under certain conditions, possible to
select a j* for which ) ", x;» = 0 and decrease A;» by an amount which ensures
that in the new Lagrangian solution ) ", x;» = 1, while > -, x; < 1 continues to
hold for all other j. This phase is iterated until either the solution becomes feasible
or the required conditions fail.

The following procedure, ADJUST, is an efficient implementation of the
multiplier adjustment method. After the initial solution has been determined, a
heuristic phase attempts to satisfy violated constraints (7.3) through pairs (i.j)
such that p;; — A; = 0. The adjustment phase then considers items j* violating (7.3)
and computes, for i € M, the least decrease A;» required in A+ for item j* to be
included in the optimal solution to KP. If an item j* is found for which

(a) min2 {Aljt,...,A;,,j*} >0;

(b) decreasing A;» by min {Aje, .. Ay ,-‘} the new Lagrangian solution
satisfies Y 1 x; < 1forallj €N,

then such updating is performed (decreasing the current upper bound value by
min{A; j+,...,An,;+} ) and a new heuristic phase is attempted. If no such j*
exists, the process terminates.

The output variables define the upper bound value

m
U3 = E zZ; +
i=1 J

n

A (7.19)
1

if opt = “yes”, this value is optimal and (x;;) gives the corresponding solution.

procedure ADJUST :
input: n.m. (py). wy). (¢;);
output: (z;), (A)), (x;), Us, opt;

begin
comment: initialization;
N :={l..... n};
M={1..... m};

for i :=1tomdo forj:=1ton dox; :=0;
forj:=1tondo ) =maxy{p;:i €M, w; <c};
Us = ZjeN Ajs
fori :=1tom do
begin
N :={j EN 1D — A > 0};
set x;;(j € N;) to the solution to
max z; =3 iy (Pij — AjX;
subjectto >y wyx; < i,
X,‘j=0 or 1. j €éN;;



7.2 Relaxations and upper bounds 199

U3 = U3 +z;
end;
opt := “no”;
if ) ;cn X =1forallj €N then opt = “yes”
else
repeat

comment: heuristic phase;
W =4GJ): Y iem Xy =0. py — Xy =0}
for each (i.j) € 1/, in order of decreasing p;;, do
if ) pem g =0and wy + 57y waxy < ¢; then x; = 1;
comment: adjustment ;
if > i Xy = 1forallj €N then opt := “yes”
else
begin
J={J €N ) hem i =0}
found := “no”;
repeat
let j* be any index in J;
J=J\{j"};
Mj+ ={i €M :wy» <c;};
for each i € M;. do
begin
Ni={j eN\{j*}:pj — A >0.wy <c¢i —wy»};
determine the solution to
(KP;) max z; = jENz(p’j — Aj)y]
subject to ZjEN, wiy; < ¢ — wij-,
Yj =0 or l.jeN,‘;
Ajjr = z; — (G + (pis — Aj»))
end;
if minz{A[j‘ 1€ Mj'} > 0 then
begin
i*=argmin {Ay. 11 € M+ };
let (y;). j € N;-, be the solution found for KP;»;
for each j € N\N;. do y; := 0;
yi» = 1;
iijj + 3 iem\(i+y Xy < 1forallj €N then
begin
found = “yes”;
/\j: = /\j: - minz{A,j. 1€ Mj.};
replace row i* of x with (y;);
Zi» = f,w +(p,~»j‘ — /\j*);
U3 = U3 — Ajnja
end
end
until J = @ or found = “yes”
end
until opt = “yes” or found = “no”
end.
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Example 7.2 (continued)

The initial solution is obtained by setting

V) =6,3,3,4,1):

21

10, (x1,;) = (0, 0,0, 1, 1);

5, (2.;)=1(0,0,1,0,0);

22

Uy =16+ (10 + 5) = 31 = Uy.

The heuristic phase has no effect, hence J = {1.2}. For j* = 1 we obtain

M, ={1,2}
Ny ={5},51=6,ys=1, A1 =2;

N, =9,%,=0, Ay, =5,

hence i* = 1. Replacing (x; ;) with (1, 0, 0, 0, 1), condition ZieM x;; < 1 continues
to hold for all j € N, so we have

O =(0,3,3,4,1);
Z] = 13,(X1,’)=(1, 0,0,0, 1)
Uz =29.

The heuristic phase sets x; 2 = 1, hence J = {4}. For j* = 4 we have

M4 ={1. 2},
Ni ={5},21=6,y5=1, Ar4=3;

N2 = {1}’ 22 =59 V1= 19 A2A4 =09

so the execution terminates with U3 = 29. For this instance we have U; < U,(= 31),
but Uz > Uy (= 26) > U, (= 25). On the other hand, applying procedure ADJUST
to the instance of Example 7.1, we initially have Uz = 45, then the first adjustment
improves it to 43 and the second to 42 (with two further adjustments producing no
improvement). Hence Us = 42 < U, (=49) < Uy (= 54). (]

Examples 7.1 and 7.2 prove that no dominance exists between the Fisher—
Jaikumar—Van Wassenhove bound (U3) and the Martello~Toth bounds (U, and
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U,), nor between the Ross—Soland (Uy and U,) and the Martello-Toth bounds. As
already shown, the only dominances among these bounds are Uz < U, < Uy and
U, < U.

7.2.4 The variable splitting method

Jornsten and Nasberg (1986) have introduced a new way of relaxing GAP in
a Lagrangian fashion. (A general discussion on this kind of relaxation can be
found in Guignard and Kim (1987).) By introducing extra binary variables y;
(i € M. j € N) and two positive parameters « and /3, the problem is formulated,
through variable splitting, as

maximize a Z Zp,,x,, +4 Z Zp,,y,, (7.20)

i=l j=1 i=l j=1

subject to Zw,-jx,-j <g¢, IeM, (7.21)
> vi=1, jEN, (1.22)
Xij = Yij, ieM,j€eEN, (7.23)
xj=0orl, ieM,j€eN, (7.24)
yj =0orl, ieM,jEN. (7.25)

We denote problem (7.20)—(7.25) by XYGAP. It is immediate that XYGAP is
equivalent to GAP in the sense that the corresponding optimal solution values,
z(XYGAP) and z(GAP), satisty

2(XYGAP) = (a + 3) z(GAP). (7.26)

The new formulation appears less natural than the original one, but it allows a
relaxation of constraints (7.23) through Lagrangian multipliers (y;). The resulting
problem, L(XYGAP , ),

maximize o Z Zp,,x,, + 73 Z Zp,,y;, + Z Z pijx — yi) (71.27)

i=1 j=1 =] j=1 i=1 j=1

subject to  (7.21), (7.22), (7.24), (7.25),
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keeps both sets of GAP constraints, and immediately separates into two problems,
one, XGAP(y), in the x variables and one, YGAP(y), in the y variables. The
former,

maximize z(XGAP() =% > (apy + )X

i=l j=1

n
subject to Z wiix; < ¢i, i €M,
j=1
xj=0orl, ieEM,jeEN,

has the same structure as L(GAP.)\) (Section 7.2.1), hence separates into m 0-1
single knapsack problems (KP/. i =1, ... ,m) of the form

n

maximize %= E (apyj + pij)x;;
j=1
n

subject to E wiixi; < ¢y
J=1

xj=0o0rl, jEN;
the latter

maximize  z(YGAP(10) = > > (Bpyj — my)yi

i=1 j=1
m

subject to nyf =1, J €N,
i=1

yij =0orl, i€EM,jEN,

has the same structure as the initial Ross—Soland relaxation (Section 7.2.1), hence

its optimal solution is
1 ifi=i(j)
Yij = { fOI'j EN.
0 otherwise,

where
i(j)=arg max {Bp; —py; i €M, w; <ci}.

By solving problems KP/ (i € M), we obtain the solution to L(XYGAP. ), of
value
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Z(LXYGAP, 1) =D 2+ > (Bpisy j — i ) (7.28)

i=1 j=1
hence the upper bound
Us = |z(LXYGAP, 1)) /(e + B)]. (7.29)

Jornsten and Niasberg (1986) have proved that, for o« + 3 = 1 and for the optimal
Lagrangian multipliers A*. p*,

Z(L(XYGAP , 1)) < z(L(GAP, \*)).
However, there is no analytical way to determine y*, and the multiplier adjustment
method of Section 7.2.3 does not appear adaptable to XYGAP. Jomsten and
Nisberg have proposed using a subgradient optimization algorithm to determine a

“good” u. At each iteration, the current y is updated by setting p;; = p; + t(yij —
x;) (i €M, j € N), where t is an appropriate positive step.

Example 7.2 (continued)

Using e = 3 = % and starting with p; =0 foralli € M. j € N, we obtain
) = 1 1 0 0 1
Y)=1 0 0 1 o)
i.e., the same solution found for U (Section 7.2.2), and
(yii) = 1 1 0 1 1
Y=o o 1 0 o)

i.e., the same solution found for Uy. The initial upper bound value is thus
Uy =|13+165] =29 (= Uy).

Assuming that the initial step is # = 1, we then have
i) = 0O 0 0 1 0)
F)= 21 0 1 -1 0)

(apij + pij) = (

1 0 1
(""f)‘(o 0 1 0 o)’

(ST IPCI S TR
[ T ST}
p— 9]

= NI

\——/

NIWwW Nt

—_
=
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SEREERE
7 3

(Bpij — pij) = ( ),

1

73 3 3 3

—
o
—
—

1

and the upper bound becomes
Us=|135+14.5] =28.

Further improvements could be obtained by iterating the procedure. []

7.3 EXACT ALGORITHMS

The most commonly used methods in the literature for the exact solution of GAP
are depth-first branch-and-bound algorithms.

In the Ross and Soland (1975) scheme, upper bound U, (see Section 7.2.1)
is computed at each node of the branch-decision tree. The branching variable is
selected through the information determined for computing U, . In fact, the variable
chosen to separate, x;-;», is the one, among those with y; =0 (i e M', j € N') in
the optimal solution to problems KP! (i € M'), for which the quantity

qj
wii/ (ci = Z:=1 Wikxik)

is a maximum. This variable represents an item j* which is “well fit” into knapsack
i*, considering both the penalty for re-assigning the item and the residual capacity
of the knapsack. Two branches are then generated by imposing x;»;» = 1 and
Xixj*» = 0.

In the Martello and Toth (1981c) scheme, upper bound min (U, . U,) (see Sections
7.2.1,7.2.2) is computed at each node of the branch-decision tree. In addition, at the
root node, a tighter upper bound on the global solution is determined by computing
min (U3, U,) (see Section 7.2.3). The information computed for U, determines the
branching as follows. The separation is performed on item

j*=argmax {/; :j EN°UN>},

i.e. on the item whose re-assignment is likely to produce the maximum decrease
of the objective function. If j* € N° m nodes are generated by assigning
j* to each knapsack in turn (as shown in Figure 7.1(a)); if j* € N>, with
M>(j*) = {i1,i2,...,im}, m — 1 nodes are generated by assigning j* to knapsacks
i1,...,im_1 in turn, and another node by excluding j* from knapsacks ij,. .., im_|

(as shown in Figure 7.1(b)). With this branching strategy, m single knapsack
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problems KP? must be solved to compute the upper bound associated with the root
node, but only one new KP? for each other node of the tree. In fact if j* € N,
imposing x;» = 1 requires only the solution of problem KP?, the solutions to
problems KP? (i # k) being unchanged with respect to the generating node; if
j* € N>, the strategy is the same as that used in the Martello and Toth (1980a)
algorithm for the 0-1 multiple knapsack problem (see Section 6.4.1), for which
we have shown that the solution of 7 problems KP? produces the upper bounds
corresponding to the m generated nodes.

Figure 7.1(a) Branching strategy when j* € N©

—l'j*=0

Figure 7.1(b) Branching strategy when j* € N¢

The execution of the above scheme is preceded by a preprocessing which: (a)
determines an approximate solution through a procedure, MTHG, described in the
next section; (b) reduces the size of the instance, through two procedures, MTRG1
and MTRG?2, described in Section 7.5. (Example 7.3 of Section 7.5 illustrates
the branching scheme.) At each decision node, a partial reduction is performed,
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by searching for unassigned items which can currently be assigned to only one
knapsack. The Fortran implementation of the resulting algorithm (MTG) is included
in the present volume.

In the Fisher, Jakumar and Van Wassenhove (1986) scheme, upper bound Uj;
(Section 7.2.3) is computed at each node of the branch-decision tree. The branching
variable is an x;»;+ corresponding to a w;.;» which is maximum over all variables
that have not been fixed to O or 1 at previous branches. Two nodes are then
generated by fixing x;»;» =1 and x;+;» = 0.

No scheme has been proposed by Jornsten and Nisberg (1986).

7.4 APPROXIMATE ALGORITHMS

As seen in Section 7.1, determining whether an instance of GAP (or MINGAP) has
a feasible solution is an NP-complete problem. It follows that, unless P = AP,
these problems admit no polynomial-time approximate algorithm with fixed worst-
case performance ratio, hence also no polynomial-time approximation scheme.

The following polynomial-time algorithm (Martello and Toth, 1981c) provides
approximate solutions to GAP. Let f;; be a measure of the “desirability” of assigning
item j to knapsack i. We iteratively consider all the unassigned items, and determine
the item j* having the maximum difference between the largest and the second
largest f;; (i € M); j* is then assigned to the knapsack for which fj;+ is a maximum.
In the second part of the algorithm the current solution is improved through local
exchanges. On output, if feas = “no”, no feasible solution has been determined;
otherwise the solution found, of value z", is stored in y; = (knapsack to which item
j is assigned), j = 1,...,n.

procedure MTHG:
input: n.m. (pi). wyj). (¢;). (fij);
output: z".(y)), feas;

begin
M ={l..... m};
U:={1,....n}
comment: initial solution;
feas = “yes”
fori:=1tomdoc =c;;
2" =0
while U# @ and feas = “yes” do
begin
d* = —oxc;
for eachj € U do

begin
Fi={ieM: w; <G}
if F; = @ then feas := “no”
else
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begin

i"=argmax { f;:i €F;};

if ;;\{i'"} =@ then d := +oc

else d :=f,; —maxy{ f; :i € F;};

if d > d” then
begin
d* =d,
i* =i
jt=i
end
end
end;
if feas = “yes” then
begin
yje =i
Zh =z +pi‘j‘v
Ci» 1=Ci» — Wirj»;
U:=U\{j"}
end

end;
comment: improvement;
if feas = “yes” then
forj :=1ton do

begin
i"=yj;
A= {py i e M\{i'}. wy <Ti};
if A # @ then
begin
let pirj = max A;
if p;; > p;i; then
begin
yj = i
2=zt — ppj +pinj;
Cit (=Cjr + Wi,
E,u = E,‘u - W,'//J
end
end
end

end.

Procedure MTHG can be implemented efficiently by initially sorting in
decreasing order, for each item j, the values f; (i € M) such that w; < T; (= ¢;).
This requires O (nm log m) time, and makes immediately available, at each iteration
in the inner loop, the pointers to the maximum and the second maximum element
of {fj : i € F;}. Hence the main while loop performs the O(n) assignments
within a total of O(n?) time. Whenever an item is assigned, the decrease in T;»
can make it necessary to update the pointers. Since, however, the above maxima
can only decrease during execution, a total of O (n?) operations is required by the
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algorithm for these checks and updatings. By finally observing that the exchange
phase clearly takes O(nm) time, we conclude that the overall time complexity of

MTHG is O (nmlogm + n?).

Computational experiments have shown that good results can be obtained using

the following choices for f;;:

(a) fij = p; (with this choice the improvement phase can be skipped);

®) fij = pij /wys

© fij = —wi;
) fy = —wi/ci.
Example 7.3

Consider the instance of GAP defined by

n =8;
m =3;
27 12
34 34
21 13
(W,'j) = (20 8
16 16

12 16 24
37 9 36
20 9 19
9 5 17
18 25 6
18 24 11

31
25
19

15
6
11
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13
34);
34

18

Let us consider execution of MTHG with f; =

algorithm gives

hence

jr=4
j* =
j* =
jr=1
jr=2
j*=6
jt=T
jt=5

2 d”
1 d”
1d* =
1 d* =
2 d”
2 d”
s d”
1dr =

24 26
6);(c,~)= (25

34

=19, w=1,¢, =21,

=12, yg

9, 3
=+0oc, y;
=8 »
=5 ¥
=11, ¥y

4, ys

=2,7,

=191, (y)=(. 2. 1. 1. 1. 2. 1. 2), @) = (0.

The second phase performs the exchanges

=19;
=12;
= 18;
=11;

5. 18).

).

—wj;. The first phase of the
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j=2iy2 =3,C_’2 =13,C_’3 =2;
j =5:y5 =2,E| = 7,52 =7;

so the solution found is

M =232, (y)=(G. 3. 1. 1.2. 2. 1. 2).J

A Fortran implementation of MTHG, which determines the best solution
obtainable with choices (a)-(d) for f;;, is included in the present volume. A more
complex approximate algorithm, involving a modified subgradient optimization
approach and branch-and-bound, can be found in Klastorin (1979).

Mazzola (1989) has derived from MTHG an approximate algorithm for the
generalization of GAP arising when the capacity constraints (7.2) are non-linear.

7.5 REDUCTION ALGORITHMS

The following algorithms (Martello and Toth, 1981c) can be used to reduce the
size of an instance of GAP. Let (y;) define a feasible solution (determined, for
example, by procedure MTHG of the previous section) of value z” = Z/"':l Py, .-

The first reduction algorithm receives in input the upper bound value U, of
Section 7.2.1 and the corresponding values i(j) = arg max {p; : i € M, w; <¢;}
(j € N). The algorithm fixes to O those variables x; which, if set to 1, would
decrease the bound to a value not greater than z”. (We obviously assume z" < Up.)
If, for some j, all x;; but one, say x;.;, are fixed to 0, then x;-; is fixed to 1. We
assume that, on input, all entries of (x;) are preset to a dummy value other than 0
or 1. On output, k;) (J € N) has the value |{x; : i € M, x; =0}/, and T; gives
the residual capacity of knapsack i (i € M); these values are used by the second
reduction algorithm. We also assume that, initially, ¢; = ¢; for all i € M. If, for
some j, all x; are fixed to 0, the feasible solution (y;) is optimal, hence the output
variable opt takes the value “yes”.

procedure MTRG1:
input: n.m. (p;j). wy). (@).z". Uo. (i (j)). (xi);
output: (x;). (k). (C;), opt ;
begin
opt := “no”,
Jj=0;
while j < n and opt = “no” do
begin
J=j+ 1
kj0 =0
fori :=1tomdo
if 2" > Uy — pi(j) j +pij or wy >T; then
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begin
Xjj == 0;
kP =kP+1
end
elsei* =1i;
if k;) =m — 1 then
begin
Xi*j = 1,
Ci» = E,’t — Wi»j
end
else if k = m then opt := “yes”

end
end.

The time complexity of MTRGI is clearly O(nm). When the execution fixes
some variable to 1, hence decreasing some capacity c¢;, further reductions can be
obtained by reapplying the procedure. Since n variables at most can be fixed to 1,
the resulting time complexity is O (n%m).

The second reduction algorithm receives in input (x;;), (k;)), (¢i), the upper bound
value U of Section 7.2.2 and, for each problem KP? (i € M), the corresponding
solution (%; i,...,%i,) and optimal value z;. Computation of the upper bounds of
Section 7.2.2,

ui(} = current upper bound on the solution value of KP,»2 if x; =0;

u;; = current upper bound on the solution value of KP/ if x; = 1,

is then used to fix to Xj; variables x; which, if set to 1 — %;, would give an
upper bound not greater than z". We assume that MTRG1 is first iteratively run,
then U, and the solutions to problems KP? are determined using the reductions
obtained. Consequently, the new algorithm cannot take decisions contradicting
those of MTRGI. It can, however, fix to 1 more than one variable in a column, or to
0 all the variables in a column. Such situations imply that the current approximate
solution is optimal, hence the output variable opt takes the value “yes”.

procedure MTRG2: .
input: n.m. (p;). w;). @).2". Uyp. (z). (&) (x;)- *;
output: (x;), opt;

begin
opt = “no”;
Jj=1
repeat
if k> < m — 1 then
begin
kl1:=0;

fori:=1tomdo
if Xjj # 0 then
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if w; > c; then

begin
x; =0
kO =k0+1
end ! !
else .
if % =0 and z" > Ug — z +u} then
begin
x; =0
kj0 = ij +1
end
else
begin
if k<1 =0theni* :=1;
|ffc,J =1 and z” > UO —Z; +u2 then
if k1=0thenkl:=1
else opt := “yes”
end;

if opt = “no” then
if k' =m —1 or k1=1then

begin
for /i :=1tom do x; :=0;
Xi=j = 1;
Ci» = Cir — Wirj;
k) =m—1
end
else
if k? = m then opt = “yes”
end;
ji=j+1
untilj > n or opt="yes”

end.

If uj) and uj; are computed through any of the O (n) methods of Sections 22 and

2.3, the time complexity of MTRG2 is O(mn?). In this case too, when a variable
has been fixed to 1, a new execution can produce further reductions.

Example 7.3 (continued)
Using the solution value z# = 232 found by MTHG and the upper bound value
Uy =263, MTRGI gives
j =7:x27 =0,x37=0, hence k¥ =2, s0
xi7 =1,0, =21

j =8: X1.8=O.
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Solving KP? (i = 1,2,3) for the reduced problem, we get
001 110 @ © 93\
&) = (0 00011 @ 1), (zi)= (95), Uy =256,
110000 @O 68
where fixed x; values are circled. Executing MTRG2 we have
J=1:x1=0,x,=0,hence x3; =1, c3 = 18;
j =4: Xp4 = 0, X34 = 0, hence x| 4 = 1,c, = 16.

The execution of the Martello and Toth (1981c) branch-and-bound algorithm
(see Section 7.3) follows. Computation of U, and Us for the root node gives

N°=@. N> ={5}, M>(5)={1,2}
“?5 = 89, “35 =85; Is =4, Uy =252;
Us = 245.

The branching scheme is shown in Figure 7.2. Since j* = 5, we generate nodes
1 and 2, and compute the corresponding bounds.

Uo=232=z"

Uo=232=z" Uo=229<z" U,=218<z"

Figure 7.2 Decision-tree for Example 7.3

Node 1:(%2,) =(0,0,1,0,0,0,0, 1), 2o =71, Ug =232 = z".
Node 2 : (%, ;) =(0,0,0,1,0,1,1,0),z, =88, U = 251;

N® = {3}, N> ={6}, M>©)={1, 2}

uly =69, w), =718, uly;=>54, Iy =14;

u?‘é =175, ugﬁ =96, [ =0;
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U, =237,
Up = U, = 263 (unchanged).

The highest penalty is /3 = 14, hence j* = 3 and nodes 3, 4, 5 are generated.

Node 3 : (% ;) =(0,0,1,1,0,0,1,0), z;, =69, Ugy=232=z".
Node 4 : (£ ;) =(0,0, 1,0, 1,0,0,0), z, =73, Uy = 229< z".
Node 5: (%3,) =(1,0,1,0,0,0,0,0), z3 =54, Uy =237;

N® ={2}, N> ={6}, M>(©)= {1, 2}

ul, =69, ul, =95 ul,=-~, Lh=0;
ule =69, ud¢ =75 lo=19;
U, =218 < z".

The approximate solution (y;) = (3, 3, 1, 1, 2, 2, 1, 2), of value z" = 232, is
thus optimal. []

7.6 COMPUTATIONAL EXPERIMENTS

Tables 7.1 to 7.4 compare the exact algorithms of Section 7.3 on four classes
of randomly generated problems. For the sake of uniformity with the literature
(Ross and Soland (1975), Martello and Toth (1981c¢), Fisher, Jaikumar and Van
Wassenhove (1986)), all generated instances are minimization problems of the
form (7.5), (7.2), (7.3), (7.4). All the algorithms we consider except the Ross
and Soland (1975) one, solve maximization problems, so the generated instances
are transformed through (7.7), using for ¢ the value

I =maX,em, jeN {(,’,'j} +1.
The classes are

(a) wy; uniformly random in [5, 25],
¢;j uniformly random in [1, 40],
¢ =9n/m)+04 max,'eM{ZjeNl witfori=1,...,m
(where N, is defined as in Section 7.2.1);

(b) wj; and ¢;; as for class (a),
¢i=0709n/m)+04 max,eM{ZjeNl wihfori=1,...,m;

(c) w; and ¢;; as for class (a),
¢i =08 Z;=1 wi/m fori=1,...,m;
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(d) wy; uniformly random in [1, 100],
¢;; uniformly random in [wy;. wy; + 20],
¢i =08 Z;':l wi/mfori=1,...,m.

Problems of class (a) have been proposed by Ross and Soland (1975) and generally
admit many feasible solutions. Problems of classes (b), (c) and (d) have tighter
capacity constraints; in addition, in problems of class (d) a correlation between
profits and weights (often found in real-world applications) has been introduced.

The entries in the tables give average running times (expressed in seconds) and
average numbers of nodes generated in the branch-decision tree. A time limit of
100 seconds was imposed on the running time spent by each algorithm for the
solution of a single instance. For data sets for which the time limit occurred,
the corresponding entry gives, in brackets, the number of instances solved within
100 seconds (the average values are computed by also considering the interrupted
instances). The cases where the time limit occurred for all the instances are denoted
as “time limit”. The following algorithms have been coded in Fortran IV and run
on an HP 9000/840 computer, using option “-0” for the Fortran compiler:

RS = Algorithm of Ross and Soland (1975);
MTG = Algorithm of Martello and Toth (1981c) as described in Section 7.3;
FJV = Algorithm of Fisher, Jaikumar and Van Wassenhove (1986);

MTGFJV = Algorithm MTG with upper bound min (U;, U3) (see Sections 7.2.2,
7.2.3) computed at each node of the branch-decision tree;

MTGIN = Algorithm MTG with upper bound min (U, U,,U,) (see Sections
7.2.1,7.2.2,7.2.4) computed at each node of the branch-decision tree.

For all the algorithms, the solution of the 0-1 single knapsack problems was
obtained using algorithm MT1 of Section 2.5.2.

For the computation of Uy, needed by MTGIN, the number of iterations in the
subgradient optimization procedure was limited to 50—as suggested by the authors
(Jornsten and Nisberg, 1986)—for the root node, and to 10 for the other nodes.
The Lagrangian multipliers were initially set to

n

l1ij=17=anZZpijv ieEM,jEN

i=l j=1

(as suggested by the authors) for the root node, and to the corresponding values
obtained at the end of the previous computation for the other nodes. (Different
choices of the number of iterations and of the initial values of the multipliers
produced worse computational results.) The step used, at iteration k£ of the
subgradient optimization procedure, to modify the current y; values was that
proposed by the authors, i.e.
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k 14
= =
k+1

The tables show that the fastest algorithms are RS for the “easy” instances of
class (a), and MTG for the harder instances (b), (c), (d). Algorithms MTGFJV and
MTGIN generate fewer nodes than MTG, but the global running times are larger
(the computation of U3 and U4 being much heavier than that of U, and U;), mainly
for problems of classes (b), (c) and (d).

Algorithm FJV is much worse than the other algorithms for all data sets,
contradicting, to a certain extent, the results presented for the same classes of
test problems in Fisher, Jaikumar and Van Wassenhove (1986). This could be
explained by observing that such results were obtained by comparing executions
on different computers and using different random instances. In addition, the current
implementation of MTG incorporates, for the root node, the computation of upper
bound Us;.

Table 7.5 gives the performance of the Fortran IV implementation of approximate
algorithm MTHG (Section 7.4) on large-size instances. The entries give average
running times (expressed in seconds) and, in brackets, upper bounds on the average
percentage errors. The percentage errors were computed as 100 (U —z")/U , where
U =min (U, U,, Us, U,). Only data sets (a), (b) and (c) are considered, since the
computation of U for data set (d) required excessive running times. Errors of value
0.000 indicate that all the solutions found were exact. The table shows that the
running times are quite small and, with few exceptions, practically independent

Table 7.5 Algorithm MTHG. HP 9000/840 in seconds. Average times (average percentage
errors) over 10 problems

m n Data set (a) Data set (b) Data set (c)
50 0.121(0.184) 0.140(5.434) 0.136(6.822)

5 100 0.287(0.063) 0.325(4.750) 0.318(5.731)

200 0.887(0.029) 0.869(4.547) 0.852(6.150)

500 2.654(0.012) 3.860(5.681) 3.887(6.145)

50 0.192(0.016) 0.225(3.425) 0.240(6.243)

10 100 0.457(0.019) 0.521(5.160) 0.550(5.908)
200 1.148(0.004) 1.271(4.799) 1.334(5.190)

500 3.888(0.006) 5.139(5.704) 5.175(5.553)

50 0.393(0.062) 0.399(1.228) 0.438(6.479)

20 100 0.743(0.002) 0.866(1.189) 0.888(5.187)
200 1.693(0.008) 2.011(2.140) 2.035(4.544)

500 2.967(0.000) 7.442(3.453) 7.351(4.367)

50 0.938(0.000) 0.832(0.125) 0.876(2.024)

50 100 0.728(0.005) 1.792(0.175) 2.016(4.041)
200 3.456(0.002) 3.849(0.296) 4.131(3.248)

500 2.879(0.000) 12.613(0.517) 12.647(3.198)
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of the data set. For n = 500 and data set (a), the first execution of MTHG (with
fii = pij) almost always produced an optimal solution of value z" = Uy, so the
computing times are considerably smaller than for the other data sets. The quality
of the solutions found by MTHG is very good for data set (a) and clearly worse for
the other data sets, especially for small values of m. However, it is not possible to
decide whether these high errors depend only on the approximate solution or also
on the upper bound values. Limited experiments indicated that the error computed
with respect to the optimal solution value tends to be about half that computed
with respect to U'.





