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Bin-packing problem

8.1 INTRODUCTION

The Bin-Packing Problem (BPP) can be described,using the terminology of

knapsack problems, as follows. Given n items and n knapsacks (or bins), with

Wj
= weight of item j,

c =
capacity of each bin,

assign each item to one bin so that the total weight of the items in each bin does
not exceed c and the number of bins usedis a minimum. A possible mathematical
formulation of the problem is

n

minimize ^ = /~>^' i^-^)
;= 1

n

subject to Z_]^j^ij ^ cyi, i E N = {I, ... ,n], (8.2)

n

Y,x,j
= 1, j e N, (8.3)

where

yi =

Xjj \342\200\224

ji =0 or 1, / G A^,

Xij
=0 or 1, / G N J G A^,

1 if bin / is used;

0 otherwise.

1 if item j is assigned to bin /;

0 otherwise.

(8.4)

(8.5)

We will suppose, as is usual, that the weights Wj
are positive integers. Hence,

without loss of generality, we will also assume that
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222 8 Bin-packing problem

c is a positive integer, (8.6)

Wj
<c forjeN. (8.7)

If assumption (8.6) is violated,c can be replaced by [cj. If an item violates

assumption (8.7), then the instance is trivially infeasible. There is no easy way,

instead, of transforming an instance so as to handle negative weights.
For the sake of simplicity we will also assume that, in any feasible solution, the

lowest indexed bins are used, i.e.y, > _y,+i for / = !,...,\302\253
\342\200\2241.

Almost the totality of the literature on BPP is concerned with approximate

algorithms and their performance. A thorough analysis of such results would require

a separate book (the brilliant survey by Coffman, Garey and Johnson A984), to

which the reader is referred, includes a bibliography of more than one hundred

references, and new results continue to appear in the literature). In Section 8.2 we

briefly summarize the classical results on approximate algorithms. The remainder of

the chapter is devoted to lowerbounds (Section 8.3), reduction procedures (Section
8.4) and exact algorithms (Section 8.5), on which very little can be found in the

literature. Computational experiments are reported in Section 8.6.

8.2 A BRIEF OUTLINE OF APPROXIMATE ALGORITHMS

The simplest approximate approach to the bin packing problem is the Next-Fit (NF)

algorithm. The first item is assigned to bin 1. Items 2,... ,n are then considered by

increasing indices: each item is assigned to the current bin, if it fits; otherwise, it

is assigned to a new bin, which becomes the current one. The time complexity of

the algorithm is clearly O(n). It is easy to prove that, for any instance / of BPP,
the solution value NFA) provided by the algorithm satisfies the bound

NF(I)<2z(I), (8.8)

where z(/) denotesthe optimal solution value. Furthermore, there exist instancesfor

which the ratio NF(l)/z(I) is arbitrarily close to 2, i.e. the worst-case performance
ratio of NF is r(NF) = 2. Note that, for a minimization problem, the worst-case

performance ratio of an approximate algorithm A is defined as the smallest real

number r(A) such that

A(l)
< r(/i) for all instances /,

z(/)

where A(I) denotes the solution value provided by A.

A better algorithm, First-Fit (FF), considersthe items according to increasing
indices and assigns each item to the lowest indexed initialized bin into which it

fits; only when the current item cannot fit into any initialized bin, is a new bin
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introduced. It has been proved in Johnson, Demers, Ullman, Garey and Graham

A974) that

^^(/)< Y^^@
+ 2 (8.9)

for all instances / of BPP, and that there exist instances /, with z (/) arbitrarily

large, for which

FF(/)>|^z(/)-8.
(8.10)

Because of the constant term in (8.9), as well as in analogous results for other

algorithms, the worst-case performance ratio cannot give completeinformation on

the worst-case behaviour. Instead, for the bin packing problem, the asymptotic
worst-case performanceratio is commonly used. For an approximate algorithm A,
this is defined as the minimum real number r'^{A) such that, for some positive

integer k,

Ail) < r^{A) for all instances / satisfying z(I) > k;
z(I)

it is then clear, from (8.9)-(8.10), that r\302\260^(FF)
=

|^.
The next algorithm, Best-Fit (BF), is obtained from FF by assigning the current

item to the feasible bin (if any) having the smallest residual capacity (breaking
ties in favour of the lowest indexed bin). Johnson, Demers,Ullman, Garey and

Graham A974) have proved that BF satisfies the same worst-case bounds as FF

(see (8.9)-(8.10)), hence r\302\260^(BF)
=

|^.
The time complexity of both FF and BF is 0(n\\ogn). This can be achieved by

using a 2-3 tree whose leaves store the current residual capacities of the initialized

bins. (A 2-3 tree is a tree in which: (a) every non-leaf node has 2 or 3 sons; (b)

every path from the root to a leaf has the same length /; (c) labels at the nodes

allow searching for a given leaf value, updating it, or inserting a new leaf in 0A)

time. We refer the reader to Aho, Hopcroft and Ullman A983) for details on this

data structure.) In this way each iteration of FF or BF requires 0(\\ogn) time, since
the number of leaves is bounded by n.

Assume now that the items are sorted so that

VVi > VV2 > . . . > W\342\200\236, (8.11)

and then NF or FF, or BF is applied. The resulting algorithms, of time complexity

0(n\\ogn), are called Next-Fit Decreasing (NFD),First-Fit Decreasing (FFD) and

Best-Fit Decreasing (BFD),respectively. The worst-case analysis of NFD has been
done by Baker and Coffman A981); that of FFD and BFD by Johnson, Demers,

Ullman, Garey and Graham A974), starting from an earlier result of Johnson A973)
who proved that

FFD(I)< \342\200\224
z(I) + 4 (8.12)
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Table 8.1 Asymptotic worst-case performance ratios of bin-packing algorithms

Algorithm

NF

FF

BF

NFD

FFD

BFD

Time complexity

0{n)

0(n\\ogn)

0(n\\ogn)

0(nlogn)

Oin\\ogn)

0(n\\ogn)

,.oc

2.000

1.700

1.700

1.691...

1.222...

1.222...

\342\200\236oc

^\\j2

2.000

1.500

1.500

1.424...

1.183...

1.183.,.

\342\200\236oc

'^1/3

1.500

1.333...

1.333...

1.302...

1.183...

1.183...

\342\200\236oc

'^1/4

1.333...

1.250

1.250

1.234...

1.150

1.150

for all instances /. The results are summarized in Table 8.1 (taken from Coffman,
Garey and Johnson A984)), in which the last three columns give, for a = ^, |, |,
the value r^ of the asymptotic worst-case performanceratio of the algorithms
when applied to instancessatisfying mini<y<\342\200\236{wy} < ac.

8.3 LOWER BOUNDS

Given a lower bounding procedure L for a minimization problem, let L(/) and z(/)
denote, respectively, the value produced by L and the optimal solution value for
instance /. The worst-caseperformance ratio of L is then defined as the largest
real number p{L) such that

L(/) > p(L) for all instances /.
z(/)

8.3.1 Relaxationsbasedlower bounds

For our model of BPP, the continuous relaxation C(BPP) of the problem, given

by (8.1)-(8.3) and

0 < J/ < 1, '\342\226\240e N,

0 <Xij < 1, / eNJ eN,

can be immediately solved by the values x\342\200\236
= 1, Xy =0 (j i i) and y,

= w,/c for
i \302\243N. Hence

n

z{C{BPP))=^Wi/c, (8.13)
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SO a lower bound for BPP is

L, = (8.14)

Lower bound Li dominates the bound provided by the surrogate relaxation

S(BPP, tt) given, for a positive vector (tt,) of multipliers, by

mmimize
-Ey>

subject to X]^' 'y^^J^'J \342\200\224^'
X]^'^\" (8.15)

(8.3). (8.4). (8.5).

First note that we do not allow any multiplier, say ttj, to take the value zero,
since this would immediately produce a useless solution xjj

= 1 for all j E N. We

then have the following

Theorem 8.1 For any instance of BPP the optimal vector of multipliers for

S(BPP, tt) is TT, = k (k any positive constant) for all i \302\243N.

Proof. Let 1 =
arg min {tt, : / G A^}. a = ttj, and suppose that (_y,*) and (x*j)

define

an optimal solution to S(BPP, tt). We can obtain a feasible solution of the same

value by setting, for eachy G A^, x-*,
= 1 and x,* = 0 for / ^ 1. Hence S(BPP. tt) is

equivalent to the problem

mmimize

; = 1

n n

subject to V^TT/y/ > \342\200\224
y^ wy,

;=1 j=i

yi = 0 or 1, / G N,

i.e., to a special case of the 0-1 knapsack problem in minimization form, for which

the optimal solution is trivially obtained by re-indexing the bins so that

TTi > 7r2 > ... > 7r\342\200\236(= a)

and setting y,
= 1 for / < 5 = min {I \302\243N : '}2r=i ^r > iot/c) Yll=\\ ^j}^ Ji - ^ for

i > s. Hence the choice ttj = a (= k, any positive constant) for all / G A^ produces

the maximum value of s, i.e. also of z(S(BPP. tt)). \342\226\241
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Corollary 8.1 When tt^ = k > Ofor all i eN, z(S(BPP.7r))=z(C(BPP)).

ProofWith this choice of multipliers, S(BPP, tt) becomes

minimize

;\342\200\242= !;\342\200\242= !

n n

subject to 2_]^j ^ <^
Z_]yi'

yi = 0 or 1, i e N,

whose optimal solution value is ^\"^.i Wj /c. \342\226\241

Lower bound Li also dominates the bound provided by the Lagrangian relaxation

L(BPP, n) defined, for a positive vector(/i,) of multipliers, by

n n I n \\

minimize ^y, \"*\342\226\240
5Z^' ^^J^'i

~ ^y' ^^^^^
/=! ,=1

\\;=i /

subject to (8.3), (8.4),(8.5).

(Here again no multiplier of value zero can be accepted.)

Theorem 8.2 For any instance of BPP the optimal choice of multipliers for
L(BPP,fi) is Hi

= l/cfor all i eN.

Proof We first prove that, given any vector (/i,), we can obtain a better (higher)

objective function value by setting, for all / G A^, /i/ = /if, where 1=
arg min { //, :

/ \302\243N]. In fact, by writing (8.16) as

n n n

minimize
yj(l

\342\200\224
cfii)yi + \\_]^j Z_]l^i^ij^

;\342\200\242= ! y=l , = 1

we see that the two terms can be optimized separately. The optimal (xij) values are

clearly Xij
= 0 for / ^1 and xjj

= 1, for all j \302\243N. It follows that, setting //,
= fij for

all i \302\243N, the first term is maximized, while the value of the second is unchanged.
Henceassume //,

= k for all i \302\243N (k any positive constant) and let us determine

the optimal value for k. L(BPP.fi) becomes

minimize y^(l
-

ck)yi +k
V^vvy (8.17)

/=! j=l

subject to _y,
= 0 or 1, / G N,
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and its optimal solution is

(a) yi
= 0 for all i eN, hence z{L{BPP,^))= k

Y!j=^ wy, if yt < 1/c,

(b) yi = 1 for all i eN, hence z(L(BPP,fi)) = n - k(cn -
J2j=\\ ^j)^ if ^ >

Vein both cases the highest value of the objective function Yll^i ^i/^ i^ provided by
k = \\/c.U

Corollary 8.2 When fi,
= k =

\\/c for all i eN, z(L(BPP,fi)) = z(C(BPP)).

Proof. Immediate from (8.17) and (8.13). D

A lower bound dominating L\\ can be obtained by dualizing in a Lagrangian
fashion constraints (8.3). Given a vector

(Ay)
of multipliers, the resulting relaxation,

L(BPP. X), can be written as

n I n \\ \"

minimize
Y^

I y, + Y^AyXy
-

Y^Ay (8.18)

'\342\200\242=1
\\ i=i / )=i

subject to (8.2), (8.4),(8.5),

which immediately decomposes into n independent and identical problems (one
for each bin). By observing that for any /, _y, will take the value 1 if and only if

Xij
= 1 for at least one j, the optimal solution is obtained by defining

j< = {j eN -.Xj <o}

and solving the 0-1 single knapsack problem

maximize z(A)
=

y^ (\342\200\224Xj)qj

subject to y^ Wj-qj
< c,

qj =0 or I, j eJ\"^.

If z(A) > 1 then, for all / G A^, we have _y,
= 1 and x,y

=
qj (with qj = 0 if

j G A^ V^) fory G N, otherwise we have _y,
=

x,y
= 0 for all i J e N. Hence

n

z(L(BPP,X)) = mm @,\302\253A -z(A)))- ^Ay.
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It is now easy to see that, with the choice
Xj

=
\342\200\224wj/cfor ally G A^, the resulting

bound coincides with Li. The objective function of the knapsack problem is in fact

(Eje/< ^j^j)/c. with y< =
A^, so z(A) < 1 and z(L(BPP J)) =

X]J=i wj/c
=

z(C(BPP)).
Better multipliers can be obtained by using subgradient optimization techniques.

Computational experiments, however, gave results worse than those obtained with

the bounds described in the following sections.

8.3.2 A stronger lower bound

We first observe that the worst-case performance ratio of Li can easily be
establishedas r(Li) = 5. Note, in fact, that in any optimal solution (jCy)

of

value z, at most one bin (say the zth) can have
Yl%\\ ^j^zj ^ <^/2 since, if

two such bins existed, they could be replacedby a single bin. Hence ^\"=1wy >

E?=V E\"=i ^J^iJ > (^ - l)c/2, from which z <
\\2J2\"^^ Wj/c] and, from (8.14),

Li/z > ^. To see that the ratio is tight, it is enough to consider the series of

instances with Wy
= ^ + 1 for all j \302\243N and c = 2k, for which z = n and

Li =
\\n(k + I)/2k'], so the ratio Li/z can be arbitrarily close to ^ for k sufficiently

large.

Despite its simplicity, Li can be expectedto have good average behaviour for

problems where the weights are sufficiently small with respect to the capacity,
since in such cases the evaluation is not greatly affected by the relaxation of the

integrality constraints. For problems with larger weights, in which few items can
be allocated, on average, to each bin, Martello and Toth A990b) have proposed
the following better bound.

Theorem 8.3 Given any instance 1 ofBPP, and any integer a . 0 < a < c/2, let

J\\ = {j eN :
wj >c-a},

J2= {j e N : c - a>Wj > c/2],

J^ = {j eN : c/2 >
wj

> a};

then

L(a) =
I y 11 + I ^21 + max 0,

Ejeh'^j -(l-^2|c-E,e/,>^y) (8.19)

isa lower hound ofz(I).
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Proof. Each item in J\\ [JJ2 requires a separate bin, so 1/11 + 1/21 bins are needed

for them in any feasible solution. Let us relax the instance by replacing A^ with

{J\\ \\JJ2 U/s). Because of the capacity constraint, no item in ^3 can be assigned to
a bin containing an item of J\\. The total residual capacity of the [721 bins needed

for the items in ^2 is c = 172^\342\200\224
X],^/, vvy. In the best case c will be completely

filled by items in ^3, so the remaining total weight vv =
Y^j^j^ ^'j

\342\200\224c, if any, will

require [vv/c] additional bins. Q

Corollary 8.3 Given any instance I of BPP,

L2= max {L(a) : 0 < a < c/2, a integer] (8.20)

is a lower bound ofz(I).

Proof Obvious.\342\226\241

Lower bound L2 dominates Li. In fact, for any instance of BPP, using the value

Q = 0, we have, from (8.19),

L@)= 0+1/2!+max 0,
E,e/v^y-U2IC

= 1/21+ max (O.Li
- 1721),

hence L2 > L@)
= max (|721-^1 )\342\200\242

Computing L2 through (8.20) would require a pseudo-polynomial time. The same
value, however, can be determined efficiently as follows.

Theorem 8.4 Let V be the set of all the distinct values Wj
< c/2. Then

( n if V =0;
L2=<

[ max {L(a) : a \302\243V } othem'ise.

Proof. If V = 0 the thesis is obvious from (8.19). Assuming Vf^ 0, we prove that,

given a\\ < ^2, if ^i and Q2 produce the same set ^3, then L(a\\) < L(a2). In

fact: (a) the value |7i | + |72| is independent of a, (b) the value (|y2|c
~

II/e/2 ^J^
producedby ai is no less than the corresponding value produced by Q2, since set

J2 produced by Q2 is a subset of set J2 produced by ai. Hence the thesis, since
only distinct values Wj

< c/2 produce, when used as a, different sets ^3, and each
value Wj dominates the values Wj

\342\200\2241 vvy+i + 1 (by assuming that the weights

satisfy (8.11)). D
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Corollary 8.4 // the items are sorted according to decreasing weights, L2 can be

computed in 0(n) time.

Proof. Let

j* =min {j eN :
wj

< c/2};

from Theorem 8.4, L2 can be determined by computing L(Wj) for j = j*, j* +

I,... ,n, by considering only distinct Wy values. The computation of
L(wy*) clearly

requires 0(n) time. Since 1/11+1/2!is a constant, the computation of each new L(wj)
simply requires to update \\J2\\, H/g/^vvy

and J2iej ^J- Hence all the updatings

can be computed in 0(n) time since they correspond to a constant time for each

j =j* + l,...,n.\\J

The average efficiency of the above computation can be improved as follows.
At any iteration, let L^ be the largest L(wj) value computed so far. If jJi | + |y2|+

\\(Ylj=i* ^j
~

(\\J2\\c
-

IIye/2^;))/cl
< ^2' ^^^^ (s^^point (b) in the proof of

Theorem8.4)no further iteration could produce a better bound, so L2 = L^.

Example 8.1

Considerthe instance of BPP defined by

n =9,

(Wj)
= G0, 60, 50, 33, 33, 33, 11,7, 3),

c = 100.

An optimal solution requires 4 bins for item sets {1, 7, 8, 9},{2,4},{3,5} and

{6}, respectively.
From (8.14),

Li = [300/100]=3.

In order to determine L2 we compute,using (8.19) and Corollary 8.4,

LE0) = 2 +0 + max @, [E0
- 0)/100]) = 3;

LC3)= 1+ 1 +max @,[A49
- 40)/100]) = 4;

since at this point we have 1+ 1+ [A70
\342\200\224

40)/100]
= 4, the computation can be

terminated with L2 = 4. \342\226\241

The following procedure efficiently computes L2. It is assumed that, on input,

the items are sorted according to (8.11)and w\342\200\236< c/2. (If w\342\200\236> c/2 then, trivially,

L2 = n = z.) Figure 8.1 illustrates the meaning of the main variables of the

procedure.
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Wi

Wj > ^ w,<\302\247

SJ2 SJ3

SJ

Figure 8.1 Main variables in procedure L2

procedure L2:
input: n.(Wj).c;

output: L2;

begin
A^ := {1 n};
j* := min{y e N :

Wj
< c/2};

ify* =
lthenL2:=[^;^,w,/cl

else
begin

Cjn \342\226\240=]*
- 1 (comment :CJ 12= \\Ji\\ + \\J2\\y,

j' := min{y e N : j < j* and wj
< c -

wj* }(j' :=]* if no such wy);
CJ2 :=]* -j' (comment : CJ2= \\J2\\) ;

SJ2 := E/=;^' ^y (comment : 572 =
J2jeJ2 ^/)=

573 :=w
w\342\200\236+i:= 0;

while wy>'+i
=

wy>> do
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begin
J\":=j\"+U
SJ3 :=SJ3+ Wj>

end (comment : SJ3 = J2jeA ^i

L2 :=Cyi2;

repeat
L2 := max(L2.Cy 12+\\(SJ3 + SJ2)/c

- CJl]);
j\" :=j\"+ l;

\\ij\" < n then

begin
573 \342\226\240.=SJ3 + Wjn;
while wy>+1

=
Wjn do

begin

573 \342\226\240=SJ3+ Wjn
end;

whiley' > 1 and wy>_i
< c -

wy\302\273do

begin

y':=y'-i;
Cy2:=Cy2+l;
572 \342\226\240=SJ2+

Wj>

end

end

untily\" > \302\253or Cy 12 + \\{SJ* +SJ2)/c
- CJ2'] < L2

end
end.

The worst-case performance ratio of L2 is established by the following

Theorem 8.5 r(L2)=f.

Proof. Let / be any instance of BPP and z its optimal solution value. We prove

that L2 > L@) > |z. Hence,let a = 0, i.e. Jx = 0, J2 = {j e N : Wj > c/2}, J^ =

N\\J2. If ^3 = 0, then, from (8.19), L@) =\\J2\\= n =z. Hence assume^3 ^ 0. Let

I denote the instance we obtain by relaxing the integrality constraints on
Xij

for

all j G ^3 and / G A^. It is clear that L@) is the value of the optimal solution to T,
which can be obtained as follows. 172]bins are first initialized for the items in J2.

Then, for each item j G ^3, let /'* denote the lowest indexed bin not completely
filled (if no such bin, initialize a new one) and c(/*) < c its residual capacity. If

Wj
< c(i*) then item y is assigned to bin /'*; otherwise item y is replaced by two

items y'l .y2 with
wy,

= c(/*) and Wj^
=

Wj
\342\200\224

wy,, itemy'i is assigned to bin /'* and the

process is continued with item y2. In this solution L@)
\342\200\2241 items at most are split

(no splitting can occur in the L@)th bin). We can now obtain a feasible solution
of value z > z to / by removing the split items from the previous solution and

assigning them to new bins. By the definition of ^3, at most \\(L@)
\342\200\224

l)/2] new

bins are needed, so z < L@) + [L@)/2J, hence
\302\247L@) > z.

To prove that the ratio is tight, consider the series of instances with n even.
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Wj
= ^ + 1 (k > 2) for y

= l,...,n and c = 3^. We have z = n/2 and

L2 = L(k + 1)= \\n(k + l)/C^)], so ratio L2/Z can be arbitrarily close to | for k

sufficiently large. Q

It is worthy of note that lower bounds with better worst-case performance
can easily be obtained from approximate algorithms. We can use, for example,

algorithm BFD of Section 8.2 to produce, for any instance /, a solution of value

BFD(I). This solution (see Johnson, Demers, Ullman, Garey and Graham A974))

satisfies the same worst-casebound as FFD(I), so we trivially obtain a lower bound

(see (8.12))

LBFD(I)= \342\200\224(BFD(I)
- 4), (8.21)

whose worst-caseperformance is smaller than that of L2 for z (/) sufficiently large,

and asymptotically tends to fj. Since however BFD(I) is known to be, in general,

close to z (/), the average performance of LBFD is quite poor (as will be seen in

Section 8.6).

8.4 REDUCTION ALGORITHMS

The reduction techniques described in the present sectionare based on the following
dominance criterion (Martello and Toth, 1990b).

We define 2l feasible set as a subset F C N such that '}2ieF ^J \342\200\224*-\342\200\242Given two

feasible sets Fi and F2, we say that Fi dominates F2 if the value of the optimal
solution which can be obtained by imposing for a bin, say /*, the values Xi*j

= 1

if y G F\\ and Xj*j
= 0 if j ^ F\\, is no greater than the value that can be obtained

by forcing the values x/*y
= I if j \302\243F2 and Xi*j

= 0 if j ^ F2. A possible way to

check such situations is the following

Dominance Criterion Given two distinct feasible sets F\\ and F2, if a partition

of F2 into subsets P\\,... ,Pi and a subset {yi,... ,ji} of F\\ exist such that Wj^
>

J2kePh ^'^ f^^ ^ ~ 1'\342\200\242\342\200\242\342\200\242'^' ^^^^ ^1 dominates F2.

Proof Completing the solution through assignment of the items in A^\\Fi is
easier than through assignment of the items in N\\F2. In fact: (a) J2j^i^\\p-^ wy

<

J2ieN\\F2 ^p (^) ^^^^'^y feasible assignment of an itemy'/, G {yi, \342\200\242\342\200\242\342\200\242Ji} C Fi there
exists a feasibleassignment of the items in P/, C F2 (while the opposite does not

hold). D

If a feasible set F dominates all the others, then the items of F can be assigned
to a bin and removed from A^. Checking all such situations, however, is clearly
impractical. The following algorithm limits the search to sets of cardinality not

greater than 3 and avoids the enumeration of useless sets. It considers the items

according to decreasing weights and, for each itemy, it checks for the existence of a
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feasible set F such thaty G F, with 1 F | < 3, dominating all feasible sets containing

item j. Whenever such a set is found, the corresponding items are assigned to a
new bin and the search continues with the remaining items. It is assumed that, on

input, the items are sorted according to (8.11). On output, z' gives the number of

optimally filled bins, and, for each j \302\243N,

bj
=

0 if item j has not been assigned;

bin to which it has been assigned, otherwise.

procedure MTRP:

input: n.(wj).c;

output: z''.(bj);
begin

A^:={1 n};
W :=0;

z' :=0;

fory := I Xo n do
bj

:= 0;

repeat _
findy

= m\\n{h : h e N\\N};
let A^' = A^\\{y} =

{yi ji} with
w\342\200\236

> ... > wy,
F :=0;
find the largest k such that wy + I^^=/_^+i w;^

< c;

if yt =OthenF := {y}
else

begin
y* := min {h e N' : wj

+ w/, < c};
if ^ = 1 or

Wj + Wj*
= c then F := [j-j*]

else if ^ = 2 then

begin
i\\n6ja.jh G A^', with a < b, such that

Wj^ +
Wji^

= max {wy, + Wj,, :

jrjs G A^'. Wj
+

Wj, +
Wj^

< c};
if Wj. >

Wj^
+

Wj^ then F := {y.y*}
else if Wj*

=
Wj^ and (b - a <2

or Wy +Wy,_i +Wy,_2 > c)
thenF :={j.jajh}

end

end; _ _
if F =0thenAf := N U{y}
else

begin
z' :=z''+ l;

for each h e F do bh = z';

N \342\226\240=N\\F

end

until Af\\Af =0

end.
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At each iteration, k +1 gives the maximum cardinality of a feasible set containing

item j. Hence it immediately follows from the dominance criterion that F = {j]
when ^ = 0, and F = {j,j*} when ^ = 1 or

wy
+ Wj*

= c. When k = 2, (a) if

Wj* >
Wj^ +Wj^ then set {j*} dominates all pairs of items (and, by definition of y*,

all singletons) which can be packed together withy, so {j .j*} dominates all feasible
sets containing j; (b) if

Wj
* =

Wj^
and either b \342\200\224a < 2 or

wy
+ wy^ _ i + w^,, _ 2 > c then

set {jajh} dominates all pairs and all singletons which can be packed together
with j.

The time complexity of MTRPis 0{n^).In fact, the repeat-until loop is executed
O(n) times. At each iteration, the heaviest step is the determination of ja and jh,
which can easily be implemented so as to require 0(n) time, since the pointers r

and s (assuming r < s) must be moved only from left to right and from right to

left, respectively.
The reduction procedure abovecan also be used to determine a new lowerbound

L3. After execution of procedure MTRP for an instance / of BPP, let zf denote
the output value of z'^, and /(z[) the corresponding residual instance, defined by

item set {j \302\243N : bj
= 0}. It is obvious that a lower bound for / is given by

zj +L(I(z[)), where L(I(z'^)) denotes the value of any lower bound for /(z[).

(Note that zf +L(/(z[)) > L(/).) Suppose now that /(zf) is relaxed in some way

(see below) and MTRP is applied to the relaxed instance, producing the output

value Z2 and a residual relaxed instance/(z[.Z2). A lower bound for / is then

z[ +Z2 +L(/(z[.Z2)). Iterating the process we obtain a series of lower bounds of

the form

L3=z[+Z2^ + ...+L(/(zCz^-,...)).

The following procedure computes the maximum of the above bounds, using L2
for L. At each iteration, the current residual instance is relaxed through removal

of the smallest item. It is assumed that on input the items are sorted according to

(8.11).

procedureL3:

input: n.(wj).c;

output: L3;
begin

L3 :=0;
z :=0;

Ti := n;

fory := I to n do Wj :=
wy;

while n > I do

begin _
call MTRP giving n. (vvy) and c, yielding z' and (bj);
z := z + z'';

k := 0;
for y := I XoTi do

if bj
= 0 then
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begin
k \342\226\240.=k + \\;

Wk := Wj

end;

It := k]
if \302\253= 0 then L2 := 0
else callL2 giving Ti. (Wj) and c, yielding L2;

L3 := max(L3.z +L2);
n \342\226\240=n\342\200\2241 (comment: removal of the smallest item)

end

end.

Since MTRP runs in 0(n^) time, the overall time complexity of L3 is 0(n^). It

is clear that L3 > L2.
Note that only the reduction determined in the first iteration of MTRP is valid

for the original instance, since the other reductions are obtained after one or more

relaxations. If however, after the execution of L3, all the removed items can be

assigned to the bins filled up by the executions of MTRP, then we obtain a feasible
solution of value L3, i.e. optimal.

Example 8.2

Considerthe instance of BPP defined by

n = 14,

(Wj) = (99, 94, 79, 64, 50, 46, 43, 37, 32, 19,18,7, 6, 3),

c = 100.

The first execution of MTRP gives

j =l:k =0,F = {1};
j =2:k =\\,j*

= \\3,F = {2. 13},

and F = 0 fory > 3. Hence

z =2; (bj)
= A,2,0,0, 0, 0, 0, 0, 0, 0, 0, 0,2,0);

executing L2 for the residual instance we get L2 = 4, so

^3=6.

Item 14 is now removed and MTRP is applied to item set {3, 4,..., 12},
producing (indices refer to the original instance)
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j = 3:k = l,j* = lO,F=
{3, 10};

j = 4: k = 2,j*= 9,ja=
\\lJf,

= n,F = {4,9};

j = 5: k=2,j*= 6,ja= l,h = n,F=0-

j = 6: k=2,j*= 5Ja= 7,7,= 12,F = {6, 5};

7=7: k=2,j*= 8,7, = 8,7,= 11,F = {7, 8, 11};

7 =l2:k=0,F = {12};

numbering the new bins with 3, 4,..., 7 we thus obtain

z = 7; (bj) =
A, 2, 3, 4, 5, 5, 6, 6, 4, 3, 6, 7, 2, - );

hence L2 = 0 (since Tf = 0) and the execution terminates with L3 = 7.

Noting now that the eliminated item 14 can be assigned,for example to bin 4,
we conclude that all reductions are valid for the original instance. The solution
obtained (with ft 14 = 4) is also optimal, since all items are assigned. Q

8.5 EXACT ALGORITHMS

As already mentioned, very little can be found in the literature on the exact solution
of BPP.

Eilon and Christofides A971) have presented a simple depth-first enumerative

algorithm based on the following \"best-fit decreasing\" branching strategy. At any

decision node, assuming that b bins have been initialized, let (c,,,...,c,J denote

their current residual capacities sorted by increasing value, and c,,,^,
=

Cf,+ \\
= c the

capacity of the next (not yet initialized) bin: the branching phase assigns the free
item 7* of largest weight, in turn, to bins is,..., ih-ih+\\, where s = min {h : I <
h < b + \\, c,,, +

vvy*
< c}. Lower bound Li (see Section8.3.1)is used to fathom

decision nodes.
Hung and Brown A978) have presented a branch-and-bound algorithm for a

generalization of BPP to the case in which the bins are allowedto have different

capacities. Their branching strategy is based on a characterization of equivalent

assignments, which reduces the number of exploreddecisionnodes.The lower

bound employed is again Li.

We do not give further details on these algorithms, since the computational results

reported in Eilon and Christofides A971) and Hung and Brown A978) indicate that

they can solve only small-size instances.

Martello and Toth A989) have proposed an algorithm, MTP, based on a \"first-

fit decreasing\" branching strategy. The items are initially sorted according to

decreasing weights. The algorithm indexes the bins according to the order in

which they are initialized. At each decision node, the first (i.e. largest) free item is
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assigned, in turn, to the feasible initialized bins (by increasing index) and to a new

bin. At any forward step, (a) procedures L2 and then L3 are called to attempt to

fathom the node and reduce the current problem; (b) when no fathoming occurs,

approximate algorithms FFD, BFD (see Section 8.2) and WFD are applied to
the current problem, to try and improve the best solution so far. (A Worst-Fit

Decreasing (WFD) approximate algorithm for BPP sorts the items by decreasing

weights and assigns each item to the feasible initialized bin (if any) of largest

residual capacity.) A backtracking step implies the removal of the current itemy*

from its current bin / *, and its assignment to the next feasible bin (but backtracking

occurs if/* had been initialized byy'*, since initializing /*-i-l withy* would produce

an identical situation). If z is the value of the current optimal solution, whenever

backtracking must occur, it is performed on the last item assigned to a bin of index

not greater than z \342\200\2242 (since backtracking on any item assigned to bin z or z \342\200\2241

would produce solutions requiring at least z bins).
In addition, the following dominance criterion betweendecisionnodes is used.

When the current item j* is assigned to a bin /* whose residual capacity c,* is
less than Wj* + Wn, this assignment dominates all the assignments to /* of items

j > j* which do not allow the insertion of at least one further item. Hence such

assignment \"closes\" bin /*, in the sense that, after backtracking on j*, no item

j \302\243{k > j* : Wk +Wn > c/*} is assigned to /*; the bin is \"re-opened\" when the

first item j > j* for which wy + w\342\200\236< c,* is considered or, if no such item exists,

when the first backtracking on an item / < y* is performed.

Since at any decision node the current residual capacities c, of the bins are

different, the computation of lower bounds L2 and L3 must take into account this

situation. An easy way is to relax the current instance by adding one extra item of
weight c \342\200\224

c, to the free items for each initialized bin /, and by supposing that all

the bins have capacity c.

Example 8.3

Consider the instance of MTP defined by

n = 10;

(wy)
= D9, 41, 34, 33, 29, 26, 26, 22, 20, 19);

c = 100.

We define a feasible solution through vector (bj), with

bj = bin to which item y is assigned (y = 1, ... ,\302\253);

Figure 8.2 gives the decision-tree producedby algorithm MTP. Initially, all lower
bound computations give the value 3, while approximate algorithm FFD gives the

first feasible solution



2=L3=3
(^

dominated :=3 (optimal)
(hj)={l.2.3.2.l.23A33)

b6=3

610=4

z=4

(/7^)=A.1.2.2.2.3.3.3,3.4)

Figure 8.2 Decision-treefor Example 8.3
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z =4,

{hj) =
A, 1, 2, 2, 2, 3, 3, 3, 3, 4),

corresponding to decision-nodes 1-10. No second son is generatedby nodes 5-9,

since this would produce a solution of value 4 or more. Nodes 11 and 12 are
fathomed by lower bound Lj. The first son of node 2 initializes bin 2, so no further

son is generated. The first son of node 13 is dominated by node 2, since in both
situations no further item can be assigned to bin 1; for the same reason node 2

dominates the first son of node 15.Node 14 is fathomed by lower bound Lj. At

node 16, procedure MTRP(calledby L3) is applied to problem

rt = 9,

(vvy)
= G4, 49, 34, 29, 26, 26, 22, 20, 19),

c = 100,

and optimally assigns to bin 2 the first and fifth of these items (corresponding to

items 2, 4 and 6 of the original instance). Then, by executing the approximate

algorithm FFD for the reduced instance

(wj) = (-, -, -, -, 29,-, 26,22,20,19),
(Ci) =E1,0, 66, 100, 100, ...),

where r, denotes the residual capacity of bin /, we obtain

(hj) = (_ _ _ _ i,_ 3, 1,3, 3),

hence an overall solution of value 3, i.e. optimal. \342\226\241

The Fortran implementation of algorithm MTP is included in the present volume.

8.6 COMPUTATIONALEXPERIMENTS

In this section we examine the average computational performance of the lower

bounds (Sections 8.3-8.4) and of the exact algorithm MTP (Section 8.5).The

procedures have been coded in Fortran IV and run on an HP 9000/840 (using

option \"-o\" for the compiler) on three classes of randomly generated item sizes:

Class 1: Wj uniformly random in [ 1, 100];

Class2: Wj uniformly random in [20, 100];

Class3: Wj uniformly random in [50, 100].
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For each class,three values of c have been considered:c = 100, c = 120,
c = 150. For each pair (class, value of c) and for different values of n (n =

50, 100,200,500,1000),20 instances have been generated.
In Tables 8.2-8.4 we examine the behaviour of lower bounds LBFD, LI, L2

and L3. The entries give, for each bound, the average computing time (expressed
in seconds and not comprehensive of the sorting time), the average percentage
error and, in brackets, the number of times the value of the lower bound coincided

with that of the optimal solution. LBFD requires times almost independent of
the data generation and, because of the good approximation produced by the
best-fit decreasing algorithm, gives high errors, tending to ^ when n grows. L\\

obviously requires very small times, practically independent of the data generation;
the tightness improves when the ratio c/minj{wj] grows, since the computation is

based on continuous relaxation of the problem. L2 requires slightly higher times,

but produces tighter values; for class 1 it improves when c grows, for classes 2 and

3 it get worse when c grows. The times required by L3 are in general comparatively
very high (because of the iterated execution of reduction procedure MTRP), and

clearly grow both with n and c, the approximation produced is generally very good,

with few exceptions.
Note that the problems generated can be considered\"hard\", since few items are

packed in each bin. Using the value c = 1000,L\\ requires the same times and

almost always produces the optimal solution value.

Table 8.5 gives the results obtained by the exact algorithm MTP for the instances
used for the previous tables. The entries give averagerunning time (expressed in

seconds and comprehensive of the sorting time) and average number of nodes

Table 8.5 Algorithm MTP. HP 9000/840 in seconds. Average times/Average numbers of
nodes over 20 problems

Class

1

2

3

n

50
100
200
500

1000

50

100
200
500

1000

50
100

200

500

1000

c = 100
Time

0.006

0.012

5.391
10.236
20.206A6)

0.005
0.012
0.047

0.127

15.524A7)

0.005
0.010
0.019
0.049
0.102

Nodes

0

1

1114

2805

2686

0
1

11

28

3896

0
0
0
0
0

c = 120

Time

0.005

15.022A7)
0.062

10.340
6.596

0.008

0.030

0.073

10.062

30.148A4)

0.005
0.010
0.020

0.050

0.104

Nodes

0
3561

6
887
244

1

9

18

1663
4774

0
0
0
0
0

c = 150

Time

0.096

0.156
0.140
2.124
8.958

0.183
26.599A5)

69.438( 7)
\342\200\224

\342\200\224

0.005

0.010

0.018
0.051
0.105

Nodes

11
29

10

28

44

61
4275
8685
\342\200\224

\342\200\224

0

0

0
0
0
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explored in the branch-decision tree. A time limit of 100 seconds was assigned
to the algorithm for each problem instance.When the time limit occurred, the

corresponding entry gives, in brackets, the number of instances solved to optimality

(the average values are computed by also considering the interrupted instances).
When less than half of the 20 instances generated for an entry was completed,

larger values of n were not considered.

All the instances of Class 3 were solvedvery quickly, since procedure L3 always

produced the optimal solution. For Class 1 the results are very satisfactory, with

few exceptions. On Class 2, the behaviour of the algorithm was better than on

Class 1 for c = 100, about the same for c = 120, and clearly worse for c = 150.
Worth noting is that in only a few cases the optimal solution was found by the

approximate algorithms used.




