

KNAPSACK PROBLEMS

Algorithms and Computer
Implementations

Silvano Martello

and

Paolo Toth

DEIS, University of Bologna

JOHN WILEY & SONS
Chichester \342\226\240New York \342\226\240Brisbane \342\226\240Toronto \342\226\240

Singapore

Copyright \302\2511990 by John Wiley & SonsLtd.

Baffins Lane, Chichester
West SussexP019 lUD, England

All rights reserved.

No part of this book may be reproduced by any means,
or transmitted, or translated into a machine language

without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box859, Brisbane,

Queensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale, Ontario M9W ILl, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin #05-04,
Block B, Union Industrial Building, Singapore 2057

Library of Congress Cataloging-in-Publication Data:

Martello, Silvano.

Knapsack problems : algorithms and computer implementations

Silvano Martello, Paolo Toth.

p. cm. \342\200\224(Wiley-Interscience series in discrete mathematics

and optimization)
Includes bibliographical references.

ISBN 0 471 92420 2
1. Computational complexity. 2. Mathematical optimization.

. Integer programming.

90-12279

CIP

3. Algorithms.

I. Toth, Paolo.

QA 267.7.M37
51l'.8\342\200\224dc20

4.

II.
1990

Linear programming.

Title. III. Series.

British Library Cataloguing in Publication Data:
Martello, Silvano

Knapsack problems : algorithms and computer
implementations.
1. Linear programming. Computation
I. Title II. Toth, Paolo
519.72

ISBN 0 471 924202

Printed in Great Britain by Biddies Ltd, Guildford

Contents

Preface

Introduction 1

1.1 What are knapsack problems? 1

1.2 Terminology 2
1.3 Computational complexity 6
1.4 Lower and upper bounds 9

0-1 Knapsack problem 13
2.1 Introduction 13

2.2 Relaxations and upper bounds 16

2.2.1 Linear programming relaxation and Dantzig's bound 16

2.2.2 Finding the critical item in 0(n) time 17

2.2.3 Lagrangian relaxation 19

2.3 Improved bounds 20

2.3.1 Bounds from additional constraints 20
2.3.2 Bounds from Lagrangian relaxations 23
2.3.3 Bounds from partial enumeration 24

2.4 The greedy algorithm 27

2.5 Branch-and-bound algorithms 29

2.5.1 The Horowitz-Sahni algorithm 30

2.5.2 The Martello-Toth algorithm 32

2.6 Dynamic programming algorithms 36

2.6.1 Elimination of dominated states 39
2.6.2 The Horowitz-Sahni algorithm 43

2.6.3 The Toth algorithm 44

2.7 Reduction algorithms 45

2.8 Approximate algorithms 50
2.8.1 Polynomial-time approximation schemes 50
2.8.2 Fully polynomial-time approximation schemes 53
2.8.3 Probabilistic analysis 56

2.9 Exact algorithms for large-size problems 57
2.9.1 The Balas-Zemel algorithm 58
2.9.2 The Fayard-Plateau algorithm 60
2.9.3 The Martello-Toth algorithm 61

2.10 Computational experiments 67

2.10.1 Exact algorithms 68
2.10.2 Approximate algorithms 71

2.11 Facets of the knapsack poly tope 74
2.12 The multiple-choice knapsack problem 77

ii Contents

Bounded knapsack problem 81
3.1 Introduction 81

3.2 Transformation into a 0-1 knapsack problem 82

3.3 Upper bounds and approximate algorithms 84
3.3.1 Upper bounds 84
3.3.2 Approximate algorithms 86

3.4 Exact algorithms 87

3.4.1 Dynamic programming 88

3.4.2 Branch-and-bound 88

3.5 Computational experiments 89
3.6 A special case: the unbounded knapsack problem 91

3.6.1 Upper bounds and approximate algorithms 92

3.6.2 Exact algorithms 95

3.6.3 An exact algorithm for large-size problems 98

3.6.4 Computational experiments 102

4 Subset-sum problem 105
4.1 Introduction 105

4.2 Exact algorithms 106
4.2.1 Dynamic programming 106
4.2.2 A hybrid algorithm 109
4.2.3 An algorithm for large-size problems 116

4.3 Approximate algorithms 117
4.3.1 Greedy algorithms 117
4.3.2 Polynomial-time approximation schemes 120
4.3.3 Fully polynomial-time approximation schemes 125
4.3.4 Probabilistic analysis 126

4.4 Computational experiments 128

4.4.1 Exact algorithms 129
4.4.2 Approximate algorithms 130

Change-making problem 137
5.1 Introduction 137

5.2 Lower bounds 138
5.3 Greedy algorithms 140
5.4 When the greedy algorithm solves classes of knapsack problems 142
5.5 Exact algorithms 145

5.5.1 Dynamic programming 145

5.5.2 Branch-and-bound 146

5.6 An exact algorithm for large-size problems 149
5.7 Computational experiments 151
5.8 The bounded change-making problem 153

6 0-1 Multiple knapsack problem 157
6.1 Introduction 157

6.2 Relaxations and upper bounds 158

6.2.1 Surrogate relaxation 158
6.2.2 Lagrangian relaxation 162
6.2.3 Worst-caseperformance of the upper bounds 165

6.3 Greedy algorithms 166

6.4 Exact algorithms 167
6.4.1 Branch-and-bound algorithms 168
6.4.2 The \"bound-and-bound\" method 170

Contents ix

6.4.3 A bound-and-bound algorithm 172
6.5 Reduction algorithms 176

6.6 Approximate algorithms 177
6.6.1 On the existence of approximation schemes 177
6.6.2 Polynomial-time approximation algorithms 179

6.7 Computational experiments 182

Generalized assignment problem 189
7.1 Introduction 189

7.2 Relaxations and upper bounds 192

7.2.1 Relaxation of the capacity constraints 192
7.2.2 Relaxation of the semi-assignment constraints 195
7.2.3 The multiplier adjustment method 197
7.2.4 The variable splitting method 201

7.3 Exact algorithms 204

7.4 Approximate algorithms 206
7.5 Reduction algorithms 209
7.6 Computational experiments 213

8 Bin-packing problem 221
8.1 Introduction 221

8.2 A brief outline of approximate algorithms 222
8.3 Lowerbounds 224

8.3.1 Relaxations basedlower bounds 224
8.3.2 A stronger lower bound 228

8.4 Reduction algorithms 233

8.5 Exact algorithms 237
8.6 Computational experiments 240

Appendix: Computer codes 247
A.l Introduction 247

A.2 0-1 Knapsack problem 248

A.2.1 CodeMTl 248
A.2.2 CodeMTIR 249

A.2.3 Code MT2 251
A.3 Bounded and unbounded knapsack problem 252

A.3.1 CodeMTB2 252
A.3.2 CodeMTU2 254

A.4 Subset-sum problem 256
A.4.1 CodeMTSL 256

A.5 Bounded and unbounded change-making problem 258
A.5.1 CodeMTC2 258

A.5.2 Code MTCB 259
A.6 0-1 Multiple knapsack problem 261

A.6.1 CodeMTM 261

A.6.2 Code MTHM 263
A.7 Generalized assignment problem 265

A.7.1 CodeMTG 265

A.7.2 Code MTHG 268
A.8 Bin-packing problem 270

A.8.1 CodeMTP 270

X Contents

Glossary 273

Bibliography 275

Author index 283

Subject index 287

Preface

The development of computational complexity theory has led, in the last fifteen

years, to a fascinating insight into the inherent difficulty of combinatorial
optimization problems, but has also produced an undesirable side effect which
can be summarized by the \"equation\"

NP -hardness =
intractability,

thereby diminishing attention to the study of exact algorithms for NP-hard

problems. However, recent results on the solution of very large instances of

integer linear programming problems with special structure on the one hand, and

forty years of successful use of the simplex algorithm on the other, indicate the

concrete possibility of solving problems exactly through worst-case exponential-
time algorithms.

This book presents a state-of-art on exact and approximate algorithms for a

number of important NP-hard problems in the field of integer linear programming,

which we group under the term knapsack. The choiceof the problems reflects our

personal involvement in the field, through a series of investigations over the past
ten years. Hence the reader will find not only the \"classical\" knapsack problems
(binary, bounded, unbounded, binary multiple), but also less familiar problems
(subset-sum, change-making) or well-known problems which are not usually

classified in the knapsack area (generalized assignment, bin-packing). He will find

no mention, instead, of other knapsack problems (fractional, multidimensional,

non-linear), and only a limited treatment of the case of generalized upper bound

constraints.

The goal of the book is to fully develop an algorithmic approach without

losing mathematical rigour. For each problem,we start by giving a mathematical

model, discussing its relaxations and deriving procedures for the computation

of bounds. We then develop approximate algorithms, approximation schemes,
dynamic programming techniques and branch-and-bound algorithms. We analyse
the computational complexity and the worst-case performanceof bounds and

approximate methods. The averageperformance of the computer implementations
of exact and approximate algorithms is finally examined through extensive

computational experiments. The Fortran codes implementing the most effective
methods are provided in the included diskette. The codes are portable on virtually

any computer, extensively commented and\342\200\224hopefully\342\200\224easy to use.

For these reasons, the book should be appreciated both by academic researchers

xii Preface

and industrial practitioners. It should also be suitable for use as a supplementary

text in courses emphasizing the theory and practice of algorithms, at the graduate

or advanced undergraduate level. The exposition is in fact self-contained and is

designed to introduce the reader to a methodology for developing the link between

mathematical formulation and effective solution of a combinatorial optimization

problem. The simpler algorithms introduced in the first chapters are in general

extensively described, with numerous details on the techniques and data structures

used, while the more complex algorithms of the following chapters are presented
at a higher level, emphasizing the general philosophy of the different approaches.

Many numerical examples are used to clarify the methodologies introduced. For
the sake of clarity, all the algorithms are presentedin the form of pseudo-Pascal

procedures. We adopted a structured exposition for the polynomial and pseudo-

polynomial procedures, but allowed a limited use of \"go to\" statements for the

branch-and-bound algorithms. (Although this could, of course, have been avoided,

the resulting exposition would, in our opinion, have been much less readable.)
We are indebted to many people who have helped us in preparing this book. Jan

Karel Lenstra suggestedthe subject, and provided guidance and encouragement

during the two years of preparation. Mauro Dell'Amico, Laureano Escudero
and Matteo Fischetti read earlier versions of the manuscript, providing valuable

suggestions and pointing out several errors. (We obviously retain the sole

responsibility for the surviving errors.) Constructive comments were also made by

Egon Balas, Martin Dyer, Ronald Graham, Peter Hammer, Ben Lageweg, Gilbert

Laporte, Manfred Padberg, David Shmoys, Carlo Vercellis and Laurence Wolsey.
The computational experiments and computer typesetting with the TgX system were

carried out by our students Andrea Bianchini, Giovanna Favero,Marco Girardini,

Stefano Gotra, Nicola Moretti, Paolo Pinetti and Mario Zacchei.

We acknowledge the financial support of the Ministero della Pubblica Istru-

zione and the Consiglio NazionaledelleRicerche. Special thanks are due to the

Computing Centre of the Faculty of Engineering of the University of Bologna
and its Director, RobertoGuidorzi, for the facilities provided in the computational

testing of the codes.

Bologna, Italy SiLVANO Martello

July 1989 Paolo Toth

Introduction

1.1 WHAT ARE KNAPSACK PROBLEMS?

Suppose a hitch-hiker has to fill up his knapsack by selecting from among various

possible objects those which will give him maximum comfort. This knapsack
problemcan be mathematically formulated by numbering the objects from 1 to n

and introducing a vector of binary variables
Xj (j

= 1, ... ,n) having the following

meaning:
(1 if object j is selected;

Xj
=

^
< 0 otherwise.

Then, if
py

is a measure of the comfort given by object y, wy
its size and c the

size of the knapsack, our problem will be to select, from among all binary vectors
X satisfying the constraint

n

^yvjXj <c,

the one which maximizes the objective function

n

7 = 1

If the reader of this book does not, or no longer practiseshitch-hiking, he might

be more interested in the following problem. Suppose you want to invest\342\200\224all or

in part\342\200\224acapital of c dollars and you are considering n possible investments. Let
Pj be the profit you expect from investment j, and wy

the amount of dollars it

requires. It is self-evident that the optimal solution of the knapsack problem above

will indicate the best possible choice of investments.

At this point you may be stimulated to solve the problem. A naive approach

would be to program a computer to examine all possible binary vectors x, selecting
the best of those which satisfy the constraint. Unfortunately, the number of such
vectorsis 2\", so even a hypothetical computer, capable of examining one billion

vectors per second, would require more than 30 years for n = 60, more than

60 years for \302\253= 61, ten centuries for n = 65, and so on. However,specialized
algorithms can, in most cases, solve a problem with n = 100000 in a few seconds
on a mini-computer.

2 1 Introduction

The problem considered so far is representative of a variety of knapsack-type
problems in which a set of entities are given, each having an associated value and

size, and it is desired to select one or more disjoint subsets so that the sum of the
sizes in each subset does not exceed (or equals)a given bound and the sum of the

selected values is maximized.

Knapsack problemshave been intensively studied, especially in the last decade,

attracting both theorists and practicians. The theoretical interest arises mainly

from their simple structure which, on the one hand allows exploitation of a

number of combinatorial properties and, on the other, more complexoptimization

problems to be solved through a series of knapsack-type subproblems. From the

practical point of view, these problems can model many industrial situations:

capital budgeting, cargo loading, cutting stock, to mention the most classical
applications. In the following chapters we shall examine the most important

knapsack problems, analysing relaxations and upper bounds, describing exact
and approximate algorithms and evaluating their efficiency both theoretically and

through computational experiments. The Fortran codes of the principal algorithms

are provided in the floppy disk accompanying the book.

1.2 TERMINOLOGY

The objects consideredin the previous section will generally be called items and

their number be indicated by n. The value and size associatedwith theyth item will

be called profit and weight, respectively, and denoted by pj and wy (j = 1, ... ,n).
The problems considered in Chapters 2 to 5 aresingleknapsack problems, where

one container (or knapsack) must be filled with an optimal subset of items. The

capacity of such a container will be denoted by c. Chapters 6 to 8 deal with

multiple knapsack problems,in which more than one container is available.
It is always assumed, as is usual in the literature, that profits, weights and

capacities are positive integers. The results obtained, however, can easily be
extended to the case of real values and, in the majority of cases, to that of

nonpositive values.

The prototype problem of the previous section,

n

maximize /^ PJ^J

n

subject to Y^H'yXy < C,
y=i

jcy
= 0 or 1, j = I, ... ,n,

is known as the 0-1 Knapsack Problemand will be analysed in Chapter 2. In Section

2.12 we consider the generalization arising when the item set is partitioned into

1.2 Terminology

subsets and the additional constraint is imposed that at most one item per subsetis
selected(Multiple-Choice Knapsack Problem).

The problem can be generaUzed by assuming that for each j (j = I, ... ,n),
bj

items of profit py and weight wy are available (bj < c/wj): thus we obtain the

Bounded Knapsack Problem,defined by

maximize
Y.PJ^'J
7 = 1

subject to
/\"^WyAy

< C,
y=i

0 <
Xj

< bj, j = \\, ... ,n,

Xj integer, j = 1, ... ,n.

The problem is considered in Chapter 3. The specialcasein which bj
= +oc for

ally (Unbounded KnapsackProblem) is treated in Section 3.6.
In Chapter 4 we examine the particular case of the 0-1 knapsack problem arising

when Py
=

Wj (j = I, ... ,n), as frequently occurs in practical applications. The
problem is to find a subset of weights whose sum is closest to, without exceeding,

the capacity, i.e.

maximize ^^j^^j
y=i

subject to
/\"^wy-^y

< c,
y=i

jcy
= 0 or 1, i = \\, ... ,n,

generally referred to as the Subset-Sum Problem.

In Chapter 5 a very particular bounded knapsack problem is considered, arising

when Py
= 1 (j = I, ... ,n) and, in the capacity constraint, we impose equality

instead of inequality. This gives

maximize
H^y
y=i

subject to
2~^wyXy

= c,

y=i

0 <
JCy

< bj j = \\, ... ,n,

Xj integer j = \\, ... ,n.

4 1 Introduction

usually called the Change-Making Problem, since it recalls the situation of a cashier

having to assemble a given change c using the maximum (or minimum) number of
coins.The same chapter deeply analyses the Unbounded Change-Making Problem,
in which

bj
= +oc for all j.

An important generalization of the 0-1 knapsack problem,discussedin Chapter

6, is the 0-1 Multiple Knapsack Problem, arising when m containers, of given

capacities c, (/ = 1, ... ,w) are available. By introducing binary variables xij,

taking value 1 if item j is selected for container /, 0 otherwise, we obtain the

formulation

m n

maximize
V^ /^^Pj^jj

n

subject to
2_\\ ^j^ij < c,, / = 1,
7 = 1

^Xij
< 1, j = \\, ... ,n.

(=1

x,7
= 0 or 1, i = \\, ... ,m, j = \\, ... ,n.

Now consider a 0-1 multiple knapsack problem in which the profit and weight of
each item vary according to the container for which they are selected. By defining

Pij (resp. Wij) as the profit (resp. the weight) of item j if inserted in container /,

we get

maximize ^ ^ Pij^ij

/=i y=i

subject to /_^>^y% < Cj, i = I, ... ,m.
7 = 1

^Xij
< 1, j = 1, ... ,n.

(=1

Xij =0 or 1, i = I, ... ,m,j = I, ... ,n.

known as the Generalized Assignment Problem, which is dealt with in Chapter 7.

This is not, strictly speaking, a knapsack problem, but is included in this review
becauseknapsack subproblems play a central role in the algorithms for solving it.

1.2 Terminology 5

The problem is generally viewed as that of optimally assigning, all or in part, n

jobs to m machines {n tasks to m agents, and so on), given the profit, p,y, obtainable
if machine / is assignedjob j, the corresponding resource, Wy, required, and the

amount, c,, of resource availableto machine /.

In Chapter 8 we consider the well-known Bin-Packing Problem, which is not

usually included in the knapsack area, but can be interpreted as a multiple subset-

sum problem where all containers have the same capacity c, all items must be

selected and it is desired to minimize the number of containers used. Given any

upper bound m on the number of containers, and introducing m binary variables j,,
taking value 0 if container / is used, value 1 otherwise,we can state the problem
as:

maximize
Ey:
(=1

subject to
/~^>^y-^(y

< c(l \342\200\224
j,), i = I, ... ,m,

7 = 1

m

^Jf,y
= l, j = l,...,n.

(=1

yi = 0 or 1,

Xij =0 or 1,

z = 1, ..

z = 1, ..

. ,fn,

\342\226\240,m,j = 1, .. . ,n.

In the last decades, an impressive amount of research on knapsack problems
has been published in the literature. Reviews have been presented in the following

surveys:
Salkin and De Kluyver A975) present a number of industrial applications and

results in transforming integer linear programs to knapsack problems(an approach

which appeared very promising at that time);

Martello and Toth A979) consider exact algorithms for the zero-one knapsack

problem and their average computational performance; the study is extended to

the other linear knapsack problemsand to approximate algorithms in Martello and

Toth A987);

Dudzinski and Walukiewicz A987) analysedual methods for solving Lagrangian
and linear programming relaxations.

In addition, almost all books on integer programming contain a section on

knapsack problems. Mention is made of those by Hu A969), Garfinkel and

Nemhauser A972),Salkin A975), Taha A975), Papadimitriou and Steiglitz A982),

Syslo, Deo and Kowalik A983), Schrijver A986), Nemhauser and Wolsey A988).

6 1 Introduction

1.3 COMPUTATIONAL COMPLEXITY

We have so far introduced the following problems:

0-1 KNAPSACK;
BOUNDED KNAPSACK;
SUBSET-SUM;
CHANGE-MAKING;

0-1 MULTIPLE KNAPSACK;
GENERALIZED ASSIGNMENT;
BIN-PACKING.

We will now show that all these problems are NP-hard (we refer the reader
to Garey and Johnson A979) for a thorough discussion on this concept). For each

problem P, we either prove that its recognition version R(P) is NP-complete or that

it is a generalization of a problem already provedto be NP-hard.

The following recognition problem;

PARTITION: given n positive integers wi, ... ,w\342\200\236,is there a subset

5 C A^ = {\\, ... ,n] ?,^xchth^.t
Y^.^^Wj

=
Y.j^N\\s'^P-

is a basic NP-completeproblem, originally treated in Karp A972).

(a) SUBSET-SUMis NP-hard.

Proof. Consider R(SUBSET-SUM), i.e.: given n+2 positive integers w\\, ... ,Wn, c
and a, is there a subset S C A'^ = {1 n] such that

J2j^s^j ^ ^' ^^^

Any instance / of PARTITIONcan be polynomially transformed into an

equivalent instance /' of R(SUBSET-SUM) by setting c = a = Y.j^n ^j/^ <^the

answer for / is \"yes\" if and only if the answer for /' is \"yes\.") Q

(b) 0-1 KNAPSACK is NP-hard.

Proof SUBSET-SUMis the particular case of 0-1 KNAPSACK when pj
=

Wj for

ally eN.[J

(c) BOUNDED KNAPSACK is NP-hard.

Proof 0-1 KNAPSACK is the particular case of BOUNDED KNAPSACK when

bj
= 1 for ally e N. [J

1.3 Computational complexity 7

(d) CHANGE-MAKING is NP-hard.

Proof.We prove NP-hardness of the special case in which bj
= 1 for ally. Consider

R(CHANGE-MAKING),i.e.:given n + 2 positive integers wi, ... ,w\342\200\236,c and a,
is there a subset S C N = {I, ... ,n]such that J2 as ^j ~ ^ ^^^ l-^l > ^\"^

Any instance / of PARTITIONcanbe polynomially transformed into an equivalent
instance /' of R(CHANGE-MAKING) by setting c = ^^^^ Wy/2 and a = 1. D

Consequently,these single knapsack problems cannot be solved in a time

bounded by a polynomial in n, unless V = J\\fV. All of them, however, admit a

pseudo-polynomial algorithm, i.e. an algorithm whose time (and space) complexity

is bounded by a polynomial in n and c. In fact, it can easily be verified that

the following dynamic programming recursions solve the corresponding problems.

(More detailed descriptions can be found in the specific chapters.) Given any

instance of a single knapsack problem, considerthe sub-instance defined by items

1, ... ,y and capacity u {j < n, u < c). Letfj(u) be the corresponding optimal

solution value {fj{u) = \342\200\224oc if no feasible solution exists) and Sj(u) the optimal
subset of items. The optimal solution value of the problem, f\342\200\236{c),can then be

obtained by iteratively applying the following recursive formulae:

0-1 KNAPSACK:

@ for M =0, ... ,wi - 1;
fdu)=<

[pi for M = wi, ... ,c;

fj(u) =
rmix(fj_i(u),fj^iiu -Wj)+pj) forj = 2, ... ,n

and M = 0, ... ,c;

time complexity 0{nc).

BOUNDED KNAPSACK:

Ipx for / =0, ... ,/ji - 1 andM =/wi, ... ,(/ + l)wi - 1;

b\\p\\ tor u = oiwi, ... ,c;

fj(u)
= max{ fj_i(u

-
Iwj)

+ Ipj : 0 < I < bj] for j =2, ... ,n
and u =0, ... ,c;

time complexity Oic Ylj=i ^y)' that is, in the worst case, Oinc).

SUBSET-SUM:

Same as 0-1 KNAPSACK, but with pj replaced by wj.

8 1 Introduction

CHANGE-MAKING:

{/

for M = Iwi, with I =0, ... ,bi;
\342\200\224oc for all positive u < c such that M(mod w\\)^0 ;

fjiu) =max{fj-\\(u -
Iwj)

+ I : 0 < I < bj] for j =2, ... ,n
and M = 0, ... ,c;

time complexity 0{c XlLi ^y)' that is, in the worst case, 0{nc^).

For all the algorithms the computation of Sj{u) is straightforward. Since, for

each 7, we only need to store 5y_i(M) and Sj{u) for all u, the space complexity is

always 0{nc).
For the multiple problems @-1 MULTIPLE KNAPSACK, GENERALIZED

ASSIGNMENT,BIN-PACKING) no pseudo-polynomial algorithm can exist,
unless V = AfV, since the problems can be proved to be NP-hard in the strong

sense. Consider in fact the following recognition problem:

3-PARTITION: given n =3m positive integers wi w\342\200\236satisfying Ylj=\\ ^j/^ =

B integer and B/A < wj < B/2 for j = I, ... ,n,is there a partition of N =

{1, ... ,n] into m subsets 5i, ... ,Sm such that J2jes, ^j = B for i = I, ... ,ml
(Notice that each 5, must contain exactly three elements from A'^.)

This is the first problem discovered to be NP-complete in the strong sense (Garey
and Johnson, 1975).

(e) 0-1 MULTIPLE KNAPSACK is NP-hard in the strong sense.

Proof Consider R@-1 MULTIPLE KNAPSACK), i.e.: given ln+m + \\ positive

integers: pi, ... ,p\342\200\236;wi, ... ,w\342\200\236;ci, ... ,Cm, and a, are there m disjoint subsets

Si,...,Sm of N = {l,...,n] such that J2ies,^j \342\200\224^' ^^^ ' ~ 1,... ,w and

Yl?=\\ Zl/65, Pj \342\200\224^^ ^^y instance / of 3-PARTITIONcan be pseudo-polynomially

transformed into an equivalent instance /' of R@-1 MULTIPLEKNAPSACK) by

setting Ci = B for / = 1, ... ,m,pj
= 1 for y = 1, ... ,n and a = n (which implies

that IJ^i 5/ = A'^ in any \"yes\" instance). \342\226\241

(f) GENERALIZED ASSIGNMENT is NP-hard in the strong sense.

Proof Immediate, since 0-1 MULTIPLE KNAPSACK is the particular case of
GENERALIZED ASSIGNMENT when p^ = pj and w,y

=
w^ for / = 1, ... ,w and

j = l,...,n.[J

1.4 Lower and upper bounds 9

(g) BIN-PACKINGis NP-hard in the strong sense.

Proof. Consider R(BIN-PACKING),i.e.:given n + 2 positive integers wi,... ,w\342\200\236.c

and a, is there a partition ofA'^ = {I,.. .,n] into a subsets 5i,... ,5^ such that

Ey65, wy < c for / = 1, ... ,a?Any instance / of 3-PARTITION can be pseudo-
polynomially transformed into an equivalent instance /' of R(BIN-PACKING) by

setting c = B and a = m. \\Z}

1.4 LOWER AND UPPER BOUNDS

In the previous section we have proved that none of our problems can be solved

in polynomial time, unless V = NV. Hence in the following chapters we analyse:

(a) enumerative algorithms (having, in the worst case, running times which grow

exponentially with the input size) to determine optimal solutions;

(b) approximate algorithms (with running times bounded by a polynomial in the

input size) to determine feasiblesolutions whose value is a lower bound on the

optimal solution value.

The average running times of such algorithms are experimentally evaluated

through execution of the corresponding computer codes on different classes of

randomly-generated test problems. It will be seen that the average behaviour of the

enumerative algorithms is in many cases much better than the worst-case bound,

allowing optimal solution of large-size problems with acceptable running times.

The performance of an approximate algorithm for a specific instance is measured
through the ratio between the solution value found by the algorithm and the optimal
solution value (noticethat, for a maximization problem, this ratio is no greater than

one). Besides the experimental evaluation, it is useful to provide, when possible, a

theoretical measure of performancethrough worst-case analysis (see Fisher A980)
for a generalintroduction to this concept).

Let A be an approximate algorithm for a given maximization problem (all our

considerations extend easily to the minimization case). For any instance / of the

problem, let OPT{I) be the optimal solution value and A{I) the value found by A.

Then, the worst-case performance ratio of A is defined as the largest real number

r{A) such that
Ail) > riA) for all instances /;

0PT{1)
- ^ '

the closer r{A) is to one, the better the worst-case behaviour of A. The proof that

a given value r is the worst-case performance ratio of an algorithm
A consists, in

general, of two phases:

(i) it is first proved that, for any instance / of the probl<2iT>' inequality

A(I)/OPT(I)> r holds;

10 1 Introduction

(ii) in order to ensure that r is the largest value satisfying the inequality, i.e. that r

is tight, a specific instance /' is produced for which A(I')/OPT(I')
= r holds

(or a seriesof instances for which the above ratio tends to be arbitrarily close
to r).

The performance of A can be equivalently expressed in terms of worst-case
relative error, i.e. the smallest real number e{A) such that

OPTiD-AjI) f n \342\226\240t< eiA) for all instances /.

(i.e.r{A)
= 1 - siA)).

An approximation scheme for a maximization problem is an algorithm A which,

given an instance / and an error bound \302\243> 0, returns a solution of value A{I)
such that {OPT(I) - A{I))/OPT{I) < e. Let length (/) denote the input size,

i.e. the number of symbols required for coding/. If, for any fixed e, the running

time of A is bounded by a polynomial in length (I), then A is a polynomial-
time approximation scheme: any relative error can be obtained in a time which

is polynomial in length (/) (but can be exponentialin l/e). If the running time
of A is polynomial both in length (/) and l/s, then A is a fully polynomial-time

approximation scheme.

In subsequent chapters we describe the most interesting polynomial-time and

fully polynomial-time approximation schemes for single knapsack problems.For

the remaining (multiple) problems, no fully polynomial-time approximation scheme

can exist, unless V = AfV, since (see Garey and Johnson A975)) this would

imply the existence of a pseudo-polynomial algorithm for their optimal solution

(which is impossible, these being NP-hard problems in the strong sense). For BIN-
PACKING,also the existence of a polynomial-time approximation scheme can
be ruled out, unless V = AfV (Johnson, Demers, Ullman, Garey and Graham,

1974). The same holds for GENERALIZED ASSIGNMENTand 0-1 MULTIPLE

KNAPSACK in the minimization version (Sahni and Gonzalez, 1976). For the

maximization version of these two problems no polynomial-time approximation
scheme is known, although there is no proof that it cannot exist (the proof in Sahni

and Gonzalez A976) does not extend to the maximization case).
Besides experimental and worst-case analysis, an approximate algorithm can

allow probabilistic analysis. Speaking informally this consists of specifying an

average problem instance in terms of a probability distribution over the class of
all instancesand evaluating running time and solution value as random variables.

Examples of this approach which, however, is generally possible only for very

simple algorithms, are given in Sections 2.8.3 and 4.3.4 (see Karp, Lenstra,

McDiarmid and Rinnooy Kan A985) and Rinnooy Kan A987) for a general
introduction to probabilistic analysis).

For a maximization problem,the solution value determined by an approximate
algorithm limits the optimal solution value from below. It is always convenient to

1.4 Lower and upper bounds 11

have methods for limiting this value from above, too. Upperbounds are extremely

useful

(a) in enumerative algorithms, to exclude computations which cannot lead to the

optimal solution;

(b) in approximate algorithms, to \"a-posteriori\" evaluate the performance obtained.

Suppose algorithm A is applied to instance /, and let f/ (/) be any upper bound

on OPT {I): it is then clear that the relative error of the approximate solution

is no greater than (U(I)
- A(I))/UiI).

The worst-caseperformance ratio of an upper bounding procedure U can be
defined similarly to that of an approximate algorithm, i.e. as the smallest real
number p(U) such that

U{I) < p{U) for all instances /.
OPT (I)

The closerp{U)is to one, the better the worst-case behaviour of U.

Upper bounds are usually computed by solving relaxations of the given

problems. Continuous, Lagrangian and surrogate relaxations are the most frequently

used. For a given problem P, the corresponding relaxed problem will be denoted
with C (P), L(P. m) and S(P .m), m being an appropriate vector of multipliers. The

optimal solution value of problem P will be denoted with z{P).

0-1 Knapsack problem

2.1 INTRODUCTION

The 0-1, or Binary, Knapsack Problem (KP) is: given a set of n items and a

knapsack, with

Pj =
profit of item j,

Wj
= weight of item j,

c =
capacity of the knapsack,

B.1)

B.2)

jcy =0 or 1, j eN = {l, ... ,n], B.3)

1 if item j is selected;

0 otherwise.

select a subset of the items

maximize z

subject to

so as to

n

7 = 1

n

7 = 1

< c.

where

KP is the most important knapsack problem and one of the most intensively

studied discrete programming problems. The reason for such interest basically
derives from three facts: (a) it can be viewed as the simplest Integer Linear

Programming problem; (b) it appears as a subproblem in many more complex
problems;(c) it may represent a great many practical situations. Recently, it has

been used for generating minimal cover induced constraints (see, e.g., Crowder,

Johnson and Padberg, A983)) and in several coefficient reduction procedures
for strengthening LP bounds in general integer programming (see, e.g., Dietrich

and Escudero, A989a, 1989b)). During the last few decades, KP has been
studied through different approaches, according to the theoretical development of

Combinatorial Optimization.

13

14 2 0-1 Knapsack problem

In the fifties, Bellman's dynamic programming theory produced the first

algorithms to exactly solve the 0-1 knapsack problem. In 1957 Dantzig gave an

elegant and efficient method to determine the solution to the continuous relaxation
of the problem, and hence an upper bound on z which was used in the following

twenty years in almost all studies on KP.
In the sixties, the dynamic programming approach to the KP and other knapsack-

type problems was deeply investigated by Gilmore and Gomory. In 1967 Kolesar

experimentedwith the first branch-and-bound algorithm for the problem.

In the seventies, the branch-and-bound approach was further developed, proving

to be the only method capableof solving problems with a high number of variables.
The most well-known algorithm of this period is due to Horowitz and Sahni. In

1973 Ingargiola and Korsh presented the first reduction procedure, a preprocessing
algorithm which significantly reduces the number of variables.In 1974 Johnson

gave the first polynomial-time approximation scheme for the subset-sum problem;

the result was extended by Sahni to the 0-1 knapsack problem. The first fully

polynomial-time approximation scheme was obtainedby Ibarra and Kim in 1975.
In 1977 Martello and Toth proposed the first upper bound dominating the value of

the continuous relaxation.
The main results of the eighties concern the solution of large-size problems, for

which sorting of the variables (required by all the most effective algorithms) takes
a very high percentage of the running time. In 1980 Balas and Zemel presented a

new approach to solve the problem by sorting, in many cases, only a small subset

of the variables (the core problem).
In this chapter we describe the main results outlined above in logical (not

necessarily chronological) sequence. Upper bounds are described in Sections 2.2
and 2.3, approximate algorithms in Sections 2.4 and 2.8, exact algorithms in

Sections 2.5, 2.6 and 2.9, reduction procedures in Section 2.7. Computational

experiments are reported in Section 2.10, while Section 2.11 contains an

introduction to the facetial analysis of the problem. Section 2.12 deals with a

generalization of KP (the multiple-choice knapsack problem).
We will assume, without any loss of generality, that

Pj, Wj and c are positive integers, B.4)

n

X;>^y>c, B.5)

7=1

Wj <c forjeN. B.6)

If assumption B.4) is violated,fractions can be handled by multiplying through

by a proper factor, while nonpositive values can be handled as follows (Glover,

1965):

1. for each j e N^ = {j e N : pj < 0, Wj
> 0} do Xj := 0;

2. for each j eN^ = {j eN :
pj

> 0, Wj
< 0} do xj := 1;

2.1 Introduction 15

3. letA^- ={j eN -.pj <0,Wj <0],N^=N\\{N^UN ÛN'), and

(
yj

= 1 -
Xj, pj

= -pj, Wj
=

-Wj forjeN-,

\\ yj
= Xj, Pj

= Pj, Wj
=

Wj for j eN^;

4. solve the residual problem

maximize z = V^ P/J/ + 2^ Pj

jeN-uN+ jeN^uN-

subject to 2_] ^jyj ^ c \342\200\224
2_,

jeN-uN+ jeN^uN-

Wi

yj =0 or 1, j eN~ UN^.

If the input data violate assumption B.5) then, trivially, Xj
= 1 for ally G A'^; if

they violate assumption B.6), then Xj
= 0 for eachy such that Wj > c.

Unless otherwise specified,we will always suppose that the items are ordered

according to decreasing values of the profit per unit weight, i.e. so that

^>^>...>^, B.7)
W\\ W2 W\342\200\236

If this is not the case, profits and weights can be re-indexedin 0(n\\ogn) time

through any efficient sorting procedure (see, for instance, Aho, Hopcroft and

UUman, A983)).
Given any problem instance /, we denote the value of any optimal solution with

z(/), or, when no confusion arises, with z.

KP is always considered here in maximization form. The minimization version
of the problem,

n

minimize /_^PyJ/\"
y=i

n

subject to /^^wyjy
> <7,

yj =0 or 1, j eN

can easily be transformed into an equivalent maximization form by setting yj
=

1 -
Xj

and solving B.1), B.2), B.3) with c = Yll=\\^j
~

<?\342\200\242^^^ zmax be the
solution value of such a problem: the minimization problem then has solution

value zmin =
Y^j=\\Pi

~ zmax. (Intuitively, we maximize the total profit of the
items not inserted in the knapsack.)

16 2 0-1Knapsack problem

2.2 RELAXATIONS AND UPPER BOUNDS

2.2.1 Linear programming relaxation and Dantzig's bound

The most natural, and historically the first, relaxation of KP is the linear

programming relaxation, i.e. the continuous knapsack problem C{KP) obtained
from B.1), B.2), B.3) by removing the integrality constraint on Xj:

maximize
^PjXj
7 = 1

subject to 2-\\'^jXj < c,
7 = 1

0 <
JCy

< 1, j = \\, ... ,n.

Suppose that the items, ordered according to B.7), are consecutively inserted into

the knapsack until the first item, s, is found which does not fit. We call it the
critical item, i.e.

s = mm
I (=1
7:^w,>cl, B.8)

and note that, because of assumptions B.4)-B.6), we have 1 < s < n. Then
C(KP) can be solved through a property established by Dantzig A957), which can
be formally stated as follows.

Theorem 2.1 The optimal solution x of C{KP) is

,n.

where

Xj
= 1

Xj =0

c
Xs = \342\200\224

Ws

\"c = c \342\200\224

forj = 1, ...

for j = s + I,

s-\\

H^y-
7 = 1

B.9)

Proof A graphical proof can be found in Dantzig A957). More formally, observe
that any optimal solution x of C{KP) must be maximal, in the sense that

V\"^j wyxy
= c. Assume, without loss of generality, that

Py/wy > pj+\\/wj+\\ for

ally, and let x* be the optimal solution of C(KP). Suppose, by absurdity, that

x^ < 1 for some k < s, then we must have x* > Xg
for at least one item q > s.

2.2 Relaxations and upper bounds 17

Given a sufficiently small \302\243> 0, we could increase the value of x^ by \302\243and

decrease that of x* by \302\243Wk/wg, thus augmenting the value of the objective function

of \302\243(pk
\342\200\224

Pq'^k/'^q) (> 0, since pkjy^k > Pq/'^q), which is a contradiction. In the

same way we can prove that x^ > 0 for ^ > 5 is impossible. Hence Xs = c/ws
from maximality. Q

The optimal solution value of C{KP) follows:

z(C(KP)) = Tpj+cf^.
7 = 1

'

Because of the integrality of pj and Xj, a valid upper bound on z (KP) is thus

B.10)U, = [ziC{KP))\\ =Y,Pj+
\"^

7 = 1
Wc

where [a\\ denotes the largest integer not greater than a.

The worst-case performanceratio of f/i is p{Ui) = 2. This can easily be proved
by observing that, from B.10), f/i < Xl/Ci Pj+Ps- Both Yl^'i Pj andp^ are feasible
solution values for KP, hence no greater than the optimal solution value z, thus, for

any instance, f/i/z < 2. To see that p{Ui) is tight, consider the series of problems
with n = 2. pi =

wi = p2 = W2 = k and c = 2k \342\200\224
1, for which Ui = 2k \342\200\224I and

z = k, so Ui/z can be arbitrarily close to 2 for k sufficiently large.
The computation of z(C{KP)), hence that of the Dantzig bound Ui, clearly

requires 0(n) time if the items are already sorted as assumed.If this is not the

case, the computation can still be performed in 0{n) time by using the following

procedure to determine the critical item.

2.2.2 Finding the critical item in Oin) time

For each j E N, define rj
=

pj /wj. The critical ratio r^ can then be identified by

determining a partition of A'^ into 71 UJC U 7 0 such that

and

rj > rs

fj
= fs

n < rs

I] >^y
< c

7 6/1

for7 eJl,

for) eJC,

forj eJO,

< E ^^

jejiujc

The procedure, proposed by Balas and Zemel A980), progressively determinesJ 1

18 2 0-1 Knapsack problem

and J 0 using, at each iteration, a tentative value A to partition the set of currently

\"free\" items A'^\\(y 1 U/O). Once the final partition is known, the critical item s is
identified by filling the residual capacity c \342\200\224

J2ieji ^j \"^^^^ items in JC, in any

order.

procedure CRITICAL. ITEM:

input n.c,{pj),(wj);
output: s;
begin

71 :=0;
yO:=0;
JC :={l....,n];
c := c;

partition := \"no\";

while partition = \"no\" do

begin
determine the median A of the values in R = {pj/wj :j eJC];
G :={j eJC :pj/wj> A};

L:= {j eJC -.pj/wj < A};

E:={j eJC :pj/wj = X];

c\" \342\226\240\342\226\240=\342\202\254'
+T.j^eW^

W c' < c < c\" then partition := \"yes\"

else if c' > c then (comment: A is too small)
begin

yo:=youLu\302\243;

JC :=G

end
else (comment: A is too large)

begin
71 :=yi UG UE;
JC :=L;

\"c :='c \342\200\224c\"

end

end;
71 .-71 UG;
70:=70UL;
JC :=E{= {e\\,e2.,... -.eq]);
c :='c \342\200\224c';

a := min {j : J2Li ^e, > c};
s :=ea

end.

Finding the median of w elements requires 0{m) time (see Aho, Hopcroft and

Ullman, A983)), so each iteration of the \"while\" loop requires 0{\\ JC |) time. Since
at least half the elements of 7C are eliminated at each iteration, the overall time

complexity of the procedure is 0{n).

2.2 Relaxations and upper bounds 19

The solution of C {KP) can then be determined as

Jy
= 1 fox j \302\243j\\\\J {e\\.e2, \342\226\240\342\226\240\342\226\240,ea-\\]',

J/=0 forj eJQ{j{ea+\\, ... ,eq];

Xs= \\c -
^ WjXj /Ws.

\\ J^N\\{s] I

1.1.3 Lagrangian relaxation

An alternative way to relax KP is through the Lagrangian approach. Given a non-

negative multiplier A, the Lagrangian relaxation of KP (L(KP.A)) is

/ n \\

maximize /\"^Py-^; + A
J

c \342\200\224
y^ wjXj

7=1 \\ 7=1 /

subject to
jcy

= 0 or 1. j = I, ... ,n.
The objective function can be restated as

z(L(KP.X))=J2pjXj+^c., B.11)
7 = 1

where pj
= pj

\342\200\224
Xwj forj = 1, ... ,n, and the optimal solution of L{KP,A) is easily

determined, in 0(n) time, as

fl ifp/>0,
xj

= < B.12)

(O ifpy<0.

(When pj = 0, the value of xj is immaterial.) Hence, by defining /(A) =

{J '\342\200\242Pj/'^j > ^]- the solution value of L{KP. A) is

z(L(KP,X))= Y^ pj+Xc.
jeJiX)

For any A > 0, this is an upper bound on z(KP) which, however, can never

be better than the Dantzig bound U\\. In fact B.12) also gives the solution of the

continuous relaxation of L(KP.A), so

z(L(KP.X)) = z(C(L(KP. A))) > z(C(KP)).

20 2 0-1 Knapsack problem

The value of A producing the minimum value of z{L{KP.A)) is A* = Ps/'^s- With

this value, in fact, we havepj > 0 forj = I, ... ,s \342\200\224I andpj < 0 forj = s, ... ,n,
soJ(X*) C {l,...,^

- 1}. HenceXy =Xj forj eN\\{s] (where (Jy) is defined by

Theorem 2.1) and, from B.11)-B.12), z{L{KP.*))= Ey^/CPy
-

>^*Wj)
+ ^*c =

z{C{KP)). Also notice that, for A = A*, pj becomes

Pj =Pj C2.13)

I pj I is the decrease which we obtain in z{L{KP. A*)) by setting Jfy
= 1 \342\200\224

Xj,

and hence a lower bound on the corresponding decrease in the continuous solution

value (since the optimal A generally changes by imposing the above conditions).

The value of | p* | will be very useful in the next sections.

Other properties of the Lagrangian relaxation for KP have been investigated

by Maculan A983). See also Fisher A981) for a general survey on Lagrangian

relaxations.

2.3 IMPROVED BOUNDS

In the present section we consider upper bounds dominating the Dantzig one,
useful to improve on the average efficiency of algorithms for KP. Becauseof this

dominance property, the worst-case performanceratio of these bounds is at most 2.

Indeed, it is exactly 2, as can easily be verified through series of examplessimilar

to that introduced for U\\, i.e. having pj
=

Wj
for all j (so that the bounds take the

trivial value c).

2.3.1 Bounds from additional constraints

Martello and Toth obtained the first upper bound dominating the Dantzig one, by

imposing the integrality of the critical variable Xs.

Theorem 2.2 (Martello and Toth, 1977a) Let

7 = 1

-Ps+l
B.14)

7 = 1

r -sPs-\\
Ps -

(W, -C) B.15)

where s and c are the values defined by B.8) and B.9). Then

2.3 Improved bounds 21

(i) an upper bound on z (KP) is

f/2=max(f/\302\260.f/'); B.16)

(//) for any instance of KP, we have U2 <U\\.

Proof, (i) SinceXg cannot take a fractional value, the optimal solution of KP can
be obtained from the continuous solution J of C{KP)either without inserting item

s (i.e. by imposing Xs = 0), or by inserting it (i.e. by imposing J^ = 1) and hence

removing at least one of the first s \342\200\2241 items. In the former case, the solution value

cannot exceed U^, which corresponds to the case of filling the residual capacity c
with items having the best possible value of

py/wy (i.e. ps+i/ws+\\). In the latter it

cannot exceed U', where it is supposed that the item to be removedhas exactly

the minimum necessary value of wy (i.e. Ws \342\200\224c)and the worst possible value of

Pj/wj (i.e.p,_i/w,_i).
(ii) f/\302\260< Ui directly follows from B.10), B.14) and B.7). To prove that

U^ < U\\ also holds, notice that Ps/ws < Ps-i/ws-i (from B.7)), and c < w^

(from B.8), B.9)). Hence

.- . fPs Ps-\\\\ . ^
(c -Ws) [

> 0.
\\Ws Ws-lJ

and, by algebraic manipulation,

-Ps . , -.Ps-\\
c\342\200\224>Ps- (w, - c)-

Ws W,_i

from which one has the thesis. Q

The time complexity for the computation of U2 is trivially 0{n), once the critical
item is known.

Example 2.1

Consider the instance of KP defined by

\302\253= 8,

(py) = A5, 100,90, 60, 40, 15,10, 1),

(wy)
= (2, 20, 20, 30, 40, 30, 60, 10),

c = 102.

The optimal solution is jc = A, 1, 1, 1, 0, 1,0, 0), of value z = 280. From B.8)

we have s = 5. Hence

22 2 0-1 Knapsack problem

Ux = 265 +

f/\302\260= 265 +

f/' = 265+

f/2
= 285. D

30

30

40
40

15
30

40- 10

= 295.

= 280;

60

30
= 285;

The consideration on which the Martello and Toth bound is based can be
further exploited to compute more restrictive upper bounds than U2- This can

be achieved by replacing the values U^ and f/' with tighter values, say U \302\260
and

U ', which take the exclusion and inclusion of item s more carefully into account.

Hudson A977) has proposed computing U
' as the solution value of the continuous

relaxation of KP with the additional constraint Xs
= I. Fayard and Plateau A982)

and, independently, Villela and Bomstein A983), proposed computing f/
\302\260

as the

solution value of C(KP) with the additional constraint Xs
= 0.

By defining cr^ij) and a^ij) as the critical item when we impose, respectively,

Xj
= 1 (y > s) and Xj =0 (j < s), that is

cr\\j) = min < k : ^Wi > c -
Wj >. B.17)

we obtain

<7^{j)= min < k :
/Jw,

> c

7 = 1

(=1

PaO(s)

7=1 .
y^ /

W^oo\"(s)

v^ =Ps+ Yl Pj^
7 = 1

C \342\200\224W, -
Y. ^>

and the new upper bound

f/3=max(f/\302\260.f/')

B.18)

Pa\\s)

B.19)

B.20)

2.3 Improved bounds 23

It is self-evident that;

(a) Z/O < f/o andZ/' < U\\so U3 < U2;

(b) the time complexity for the computation of f/3 is the same as for Ui and U2,

i.e. 0(n).

Example 2.1 (continued)

From B.17)-B.20) we have

G\302\260E)
= 7. Z7\302\260= 280 +

60
= 280;

a\\5) = A. f/'=40 + 205 +

f/3=285.n

.^ 6020 \342\200\224

30
= 285;

2.3.2 Bounds from Lagrangian relaxations

Other bounds computable in 0{n) time can be describedthrough the terminology

introduced in Section 2.2 for the Lagrangian relaxation of the problem. Remember
that z(C(^f)) = z{L{KP. A*)) and | p* \\ (see 2.13) is a lower bound on the decrease

of z{C{KP)) correspondingto the change of the j\\h variable from
Xj

to 1 -
Xj.

Muller-Merbach A978) noted that, in order to obtain an integer solution from the

continuous one, either (a) the fractional variable J^ alone has to be reduced to

0 (without any changes of the other variables), or (b) at least one of the other

variables, say Jj, has to change its value (from 1 to 0 or from 0 to 1). In case (a)

the value of z(C(KP)) decreasesby cp^/ws, in case (b) by at least \\ p* |. Hence

the Muller-Merbach bound

f/4=max I
^p,.max{[z(C(/^/'))- |p; IJ :yGA^\\{^}} . B.21)

It is immediately evident that f/4 < f/i. No dominance exists, instead, between U4

and the other bounds. For the instance of example 2.1 we have f/3
= f/2 < ^4

(see below),but it is not difficult to find examples (see Muller-Merbach A978))
for which U4 < U3 < U2.

Theideasbehind bounds U2. f/3 and f/4 have been further exploited by Dudzinski

and Walukiewicz A984a), who have obtained an upper bound dominating all

the above. Consider any feasible solution x to KP that we can obtain from the

continuous one as follows:

1. for each k e N\\{s]doXk :=r^;

2. Xs := 0;

24 2 0-1Knapsack problem

3. for each k such that i^ = 0 do
W Wk < C \342\200\224

Ylj=l ^j^j *^\302\256\"̂k '\342\226\240=1,

and define N = {j E N\\{s] : Xj =0} {x is closely related to the greedy solution,

discussed in Section 2.4). Noting that an optimal integer solution can be obtained

(a) by setting x^ = 1 or (b) by setting x^ = 0 and Xj
= 1 for at least one j G iV, it

is immediate to obtain the Dudzinski and Walukiewicz A984a) bound:

f/s =max (min (Z7'.max {[ziC(KP)) -p*\\ :j = 1, ... ,s - 1}),
min (U^,msLX {[z{C{KP))+p*\\ : j eN]),

J^Pj^J^- B.22)
7 = 1

where U \302\260
and U ' are given by B.19) and B.20). The time complexity is 0(n).

Example 2.1 (continued)

From B.13), (py*) =
A3, 80, 70, 30, 0, -15, -50, -9). Hence:

U4
= max B65,max {282. 215. 225. 265. 280.245.286})=286.

ixj)
= il., L L 1. 0, L 0, 0);

U5 = max (min B85,max {282. 215, 225. 265}).

min B80, max {245. 286}). 280) = 282.D

2.3.3 Bounds from partial enumeration

Bound f/3 of Section 2.3.1 can also be seenas the result of the application of the

Dantzig bound at the two terminal nodes of a decision tree having the root node

corresponding to KP and two descendent nodes, say NO and Nl, corresponding
to the exclusion and inclusion of item s. Clearly,the maximum among the upper
bounds corresponding to all the terminal nodes of a decision tree representsa valid

upper bound for the original problem corresponding to the root node. So, if U ^

and U
' are the Dantzig bounds corresponding respectively to nodes NO and Nl,

f/3 represents a valid upper bound for KP.

An improved bound, U(\342\200\236can be obtained by considering decision trees having

more than two terminal nodes, as proposedby Martello and Toth A988).
In order to introduce this bound, suppose s has been determined, and let r, r

be any two items such that I < r < s and s < t < n. We can obtain a feasible

2.3 Improved bounds 25

solution for KP by setting Xj
= \\ iov j < r.

Xj
= Q for j > t and finding

the optimal solution of subproblem KP(r.r) defined by items r.r + 1 t with

reduced capacity c{r) = c \342\200\224
Yl'i=\\ ^j- Suppose now that KP(r. t) is solved through

an elementary binary decision-tree which, for j = r.r + I.... .t, generates pairs of

decision nodes by setting, respectively, Xj
= 1 and

Xj
= 0; each node k (obtained,

say, by fixing Xj) generates a pair of descendentnodes (by fixing Xj+i) iffy < t and

the solution corresponding to k is feasible. For each node k of the resulting tree,
let/(^) be the item from which k has been generated(by setting x/^k)

= 1 or 0)
and denote with

Xj {j = r, ... ,f{k)) the sequence of values assigned to variables
Xr Xf(k) along the path in the tree from the root to k. The set of terminal nodes

{leaves) of the tree can then be partitioned into

/(/)

Lx = ll:
Y^Wjxl

>c{r) (infeasible leaves) f

J=r

fil)

^2 = < / :/(/) = t and
Y^wyJcj

< c{r) > (feasible leaves).

For each I \302\243L\\ U L2, let m/ be any upper bound on the problem defined by B.1),
B.2) and

Xj
-

Xj
if yG{r, ...,/(/)},

xj=0 or 1 if) eN\\{r,...,fil)].
B.23)

Since all the nonleaf nodes are completelyexplored by the tree, a valid upper
bound for KP is given by

U(, = max {ui : I e L\\ UL2}. B.24)

/ _ v-'--i ^/(O\342\200\236./A fast way to compute m/ is the following. Let p = J2i=i Pj
'^ J2i=r Pj^j

d' =\\c(r)- J2^-f^r^jxjI; then

and

M/ =

p' -d'
Wr-\\

p' +d'
w,+i

if / eLu

if / G L2,

B.25)

which is clearly an upper bound on the continuous solution value for problem B.1),
B.2),B.23).

The computation of U(, requires 0{n) time to determine the critical item and

define KP(r. t), plus 0B'~'') time to explore the binary tree. If r - r is bounded

by a constant, the overall time complexity is thus 0{n).

26 2 0-1 Knapsack problem

Example 2.1 (continued)

Assume r = 4 and t = 6. The reduced capacityis c{r)= 60.The binary tree is

given in Figure 2.1. The leaf sets are Li = {2.8},L2
= {4,5,9, 11, 12}. It follows

that Ue = 280, which is the optimal solution value. \342\226\241

tt5=270 us=2l5 tt9=248 uu^225

Figure 2.1 Binary tree for upper bound U(, of Example 2.1

2

\302\253i2=215

The upper bounds at the leaves can also be evaluated, of course, using any of

the bounds previously described, instead of B.25).If Uk (k = I, ... ,5) is used,

then clearly Ue < Uk; if B.25) is used, then no dominance exists between Ue and

the Dudzinsky and Walukiewicz A984a) bound, so the best upper bound for KP is

U =min(f/5,f/6).

Ue canbe strengthened, with very small extra computational effort, by evaluating

w^ = min {wj : j > t]. It is not difficult to see that, when / G L2 and d' <Wm. ui

can be computed as

ui = max
/ ^ Pt+\\

P +Wm (w\342\200\236d')r^-'
Wr

B.26)

Finally, we note that the computation of Ue can be considerably accelerated

by using an appropriate branch-and-bound algorithm to solve KP(r.r). At any

iteration of such algorithm, let I{r. t) be the value of the best solution so far. For

any nonleaf node k of the decision-tree, let Uk be an upper bound on the optimal
solution of the subproblem defined by items r.... .n with reduced capacity c{r),

i.e., the subproblem obtained by setting Xj
= 1 for 7 = 1, ... ,r \342\200\2241. Uk can be

computed as an upper bound of the continuous solution value of the problem, i.e.

2.4 The greedy algorithm 27

f(k) s(k)-\\

Uk =
^Pjxf

+ Y^ Pj
j=r j=f(k)+\\

B.27)

where s{k) = min {t + l,min {/ :
Y.^j^~r \"^i^f

+
Y.'j=f{k)+\\'^j > c(r)]). If we

have Uk < 'z{r,t), the nodes descendingfrom k need not be generated. In fact,
for any leaf / descending from k, it would result that m/ <

J2'i=i^Pj +Uk <

Y.]:'pj+z{KP{r,t))<U(,.

Example 2.1 (continued)

Accelerating the computation through B.27), we obtain the reduced branch-decision

tree of Figure 2.2. \342\226\241

M5=50

4

z(r,/)=75

Figure 2.2 Branch-and-bound tree for upper bound U(, of Example 2.1

2.4 THE GREEDY ALGORITHM

The most immediate way to determine an approximate solution to KP exploits
the fact that solution J of the continuous relaxation of the problem has only one

fractional variable, Xs (see Theorem 2.1). Setting this variable to 0 gives a feasible

28 2 0-1 Knapsack problem

solution to KP of value
s-l

7 = 1

We can expect that z' is, on average,quite close to the optimal solution value z.

In fact z' < z < U\\ < z' +ps, i.e. the absolute error is bounded by ps. The worst-

case performance ratio, however, is arbitrarily bad. This is shown by the series of

problems with n = 2. pi =
wi

= I. p2 =
W2

= k and c = k, for which z' = 1 and

z = ^, so the ratio z'/z is arbitrarily close to 0 for k sufficiently large.

Noting that the above pathology occurs when p^ is relatively large, we can obtain

an improved heuristic by also considering the feasible solution given by the critical
item alone and taking the best of the two solution values, i.e.

z^ =max (z',p,). B.28)

The worst-case performance ratio of the new heuristic is ^. We have already noted,
in fact, that z < z' +ps, so, from B.28), z < 2z^. To see that ^

is tight, consider
the series of problems with n = 3. p\\

= w\\ = I. p2 =
W2

= P3 =
W2

= k and c = 2k:
we have z^ = ^ -i- 1 and z = 2^, so z^/z is arbitrarily close to ^ for k sufficiently

large.

The computation of z^ requires0{n) time, once the critical item is known. If

the items are sorted as in B.7), a more effective algorithm is to consider them

according to increasingindices and insert each new item into the knapsack if it

fits. (Notice that items 1..... 5 \342\200\2241 are always inserted, so the solution value is

at least z'.) This is the most popular heuristic approach to KP, usually called the

Greedy Algorithm. Again, the worst-case performance can be as bad as 0 (take for

example the series of problems introduced for z'), but can be improved to ^ if

we also considerthe solution given by the item of maximum profit alone, as in

the following implementation. We assume that the items are orderedaccording to

B.7).

procedure GREEDY:

input:/i.e. (py).(w^);
output: z^.(xj);

begin
c := c;
zs :=0;

for; :=IXo n do

begin
if Wj > c then Xj := 0

else

begin
Xj := 1;

2.5 Branch-and-bound algorithms 29

c :=c -
Wj ;

zS := z^ +pj
end;

ifpy >py. then/ :=;
end;

if Py. > z^ then

begin
z^ :=Py;
fory := 1 to \302\253do jcy := 0;

Xj* := 1

end

end.

The worst-case performanceratio is ^ since: (a) pj* > ps, so z^ > z^; (b) the

series of problemsintroduced for z^ proves the tightness. The time complexity is

0(n), plus 0(n\\ogn) for the initial sorting.
For Example 2.1 we have z' = z^ = 265 and z^ = 280, which is the optimal

solution value since U(,
= 280.

When a 0-1 knapsack problem in minimization form (see Section 2.1) is
heuristically solved by applying GREEDY to its equivalent maximization instance,
we of course obtain a feasible solution, but the worst-case performance is not

preserved. Consider,in fact, the series of minimization problems with n =3. pi =
wi

= k, p2 = W2 = L p2 =
W2

= k and q = 1, for which the optimal solution
value is 1. Applying GREEDY to the maximization version (with c = 2k), we

get z^ = ^ -I- 1 and hence an arbitrarily bad heuristic solution of value k for the

minimization problem.

Other approximate algorithms for KP are considered in Section 2.8.

2.5 BRANCH-AND-BOUND ALGORITHMS

The first branch-and-bound approach to the exact solution of KP was presented by

Kolesar A967). His algorithm consists of a highest-first binary branching scheme
which: (a) at each node, selects the not-yet-fixed item j having the maximum profit

per unit weight, and generates two descendent nodes by fixing Xj, respectively, to
1 and 0; (b) continues the search from the feasible node for which the value of

upper bound U\\ is a maximum.

The large computer memory and time requirements of the Kolesar algorithm

were greatly reduced by the Greenberg and Hegerich A970) approach,differing

in two main respects: (a) at each node, the continuous relaxation of the induced

subproblem is solved and the corresponding critical item s is selectedto generate

the two descendent nodes (by imposing jcj
= 0 and jcj

= 1); (b) the search continues
from the node associated with the exclusion of item s (condition xj =0). When
the continuous relaxation has an all-integer solution, the search is resumed from
the last node generated by imposing xj = 1, i.e.the algorithm is of depth-first type.

Horowitz and Sahni A974) (and, independently, Ahrens and Finke A975))

30 2 0-1Knapsack problem

derived from the previous schemea depth-first algorithm in which: (a) selectionof

the branching variable
Xj

is the same as in Kolesar; (b) the search continues from
the node associated with the insertion of item 7 (condition Xj

= 1), i.e. following a

greedy strategy.

Other algorithms have been derived from the Greenberg-Hegerich approach

(Barr and Ross A975), Lauriere A978)) and from different techniques (Lageweg
and Lenstra A972), Guignard and Spielberg A972), Fayard and Plateau A975),
Veliev and Mamedov A981)). The Horowitz-Sahni one is, however, the most

effective, structured and easy to implement, and has constituted the basis for several

improvements.

2.5.1 The Horowitz-Sahnialgorithm

Assume that the items are sorted as in B.7). A forward move consists of
inserting the largest possible set of new consecutive items into the current

solution. A backtracking move consists of removing the last inserted item from
the current solution. Whenever a forward move is exhausted,the upper bound

U\\ corresponding to the current solution is computed and compared with the best
solution so far, in order to check whether further forward moves could lead to
a better one: if so, a new forward move is performed,otherwise a backtracking

follows. When the last item has been considered, the current solution is complete
and possible updating of the best solution so far occurs. The algorithm stops when

no further backtracking can be performed.

In the following description of the algorithm we use the notations

(Xj)
= current solution;

f = current solution value I =
YlPj^j '\342\226\240>

c = current residual capacity I = c \342\200\224
^ WjXj J;

(xj)
= best solution so far;

z = value of the best solution so far I =
YlPj^j \342\200\242

\\ J=' J

procedure HS:
input: n^c, (py),(wy);

output: z .{Xj);
begin
1. [initialize]

z :=0;
z :=0;

2.5 Branch-and-bound algorithms 31

c := c;
Pn+\\ \342\226\240=0;

w\342\200\236+i:= +oc;

j \342\226\240\342\226\240=1;

2. [compute upper bound U\\]

find r = min {/ :
Yl'k=j ^k > c};

\" '\342\226\240=
Y.[~=lPk

+ [{c
-

Y.[Zl Wk)Pr/wr\\;

if z '^z +u then go to 5;
3. [perform a forward step]

while Wj
< c do

begin

z := z +pj]
Xj := 1;

end;
if 7 < \302\253then

begin

xj:=0-

end;
if 7 < n then go to 2;
\\i j = n then go to 3;

4. [update tlie best solution so far]

\\\\ z > z then

begin
z :=z;
for ^ := 1 to \302\253do Xk := i^:

end;

if Jc\342\200\236
= 1 then

begin
c \342\200\242=c + Wn;
Z :=Z - Pn]
Xn :=0

end;

5. [backtrack]
find / = max {k <} \\ Xk =

\\\\\\

if no sucli / then return ;

c \342\226\240=(:+ w,-;
z := z -

p,-;

Xi := 0;

j :=/ + !;
goto 2

end.

32 2 0-1 Knapsack problem

Example 2.2

Considerthe instance of KP defined by

n =1;

(pj) = G0, 20, 39, 37, 7, 5, 10);
(Wj)

= C1, 10, 20, 19, 4, 3, 6);
c =50.

Figure 2.3 gives the decision-tree produced by procedure HS. D

Several effective algorithms have been obtained by improving the Horowitz-
Sahni strategy. Mention is made in particular of those of Nauss A976) (with Fortran

code available), Martello and Toth A977a) (with Fortran code in Martello and Toth

A978) and Pascal code in Syslo, Deo and Kowalik A983)), Suhl A978), Zoltners

A978).
We describe the Martello-Toth algorithm, which is generally considered highly

effective.

2.5.2 The Martello-Toth algorithm

The method differs from that of Horowitz and Sahni A974) in the following main

respects (we use the notations introduced in the previous section).

(i) Upperbound U2 is used instead of U\\.

(ii) The forward move associated with the selection of they th item is split into two

phases: building of a new current solution and saving of the current solution.

In the first phase the largest set
Nj

of consecutive items which can be inserted

into the current solution starting from theyth, is defined, and the upper bound

corresponding to the insertion of the jth item is computed.If this bound is

less than or equal to the value of the best solution so far, a backtracking move
immediately follows. If it is greater, the second phase, that is, insertion of the

items of set Nj into the current solution, is performed only if the value of
such a new solution does not represent the maximum which can be obtained

by inserting the jth item. Otherwise, the best solution so far is changed, but

the current solution is not updated, so useless backtrackings on the items in

Nj are avoided.

(iii) A particular forward procedure, based on dominance criteria, is performed

whenever, before a backtracking move on the ith item, the residual capacity c
doesnot allow insertion into the current solution of any item following the ith.

The procedure is based on the following consideration: the current solution

could be improved only if the ith item is replaced by an item having greater

profit and a weight small enough to allow its insertion, or by at least two items

having global weight not greater than w, +c. By this approach it is generally

possible to eliminate most of the useless nodes generated at the lowest levels
of the decision-tree.

2.5 Branch-and-bound algorithms 33

2=Z=0

c-50 (0) \"=107

f=102

c=2

z=102

;c=(l.LO.0.1.1.0)

c=0
z=105
;c =A.1.0.0.0.1.1)

Figure 2.3 Decision-tree of procedure HS for Example 2.2

(iv) The upper bounds associated with the nodes of the decision-tree are computed

through a parametric technique based on the storing of information related to
the current solution. Suppose, in fact, that the current solution has been built

by inserting all the items from the jth to the rth: then, when performing a

backtracking on one of these items (say the /th, j < i < r), if no insertion

occurred for the items preceding the jth, it is possible to insert at least items

/ -I- 1 r into the new current solution. To this end, we store in F,, p, and

34 2 0-1Knapsack problem

Wi the quantities r + 1.Yl\\=iPk ^^^ Z]I=/ ^k, respectively, for / = j, ... ,r,
and in r the value r \342\200\2241 (used for subsequent updatings).

Detailed descriptionof the algorithm follows (it is assumed that the items are

sorted as in B.7)).

procedure MT1:

\\x\\pu\\:n,c.{pj).{Wj);
output: z .{Xj);
begin
1. [initialize]

z :=0;
f :=0;
c := c;
Pn+\\ :=0;

Wn+\\ := +oc;
for ^ := 1 to \302\253do x^ := 0;
compute the upper bound f/ = f/2 on the optimal solution value;
vvi := 0;

Pi := 0;
Fi :=1;

f := n;
for k := n \\o \\ step -1 do compute w^

= min {w, : / > ^};

2. [build a new current solution]
while Wj > c do

if z > z +
[cpy+i/wy+ij then go to 5 else7 \342\200\242.=j + \\\\

find r = min {/ : Wj + X^U? \"^k > c};

P \342\226\240=Pj
+

Ek=7,Pk'

w' \342\226\240.=Wj +
Y!k~=l^k\\

M r <n then u := max ([(c -
w')p;.+i/w;.+ij,

Lfr
- {^r -

(C
-

w'))Pr-l/W;._lJ)
else M := 0;
if z > z +p' + u then go to 5;
if M = 0 then go to 4;

3. [save the current solution]
c := c \342\200\224w';

z := z + p';
for ^ :=7 to r - 1do Jc^ := 1;

Wj := w';

Pj-=p'\\
Kj \342\226\240=r;

for k :=] + 1 to r -
begin

Wk \342\200\242.=Wk-

Pk \342\226\240=Pk-\\

rk \342\226\240=r

1 do

1
- ^k-u

- Pk-u

2.5 Branch-and-bound algorithms 35

end;
for ^ := r to r do

begin
Wk := 0;

Ik
\342\226\240\342\226\240=0;

rk \342\226\240=k

end;

r := r \342\200\2241;

j :=r + l;
if c > wy_i then go to 2;
if z > f then go to 5;
p' :=0;

4. [update the best solution so far]

z := z + p';
for ^ := 1 toy

- 1 do Xk := h',
for ^ :=7 to r - 1do jc^ := 1;

for ^ := r to \302\253do Xk := 0;
\\i z = U then return ;

5. [backtrack]
find / = max {k <j :Xk

=
I};

if no such / then return.;

c := c + Wi;

z \342\200\242=z- Pi;
Xi := 0;

j :=/ + !;
if c - w, > w, then go to 2;
7 := i;
h := i;

6. [try to replace item / with item h]
h:=h + l;
\\i z > z +

[cph/wh\\ then go to 5;
if Wh = Wi then go to 6;
if Wh > Wi then

begin
if w/, > c or z > z +ph then go to 6;
z := z +ph;
for ^ := 1to \302\253do x^ := x^;
Xh := I;
\\i z = U then return;

/ := h;

go to 6
end

else
begin

if c \342\200\224
w/, < w/j then go to 6;

c :=c \342\200\224
Wh',

z \342\226\240=z+ph;

Xh := 1;

j:=h + l-

36 2 0-1 Knapsack problem

Wh

Ph

rh

:=w/,;

\342\226\240\342\226\240=Ph\\

:=/i + l;
for k := h +

f :-

go
end

begin
\\Vk

Pk

rk :

end;

--h\\

to 2

1 tor

:=0;
:=0;
\342\226\240.=k

do

end.

The Fortran code corresponding to MTl is included in the present volume. In

addition, a second code,MTIR, is included which accepts on input real values for

profits, weights and capacity.

Example 2.2 (continued)

Figure 2.4 gives the decision-tree producedby procedure MTl. \342\226\241

Branch-and-bound algorithms are nowadays the most common way to effectively
find the optimal solution of knapsack problems.More recent techniques imbed

the branch-and-bound process into a particular algorithmic framework to solve,
with increased efficiency, large instances of the problem. We describe them in

Section 2.9.

The other fundamental approach to KP is dynamic programming. This has been

the first technique available for exactly solving the problem and, although its

importance has decreased in favour of branch-and-bound, it is still interesting
because (a) it usually beats the other methods when the instance is very hard

(see the computational results of Section2.10.1),and (b) it can be successfully
used in combination with branch-and-bound to produce hybrid algorithms for KP

(Plateau and Elkihel, 1985) and for other knapsack-type problems(Martello and

Toth A984a), Section 4.2.2).

2.6 DYNAMICPROGRAMMING ALGORITHMS

Given a pair of integers m {\\ < m < n) and c @ < c < c), considerthe sub-

instance of KP consisting of items l,...,w and capacity c. Let/;\342\200\236(c)denote its

optimal solution value, i.e.

fm{c)
= max < ypjXj : > WyXy

< c. Xj
=0 or 1 for j = I, ... ,m > . B.29)

2.6 Dynamic programming algorithms 37

i^-?--0/TNp'--0
Cr50 Wu-L/=107

fr90Wpr12
f=9 ClJu-3

p'=37
UrO

2r107

x=A,0,0,1,0,0,0)

Figure 2.4 Decision-tree of procedure MTl for Example 2.2

We trivially have

/i(c) =1^
r 0 for c = 0, ... ,wi

\342\200\2241;

Pi for c = wi, ... ,c

Dynamic programming consists of considering n stages (for m increasing from
I to n) and computing, at each stage m > 1, the values/;\342\200\236(c) (for c increasing
from 0 to c) using the classical recursion (Bellman, 1954, 1957;Dantzig, 1957):

38 2 0-1 Knapsack problem

(fm-\\(c) for c = 0, ...,Wm-
U

fmin
=

{
[max ifm-lic),frn-\\iC -

W^) + Pm) for C = Wm, ..., C.

We call states the feasible solutions corresponding to the/;\342\200\236(c)values. The optimal
solution of the problem is the state corresponding to/.,(c).

Toth A980) directly derived from the Bellman recursion an efficient procedure
for computing the states of a stage. The following values are assumed to be defined
beforeexecution for stage m:

i-i \\^
B.30)

B.31)

..,v; B.32)

for c = 0, ... ,v. B.33)

where Xj defines the value of the j\\h variable in the partial optimal solution

corresponding to /;\342\200\236_i (c), i.e.

m\342\200\224\\ m\342\200\224\\

From a computational point of view, it is convenient to encode each set X^ as a

bit string, so this notation will be used in the following. After execution, values
B.30) to B.33) are relative to stage m.

procedure REC1:
input: v,b,(Ps).(Xs).w^,Pm;

output: v.b.iPe),iXe);
begin

if V < c then

begin
M := v;
V := min (v +Wm. c);
for c :=M + 1 to V do

begin
P-=P \342\226\240
re \342\200\242' w
Xc := Xu

end

end;

for c := V to Wm step -1 do
if Pf <Pe-^^+pm then

begin

2.6 Dynamic programming algorithms 39

' C \342\200\242~ ' C \342\200\224Wm \"'' Pm \302\273

end;

b \342\226\240.=lb

end.

An immediate dynamic programming algorithm for KP is thus the following.

procedure DP1:

input:/i.c.(py).(wy);
output: z.{xj);
begin

for c := 0 to wi
- 1 do

begin
Pc \342\200\242=0;

Xe :=0

end;
V := wi;
b :=2;

/'v :=Pi;
Xv := 1;

for w := 2 to \302\253do call REC1;
z :=Pc;
determine (Xj) by decoding Xc

end.

Procedure RECl requires 0(c) time, so the time complexity of DPI is 0(nc).

The space complexity is 0{nc). By encodingX^ as a bit string in computer words

of d bits, the actual storage requirement is A + \\n/d'])c, where \\a'\\ is the smallest

integer not less than a.

2.6.1 Elimination of dominated states

The number of states consideredat each stage can be considerably reduced by

eliminating dominated states, that is, those states{Pf.Xs)for which there exists a

state {Py.Xy) with Py > P^ and y < c. (Any solution obtainable from (P^. X^) can

be obtained from (Py. Xy).) This technique has been used by Horowitz and Sahni

A974) and Ahrens and Finke A975). The undominated states of the wth stage can
be computed through a procedure proposed by Toth A980). The following values
are assumed to be defined before execution of the procedure for stage m:

s = number of states at stage (w - 1); B.34)

b = 2'\"-^; B.35)

W1, = total weight of the /th state (/ = 1, ... ,5); B.36)

40 2 0-1 Knapsack problem

P1, = total profit of the /th state {i = \\, ... ,s); B.37)

.. ,x\\]. for / = 1, ... ,5. B.38)

where Xj defines the value of the jih variable in the partial optimal solution of the
/th state, i.e.

m-1 m\342\200\2241

W\\i =
Y^ WjXj and P^i =

Y^PjXj.
i=i y=i

Vector Vl^l (and, hence, PI) is assumed to be ordered according to strictly

increasing values.

The procedure uses index / to scan the states of the current stage and index k

to store the states of the new stage. Each current state can produce a new state of
total weight j = Vl^ 1, +W;\342\200\236,so the current states of total weight W Ih < y, and then

the new state, are stored in the new stage, but only if they are not dominated by

a state already stored. After execution, values B.34) and B.35) are relative to the

new stage, while the new values of B.36), B.37) and B.38) are given by (W2k),
(P2k) and (X2^), respectively. Sets X1, and Xl^ are encoded as bit strings. Vectors

(Wlk) and iP2k) result ordered according to strictly increasing values.On input,

it is assumed that l^ Iq = P lo = ^ lo=0.

procedureREC2:

\342\200\242input:s.b.(Wh).(Ph).(Xh)-Wm.Pm.c;

output: s.b. (Wlk). (Plk). (Xlk);
begin

/ :=0;
k := 0;

h := 1;
y :=H';

WUI

W2o:--
P2o :=
X2q:=
while 1

m J

:= H-oc;
= 0;

0;

0;
nin iy.WXh) < c

\\\\W\\h <y then

begin
comment:
p:=Ph;
X :=X1/,;

\\\\W\\h=y

begin

do

define the next state [p.x)

then

\\^P\\i+Pm

begin

> p then

p :=Pli +pn

2.6 Dynamic programming algorithms 41

end;
/ := / + 1;
y :=W 1/ + w^

end;
comment: store the next state, if not dominated;

ifp > P2k then
begin

k \342\200\242=k+ l;

W2k :=Wh;
P2k :=p;
X2k :=x

end;

h:=h + l
end

else
begin

comment:store the new state, if not dominated;

a Pli+Pr\342\200\236> P2k ttten

begin
k \342\226\240.=k + l;

W2k :=y;
P2k :=Ph+Pm;
X2k \342\226\240.=Xli+b

end;
/ := / + 1;
y :=Wli +Wm

end;
s := k;
b :=2b

end.

A dynamic programming algorithm using REC2 to solve KP is the following.

procedure DP2:
input:/i.c.(py).(wy);
output: z .{xj);

begin
W lo :=0;
Ph:=0;
Xh:=0;
s :=1;
b :=2;

W l\\ := w\\;

Ph \342\226\240.=Pu

X11 := 1;
for m := 2 to \302\253do

begin

42 2 0-1 Knapsack problem

call REC2;
rename H^ 2. P 2 and X 2 as ly L P1 and X1, respectively

end;

z -Ph;
determine {xj) by decoding Xls

end.

The time complexity of REC2 is 0(s). Since s is bounded by min B'\" \342\200\2241. c), the

time complexity of DP2 is 6)(min B\"'^Knc)).

Procedure DP2 requires no specific ordering of the items. Its efficiency, however,

improves considerablyif they are sorted according to decreasing pj /wj ratios since,

in this case, the number of undominated states is reduced. Hence,this ordering is

assumed in the following.

Example 2.3

Considerthe instance of KP defined by

n = 6;

(Pj) = E0, 50,64,46, 50, 5);

(Wj)
= E6, 59, 80, 64, 75, 17);

c = 190.

Figure 2.5 gives, for each stage m and for each undominated state /, the values

Wi. Pi, corresponding, in DP2, alternatively to l^ 1,.P1, and W2i. P2,. The optimal
solution, of value 150, is (xj) = A. 1.0.0.1.0).For the same example, procedure
DPI generates866 states.\342\226\241

/

0

1

2

3
4
5
6
7
8
9

10
11

m

W,

0

56

= 1

Pi

0
50

m

W,

0

56
115

= 2
P.

0
50

100

m

W,

0
56
80

115
136

= 3

P,

0
50
64

100
114

m

W,

0

56
80

115
136
179

= 4

P,

0
50
64

100

114

146

m

w.

0
56
80

115
136

179

190

= 5
P,

0
50
64

100

114

146
150

m

W,

0

17
56
73
80
97

115

132

136
153
179
190

= 6

P,

0

5

50
55
64
69

100

105

114

119
146
150

Figure 2.5 States of procedure DP2 for Example 2.3

2.6 Dynamic programming algorithms 43

2.6.2 The Horowitz-Sahnialgorithm

Horowitz and Sahni A974) presented an algorithm based on the subdivision of the

original problem of n variables into two subproblems, respectively oi q =
\\n/T\\

and r = n-q variables. For each subproblem a list containing all the undominated

states relative to the last stage is computed;the two lists are then combined in

order to find the optimal solution.
The main feature of the algorithm is the need, in the worst case, for two lists

of 2'^ \342\200\2241 states each, instead of a single list of 2\" - 1 states. Hence the time and

space complexities decrease to 0{m\\r\\ B\"^^. nc)), with a square root improvement
in the most favourable case. In many cases, however, the number of undominated

states is much lower than 2\"^^, since (a) many states are dominated and (b) for n

sufficiently large, we have, in general, c <C 2\"^^.

Ahrens and Finke A975)proposedan algorithm where the technique of Horowitz
and Sahni is combined with a branch-and-bound procedure in order to further

reduce storage requirements. The algorithm works very well for hard problems

having low values of n and very high^alues of w, and c, but has the disadvantage

of always executing the branch-and-bound procedure, even when the storage

requirements are not excessive.
We illustrate the Horowitz-Sahni algorithm with a numerical example.

Example 2.3 (continued)

We have q = ?>. The algorithm generates the first list for w =1, 2, 3, and the second

for w = 4, 5, 6. The corresponding undominated states are given in Figure 2.6.

Combining the lists corresponding to w = 3 and w = 6 we get the final list of

Figure 2.5. Q

/

0

1

2

3

4

5

6

7

m = \\

Wi P,

0 0

56 50

m = 2

Wi P,

0 0

56 50

115 100

m = 3

W, P,

0 0

56 50

80 64

115 100

136114

m =

Wi

0

17

64

75

81

92

139

6

Pi

0

5

46

50

51

55

96

156 101

m = 5

Wi Pi

0 0

64 46

75 50

139 96

m = A

Wi Pi

0 0

6446

Figure 2.6 States of the Horowitz-Sahni algorithm for Example 2.3

44 2 0-1Knapsack problem

2.6.3 The Toth algorithm

Toth A980) presented a dynamic programming algorithm based on (a) the
elimination of useless states and (b) a combination of procedures RECl and REC2.

Severalstates computed by REC1 or REC2 are of no use for the following stages

since, of course, we are only interested in states capable of producing, at the final

stage, the optimal solution. Uselessstates produced by RECl can be eliminated by

the following rule:
If a state, defined at the wth stage, has a total weight W satisfying one of the

conditions

n

(i) W <c- J2 ^J-

j=m + \\

(ii) c - rmnm^j<n{wj] <W <c.
then the state will never produce Pc and, hence, can be eliminated.

A similar rule can be given for REC2 (in this case, however, it is necessary to
keep the largest-weight state satisfying (i)), and the last, i.e. ^th, state. The rule

cannot be extended, instead, to the Horowitz-Sahni algorithm, since, in order to
combine the two lists, all the undominated states relative to the two subproblems

must be known.

Example 2.3 (continued)

The states generated by DP2, with REC2 improved through the above elimination

rule, are given in Figure 2.7. \342\226\241

/

0

1

2

3
4

m -

W,

0

56

= 1

P,

0
50

m

W,

0

56
115

= 2
P.

0
50

100

m

W,

0
56
80

115
136

= 3

P,

0
50
64

100

114

m

W,

0
80

115
136
179

= 4

P.

0
64

100
114
146

m

W,

0
136
190

= 5
P.

0
114
150

m

W,

0

190

= 6
P,

0
150

Figure 2.7 States of the improved version of DP2 for Example 2.3

Algorithm DP2 is generally more efficient than DPI, because of the fewer
number of states produced. Notice however that, for the computation of a single
state, the time and space requirements of DP2 are higher. So, for hard problems,
where very few states are dominated, and hence the two algorithms generate almost

the same lists, DPI must be preferred to DP2. A dynamic programming algorithm
which effectively solves both easy and hard problems can thus be obtained by

combining the best characteristics of the two approaches. This is achieved by using

2.7 Reduction algorithms 45

procedure REC2as long as the number of generated statesis low, and then passing
to RECl. Simpleheuristic rules to determine the iteration at which the procedure
must be changedcan be found in Toth A980).

2.7 REDUCTIONALGORITHMS

The size of an instance of KP can be reduced by applying procedures to fix the

optimal value of as many variables as possible. These procedures partition set

A^={1.2 n] into three subsets:

J I = {j E N : Xj
= I in any optimal solution to KP},

J0 = {j E N : Xj
= 0 in any optimal solution to KP},

F =N\\(Jl U/O).

The original KP can then be transformed into the reduced form

maximize z =
/^^PjXj

+ p

subject to yj^y-^i < c,
jeF

x/
= 0 or 1. y G F,

wherep =
E.g/iP/' c = c-

J2jeJ\\ ^J-

Ingargiola and Korsh A973) proposedthe first method for determining 71 and

70. The basic idea is the following. If setting a variable Xj to a given value b

(/>
= 0 or 1) produces infeasibility or implies a solution worse than an existing one,

then
Xj

must take the value A
-

/>) in any optimal solution. Let / be the value of

a feasible solution to KP, and, for j EN, let
uj (resp. wh be an upper bound for

KP with the additional constraint
Xj

= 1 (resp. Xj
= 0). Then we have

Jl = {j EN :m\302\260</}, B.39)

JO={j EN luj <l]. B.40)

In the Ingargiola-Korsh algorithm, uj and
u^

are computed using the Dantzig

bound. Let s be the critical item (see Section 2.2.1) and U\\ the Dantzig bound for
the original problem. Then uj

= U\\ for any j < s and
u^

= U\\ for any j > s.

Hence values j > s (resp.j < s) need not be considered in determining 7 1 (resp.

70), since U\\ > I. The algorithm initializes / to
X]/^i Pj ^\"^ improves it during

execution. It is assumed that the items are orderedaccording to B.7). Remember

that (t\\j) and (T^(j) represent the critical item when it is imposed, respectively.

46 2 0-1Knapsack problem

Xj
= 1 and Xj

= 0 (see B.17) and B.18)).

procedure IKR:

input:/i,c.(py),(wy);

output: 71.70;

begin
71 :=0;
7O:=0;
determine s = min {j :

J2]^\\ ^i > c};

i-=EMPj'
for j := I \\o s do

begin
determine a^ij) and computeu^;

/:=max(/.n=/^\"'P');

if mP </ then 71 :=71U{7}
end;

for; :=s to n do

begin
determine cr^ij) ^^^ compute uf;

I := max il.pj + Zjl?'^''Pi);
if

m/ < / then 70 :=70 U {7}

end

end.

Notice that the variables corresponding to items in 71 and 70 must take the

fixed value in any optimal solution to KP, thus including the solution of value

/ when this is optimal. However, given a feasible solution x of value /, we are
only interested in finding a better one. Hencestronger definitions of 7 1 and 70 are
obtained by replacing strict inequalities with inequalities in B.39), B.40), i.e.

Jl = {j eN :uf<l], B.41)

70={y gA^ :
uj

< /}. B.42)

If it turns out that the reduced problem is infeasible or has an optimal solution less

than /, then x is the optimal solution to the original problem.

Example 2.4

We use the same instance as in Example 2.2, whose optimal solution, of value 107,
is jc = (LO,0,L0,0,0):

2.7 Reduction algorithms 47

n =1;

(pj)
= G0, 20, 39, 37, 7, 5, 10);

(wy)
= C1, 10, 20, 19, 4, 3, 6);

c =50.

Applying procedure IKR we get:

s =3,

y
= 1 \342\200\242\342\200\242

y
= 2 :

y=3:

y
= 3 :

y=4:

y=5:

y=6:

y=7:

so7 1

/ =90;

M?
= 97.

4 = 107;

M?
= 107;

ul = 106;

m]
= 107^

4 = 106;

M^
= 106;

u] = 105,

= 0. JO={5,

I =96;

I = 1(

6,7}. D

In order to use definitions B.41), B.42) it is simply necessary to replace the

< sign with < in the two tests of procedure IKR. With this modification we get
71=0, 70 = {4,5.6.7}.The optimal solution value of the reduced problem is

then 90, implying that the feasible solution of value / = 107 is optimal. (Notice

that it is worth storing the solution vector corresponding to / during execution.)

Recently, Murphy A986) erroneously claimed that definitions B.41), B.42)
of 7 1 and 70 are incorrect. Balas, Nauss and Zemel A987) have pointed out its

mistake.

The time complexity of the Ingargiola-Korsh procedure is O(n^), since 0(n)
time is required for each a^ij) or (t\\j) computation (although one can expect
that, on average, these values can be determined with few operations, starting from

s). The time complexity does not change if
m^

and uj
are computed through one

of the improved upper bounding techniques of Section 2.3.
An 0(n) reduction algorithm has been independently obtained by Fayard and

Plateau A975) and Dembo and Hammer A980). The method, FPDHR, computes

u^ and
uj through the values p* = pj \342\200\224

WjPs/wg (see B.13)). Recalling that | p* \\

represents a lower bound on the decrease of z(C(^P)) corresponding to the change

of theyth variable from J, to 1 \342\200\224
Ty, we have

48 2 0-1Knapsack problem

uf= _z{C{KP))-p;\\. j = \\,...,s-

uj
=

[z{C{KP))+p;\\. j=s,...,n.

which are computed in constant time, once z(C(KP))is known. It is easy to see
that the values

m^
and

uj
obtained in this way are not lower than those of procedure

IKR, so the method is generally less effective,in the sense that the resulting sets

70 and J 1 have smaller cardinality.

O(n^) reduction algorithms more effective than the Ingargiola-Korsh method

have been obtained by Toth A976), Lauriere A978) and Fayard and Plateau A982).
An effective reduction method, still dominating the Ingargiola-Korsh one, but

requiring 0(n\\ogn) time, has been proposed by Martello and Toth A988). The

algorithm differs from procedure IKR in the following main respects:

(a) Uj*
and uj

are computed through the stronger bound U2;

(b) 71 and 70 are determined at the end, thus using the best heuristic solution

found;

(c) at each iteration, upper bound and improved heuristic solution value are

computed in 0{\\ogn) time by initially defining Wj
=

Yli=\\ ^i andp =
Yli=\\P'

(j
= I, ... ,n) and then determining, through binary search, the current critical

item? (i.e. a^ij) or (t\\j)).

The procedure assumes that the items are ordered according to B.7) and that

Pj/wj = \342\200\224ocif y < 1 , Pj/wj = +OC if y > n.

procedure MIR:
input: n.c.ipj),iwjy,

output: 7 1.70./;
begin

for y := 0 to \302\253do compute pj
=

Yli=\\ Pi ^i^cl wj = ^/^j w,;
find, through binary search, s such that vv^_i < c < vv^;

i-=Ps-\\^
c :=\342\202\254- w,_i;

fory := s + I Xo n do

if Wj < c then

begin
/ := I +pj;
c:=c- Wj

end;

fory := 1 to 5 do
begin

find, through binary search, J such that

_
Wj_ 1 < C +Wj < Wj]

\"c := c +
Wj

\342\200\224
Wj_ 1;

2.7 Reduction algorithms 49

u^
:= pj_ i-Pj+ max ([cpj+i /wj+i\\.

[Pi-('^j-c)Pj-\\/wj_i\\);
I := max (l.pj_^ -Pj)

end;
for; \342\200\242=s Xo n do

begin
find, through binary search, J such that

_
\"^1- 1 < C -Wj < Wj\\

c :=c -Wj -wj_i;

Uj
:= pj_ 1 +_Pj

+ max ([cpj+i/wj+i\\. [pj -
{wj

- c)pj_ i/wj_ iJ);
/ := max (l.pj_i +Pj)

end;

Jl:={j <s :
uf

< /};

70 := {j >s :
uj

< I]
end.

Example 2.4 (continued)

Applying procedure MTR we have

(p.) = @, 70, 90, 129, 166, 173, 178, 188);
(wy)

= @, 31,41, 61, 80, 84, 87, 93);
5 =3, /=90, c = 9;
/ = 102,c = 2;

y
= i

j = 2

y
= 3

y = 3

y
= 4

j=5

y
= 6

7=7

J=5,c= 1,m|^= 97

j=3, c = 19,u^= 107

s=4,c= 9, M?= 107

j=l,c = 30,ul= 99
j = 2,c= 0,ul = 107

j=3, c= 5,ui = 106
j=3, c= 6,M^

= 106

J=3,c= 3,u] = 105

/ = 107;

71=
{1,2, 3}, 70={3, 4, 5, 6, 7}.

The reduced problem is infeasible (x^, is fixed both to 1 and to 0 and, in addition,

Yli\302\243j\\̂ j > ^)^ so the feasible solution of value 107 is optimal. \342\226\241

Procedure MTR computes the initial value of / through the greedy algorithm.

Any other heuristic, requiring no more than 0(n\\ogn) time, couldbe used with no

time complexity alteration.
The number of fixed variables can be further increased by imposing conditions

B.5), B.6) to the reduced problem, i.e. setting 70 = 70U{yGF:wy>

50 2 0-1Knapsack problem

c -
Eygyi^^y) and, if

Y^j^f^j
< ^ -

E/g/i^^/' /I = /I U F. In addition,

the procedure can be re-executed for the items in F (since the values of uj and

My
relative to the reduced problem can decrease)until no further variable is fixed.

This,however, would increase the time complexity by a factor n, unless the number

of re-executions is bounded by a constant.

2.8 APPROXIMATE ALGORITHMS

In Section 2.4 we have described the greedy algorithm, which provides an

approximate solution to KP with worst-case performance ratio equal to ^, in time

0{n) plus 0{n log n) for the initial sorting. Better accuracy can be obtained through

approximation schemes, which allow one to obtain any prefixed performance
ratio. In this section we examine polynomial-time and fully polynomial-time

approximation schemes for KP. Besidesthesedeterministic results, the probabilistic
behaviour of some approximate algorithms has been investigated. A thorough

analysis of probabilistic aspects is outwith the scope of this book. The main results

are outlined in Section 2.8.3 and, for the subset-sum problem, in Section 4.3.4. (The
contents of such sections are based on Karp, Lenstra,McDiarmid and Rinnooy Kan

A985).)

2.8.1 Polynomial-timeapproximation schemes

The first approximation scheme for KP was proposed by Sahni A975) and makes

use of a greedy-type procedure which finds a heuristic solution by filling, in order

of decreasing Py/wy ratios, that part of c which is left vacant after the items of a

given set M have been put into the knapsack. Given M C N and assuming that

the items are sorted according to B.7), the procedure is as follows.

procedure GS:

input: n.c.ipj).{Wj).M;
output: z^.X;
begin

zs :=0;

X := 0;

for) := Ho n do

If 7 ^ M and wj
< c then

begin
8 \342\200\224vS= z^ +Pj;

c :=c \342\200\224
Wj]

X:=XU{J]
end

end.

2.8 Approximate algorithms 51

Given a non-negative integer parameter k, the Sahni scheme S(^) is

procedure S(^):
\\xviiU\\:n,c,{pj),{Wj);

output: z\\.X^

begin
z^ :=0;
for each M c {1 n] such that \\M\\ <k and

X]/6M ^/ < c do

begin
call GS;
\"^' +

E,6MPy
>^'then

begin
^':=^^ + EyeMP/;
X^ :=X UM

end

end

end.

Since the time complexity of procedure GS \\& 0{n) and the number of times it is

executed is 0{n'^), the time complexity of S(^) is 6)(/i^\"^^). The space complexity
is 0{n).

Theorem2.3(Sahni, 1975) The worst-case performance ratio ofS{k) is r{S{k))=
k/(k+ l).

Proof, (a) Let Y be the set of items inserted into the knapsack in the optimal
solution. If 11^ I < k, then S(^) gives the optimum, since all combinations of
size I y I are tried. Hence, assume | y | > k. Let M be the set of the k items of

highest profit in Y, and denote the remaining items of Y with ji yV, assuming

Pji/'^j, >
Pj,+\\/'^j,+\\ (i = ^, \342\226\240\342\226\240\342\226\240,r

\342\200\224
I). Hence, if z is the optimal solution value,

we have
Pi < -^\342\200\224 for / = 1, ... ,r. B.43)

^ + 1

Consider now the iteration of S(^) in which M = M, and lety^^ be the first item of

{ji: \342\226\240\342\226\240\342\226\240Jr] not inserted into the knapsack by GS. If no such item exists then the

heuristic solution is optimal. Otherwisewe can write z as

m\342\200\224\\ r

ieW '=1 '='\"

while for the heuristic solution value returned by GS we have
m\342\200\2241

52 2 0-1 Knapsack problem

where Q denotes the set of those items of N\\M which are in the heuristic

solution but not in {j\\ jr] and whose index is less than j^. Let c* =

c -
Ylif'M^i

~
J17=\\^ ^h ^^^ c = c* -

X^/GC^' ^^ ^^^ residual capacities
available, respectively, in the optimal and the heuristic solution for the items of

N\\M following ^_i. Hence,from B.44),

m\342\200\2241

by definition of m we have c < wy^
and p, /w, >

pj^ /wj^ for / G Q, so

m\342\200\2241

Z
<J2Pi

+ J2PJ' ^Pj-n
+

E^\"

Hence, from B.45), z < z^ +
pj^ and, from B.43),

zs k
>

z k + l'

(b) To prove that the bound is tight, consider the series of instances with:
n =k+2; pi=2. wi = l; pj =

wj
= L > 2 for j = 2, ... ,k + 2; c = (k + l)L.The

optimal solution value is z =
(k + 1)L, while S(^) gives z^ = kL + 2. Hence, for L

sufficiently large, the ratio z''/z is arbitrarily close to k/(k + 1). D

Let M denote the maximum cardinality subset of {1 n] such that

Ylj^W^J \342\200\224^- Then, clearly, for any k > \\M\\, S(k) gives the optimal solution.

Example 2.5

Consider the instance of KP defined by

n =S;

(Pj) = C50, 400, 450, 20, 70, 8, 5, 5);

(Wj)
= (25, 35, 45, 5, 25, 3, 2, 2);

c = 104.

The optimal solution X = {1.3.4.5.7.8} has value z = 900.
Applying Sik) with A: = 0, we get the greedy solution: X^ = {1, 2, 4, 5, 6, 7, 8},

z^ =858.

Applying S(^) with ^ = 1, we re-obtain the greedy solution for

M = {1}, {2},{4},{5},{6},{7}, {8}. For M = {3}, we obtain X^ =

{1, 3,4, 5, 6}, z^ =898.
Applying S(^) with ^ = 2, we obtain the optimal solution when M = {3.7}.\342\226\241

2.8 Approximate algorithms 53

The Sahni algorithm is a polynomial-time approximation scheme, in the sense

that any prefixed worst-case performance ratio can be obtained in a time bounded

by a polynomial. However, the degree of the polynomial increases with k, so the

time complexity of the algorithm is exponential in k, i.e. in the inverse of the
worst-case relative error e = 1 \342\200\224r.

2.8.2 Fully polynomial-time approximation schemes

Ibarra and Kim A975) have obtained q. fully polynomial-time approximation scheme,
i.e. a parametric algorithm which allows one to obtain any worst-case relative

error (note that imposing e is equivalent to imposing r) in polynomial time

and space, and such that the time and space complexities grow polynomially
also with the inverse of the worst-case relative error e. The basic ideas in the
Ibarra-Kim algorithm are: (a) to separate items accordingto profits into a class of

\"large\" items and one of \"small\" items; (b) to solve the problem for the large
items only, with profits scaled by a suitable scale factor b, through dynamic

programming. The dynamic programming list is stored in a table T of length

\\0/ef\\ -Hi; T{k)= \"undefined\" or is of the form (L(k).P(k), W(k)), where L(k)

is a subset of {1,... ,n], P(k)
=

J2jeLik)Pj^ ^(^) =
Ejeuk) ^j and k =

J2jeL{k)Pj
with

Pj
= [pj/b\\. It is assumed that the items are ordered according to B.7) and

that the \"small\" items are inserted in set S preserving this order.

procedure IK(\302\243):

input: \302\253,c,(/?y),(wy);

output: z\\X^

begin
find the critical item 5 (see Section2.2.1);
if

E/=i'^y
=c then

begin
^ :=Ey=i Pj'
X^ \342\200\242={\\,...,s- 1};

return

end;

comment: z/2 <z<z, sincez > max (E/=i Pj'PsY'

b:=z{\302\243/3f;

S :=0;

7@) := (L@),P@),W@)) := @,0,0);
q := [z/6\\- (comment: q =

[C/\302\243)^J);

comment: dynamic programming phase;
for / := I Xo q do T(i) := \"undefined\";

for 7 := 1 to \302\253do

iipj < \302\243z/3then5 := S U {j]
else

54 2 0-1Knapsack problem

begin

Pj '\342\226\240=
by/^J^

for i :=q - pj to 0 step -1 do
if T(i) ^ '\"undefined\" and W(i) +

Wj
< c then

if T(i +pj)
=

\"undefined\"

or W(i +Pj) > W(i) +
Wj then

TH +pj) := (Ld) U {j], Pii)+pj,Wii) + wj)
end;

comment: greedy phase;

z^ :=0;
for / := 0 to <7 do

if T(i) ^ ''undefined\" then

begin
I :=

P(i)+YlieAPj'
where/I is obtained by filling the residual

capacity c -W(i) with items of S in the greedy way;
if F > z^ then

begin
h

X^ :=L(i)UA

z^ :=z;

end
end

end.

The dynamic programming recursion is executed n times and, at each iteration,

no more than q states are considered:since each state takes a constant amount

of time, the dynamic programming phase has time complexity 0(nq). The final

greedy phase is performed at most q times, each iteration taking 0(n) time. Hence
the overall time complexity of IK(\302\243)is 0(nq), i.e. 0{n/\302\243^) by definition oiq, plus
0{n\\ogn) for the initial sorting.

The space required by the algorithm is determined by the [C/\302\243)^J entries of

table T. Each entry needs no more than 2 + r words, where t is the number of

items defining the state. If
^-^ ,\342\226\240\342\226\240\342\226\240,Pi are the scaled profits of such items, we have

t < q/min j^-^,...,^- } < 3/e. Hence the overall space complexity of IK(\302\243)is

0(n) (for the input) + 0(\\/\302\243^).

Theorem 2.4 (Ibarra and Kim, 1975) For any instance of KP, (z - z^)/z < e,
where z is the optimal solution value and z^ the value returned by IK(\302\243).

Proof. If the algorithm terminates in the initial phase with z^ = ^^J^ Pj then z^

gives the optimal solution. Otherwise, let {i\\,...,ik] be the (possibly empty) set

of items with /?,, > ^ez in the optimal solution, i.e.

=
E''. + a.

2.8 Approximate algorithms 55

where a is a sum of profits of items in S. Defining p* =
J2i=i Pu ^'^^ vv

* =
^/=i w,,,

we have, at the end of the dynamic programming phase, T(p*) i ''undefined''''

and W{p*) < w* (since W(i) is never increased by the algorithm). Let L(p*)=
{yi.\342\200\242\342\200\242\342\200\242\342\200\242>jh}- (This implies that^* = J2i=iPj, and H^(^*) =

J2i=i ^jr^ Then the sum

I = J2i=i Pji
\342\226\240\342\200\242\"/^' where /5 is a sum of profits of elements in S, has been considered

in the greedy phase (when / = ^*), so z^ > I. Observe that pj
= [pj/6\\ > 3/e,

from which pj6
< pj < (pj + 1N =Pj6(l

+ i/Pj) < PjK^ + e/3). It follows that

p*6 + a < z <p*6{\\ + \\e) + a,

p*6 + /3 <I <p*6(l +
^\302\243)

+ /3,

from which

z-I p*6\302\243/3+ (q
- P) I Q. \342\200\224

C

1
~ 1 ~ ^

Z

Since W{p*) < w* and the items in S are orderedby decreasing /?y/wy ratios, it

follows that (a
\342\200\224

ji) cannot'be greater than the maximum profit of an item in 5,
i.e. a \342\200\224

/5 < \\zi. Hence (z \342\200\224
1I1 <

^\302\243A
+ z/z). Since J < z^ and z < 2z, then

(z -z^)/z <\302\243.n

Example 2.5 (continued)

We apply IK(\302\243)with e =
\\.

s = 3;

z = 1200;

, 100

S =0 (items with pj < ez/3 = 200will be inserted in 5');

7@) = @.0.0);

q
= 36;

dynamic programming phase:

y
= 1 : p^

= 10, 7A0) = ({1},350,25);

j =2: p2
= 12, 7B2) = ({1, 2}, 750, 60),

7A2)= ({2},400, 35);

y = 3 : ^3 = 13,7B5)=({2,3},850,80),

56 2 0-1 Knapsack problem

7B3) = ({1,3},800,70),
rA3)

= ({3}, 450, 45);

7 =4,..., 8: 5 ={4,5,6, 7, 8};

greedy phase:

for all the entries of table T save 7B3) and 7B5), we have c -W{i) > Yljes^J
~

37. Hence the best solution produced by such states is ^'B2)+^^^ pj = 858.7B3)
gives PB3) +

Ey\342\202\254{4.56}Pj
= 898; 7B5) gives PB5) + Eje{4.6.7.s}Pj= 888.It

follows that z^ = 898. X^ = {I, 3, 4, 5, 6}.

The solution does not change for all values \302\243> jq. For \302\243< jq, we have

\302\243z/3< 8, so items 1-6 are considered\"large\" and the algorithm finds the optimal

solution using entry 7(/) = ({1, 3, 4, 5},890,100).The value of <7, however, is

at least 22 500 instead of 36. D

Ibarra and Kim A975) have also proposed a modified implementation having

improved time complexity 0(n\\ogn) + 0((l/\302\243'*)log(l/\302\243)), with the second term

independent of n. Further improvements have been obtained by Lawler A979), who

used a median-finding routine (to eliminate sorting) and a more efficient scaling
technique to obtain time complexity 0(n\\og(l/\302\243) + !/\302\243\342\226\240*)and space complexity

0(n + \\/e^). Magazine and Oguz A981) have further revised the Lawler A979)
scheme, obtaining time complexity O{rP-\\og{n/e)) and space complexity 0{njz).

A fully polynomial-time approximation scheme for the minimization version of

KP was found, independently of the Ibarra-Kim result, by Babat A975). Its time
and space complexity of 0{n^jz) was improved to 0{n^je) by Gens and Levner

A979).
Note that the core memory requirements of the fully polynomial-time

approximation schemes depend on e and can become impractical for small values of
this parameter. On the contrary, the space complexity of Sahni's polynomial-time
approximation scheme is 0(\302\253), independently of r.

2.8.3 Probabilistic analysis

The first probabilistic result for KP was obtainedby d'Atri A979). Assuming that

profits and weights are independently drawn from the uniform distribution over {1,
2, ..., \302\253},and the capacity from the uniform distribution over {1. 2. ... ,kn\\ {k

an integer constant), he proved that there exists an 0{n) time algorithm giving the

optimal solution with probability tending to 1 as \302\253-^ oc.

Lueker A982) investigated the properties of the average value of {i{C{KP))\342\200\224

z (KP)) (difference between the solution value of the continuous relaxation and the

optimal solution value of KP). Assuming that profits and weights are independently

generated from the uniform distribution between 0 and 1 by a Poisson process with

n as the expected number of items, and that the capacity isc = Pn for someconstant

P, he proved that:

2.9 Exact algorithms for large-size problems 57

(a) if /5 > ^ then all items fit in the knapsack with probability tending to 1, so the

question is trivial;

(b) if f3 < { then the expected value of (z(C(KP))- z(KP)) is 0(log^\302\253/\302\253)and

n(\\/n).

Goldberg and Marchetti-Spaccamela A984) improved the 11A/\302\253) lower bound to

il(\\og^n/n), thus proving that the expected value of the difference is Q(\\og^n/n).
In addition, they proved that, for every fixed \302\243> 0, there is a polynomial-time
algorithm which finds the optimal solution to KP with probability at least 1 \342\200\224e.

(As a function of l/e, the running time of the algorithm is exponential.)

Meanti, Rinnooy Kan, Stougie and Vercellis A989) have determined, for the

same probabilistic model, the expected value of the critical ratio ps /w^ as a function

of /3, namely l/V^ for 0 < /^ < ^. f
- 3/^ for ^ < /^ < ^. The result has been

used by Marchetti-Spaccamela and Vercellis A987) to analyse the probabilistic

behaviour of an on-line version of the greedy algorithm. (An on-line algorithm for

KP is required to decide whether or not to include each item in the knapsack as it

is input, i.e. as its profit and weight become known.)
The probabilistic properties of different greedy algorithms for KP have been

studied in Szkatula and Libura A987).

2.9 EXACT ALGORITHMS FOR LARGE-SIZE PROBLEMS

As will be shown in Section 2.10, many instances of KP can be solved by branch-
and-bound algorithms for very high values of n. For such problems, the preliminary
sorting of the items requires, on average, a comparatively high computing time (for
example, when n > 2000 the sorting time is about 80 per cent of the total time

required by the algorithm of Section 2.5.2). In the present section we examine

algorithms which do not require preliminary sorting of all the items.
The first algorithm of this kind was presented by Balas and Zemel A980) and

is based on the so-called \"coreproblem\". Suppose, without loss of generality, that

Pj/wj > pj+i/wj+i for 7 = 1, ...,\302\253
\342\200\2241, and, for an optimal solution (x*), define

the core as

C = {ju...j2].
where

71 = min {j : x* = 0}. 72 = max {7 : x* = 1};

the core problem is then defined as

maximize z = V^ PjXj

iec

58 2 0-1 Knapsack problem

subject to
y~^WjXj

< c -
2_. ^j\342\226\240

J^C j&{i-p,lw,ypjjwj^]

Xj
=0 or 1. for j G C.

In general, for large problems,the size of the core is a very small fraction of

n. Hence, if we knew \"a priori\" the values of y'l and 72, we could easily solve the

complete problem by setting x* = 1 for a.\\\\jeJl
= {k: pk/wk > Pj^/wy,].x* =0

for all 7 e JO = {k : pk/wk < PjjMjj] and solving the core problem through

any branch-and-bound algorithm (so that only the items in C would have to be
sorted).Notice that /1 and JO are conceptually close to the sets of the same name

determined by reduction procedures.
Indicesj\\ and 72 cannot be \"a priori\" identified, but a good approximation of the

core problem can be obtained if we consider that, in most cases, given the critical

item s, we have 71 > s \342\200\224
(^/2) and 72 < -^ + (^/2) for some d <^n.

2.9.1 The Balas-Zemelalgorithm

Balas and Zemel A980) proposed the following procedure for determining, given
a prefixed value d, an approximate partition (/l.C./O) of A^. The methodology

is very close to that used in Section 2.2.2 to determine the critical item 5 and

the continuous solution (Xj), so we only give the statements differing from the

corresponding ones in procedure CRITICAL_ ITEM:

procedureBZC:

input: n,c.{pj).{wj). d;

output:/l.C.(Jy);
begin

while partition = \"no\" and \\JC\\> d 60

begin
determine the median r, of the first 3 ratios Pj/wj in JC;

end;
\\\\\\JC\\<d then

begin
C :=/C;
sort the items in C according to decreasing Pj /wj ratios;
determine the critical item 5 and the solution (Jy) of the continuous
relaxation through the Dantzig method applied to the items in C

with the residual capacity c
end

else
begin

\\e\\E = {ex, ...,eq};

2.9 Exact algorithms for large-size problems 59

a :=min {j :
YlUi^e, >c-c'];

s \342\226\240.=ea;

for each j G /1 U G U {^i e^_ i} do
Jy

:= 1;

for each j g /O U L U {ea+\\., e^] do J, :=0;
^s \342\200\242\342\226\240=(c

-
Ey\342\202\254{i....\302\253}\\{.}̂ J^j)Ms\\

define C as a sorted subset of JC such that \\C\\
= d and

5 is contained, if possible, in the middle third of C, and

correspondingly enlarge set /1
end

end.

Determining the median of the first three ratios (instead of that of all the ratios)
in JC increases the time complexity of the algorithm to O(n^), but is indicated in

Balas and Zemel A980) as the method giving the best experimental results.They

had also conjectured that the expected size of the core problem is constant, and

experimentally determined it as i? = 25. The conjecture has been contradictedby

Goldberg and Marchetti-Spaccamela A984), who proved that the expected core

problem size grows (very slowly) with n.
The Balas-Zemel method also makes use of a heuristic procedure H and a

reduction procedure R. These can be summarized as follows:

procedure H:
input: C./l;

output: z.ixj);
begin

given an approximate core problem C and a set/1 of items j such that Xj is

fixed to 1, find an approximate solution for C by using dominance relations
between the items;

define the corresponding approximate solution (xj), and its value z, for KP

end.

procedure R:

input: C;

output:/r,/0';

begin
fix as many variables of C as possible by applying the reduction test of

algorithm FPDHR, then that of algorithm IKR (see Section 2.7), modified
so as to compute an upper bound on the continuous solution value when

the items are not sorted;
define subsets JV and JO', containing the variables fixed, respectively, to 1

and to 0
end.

The Balas-Zemel idea is first to solve, without sorting, the continuous relaxation
of KP, thus determining the Dantzig upper bound (see Section 2.2.1), and then

searching for heuristic solutions of approximate core problems giving the upper

60 2 0-1Knapsack problem

bound value for KP. When such attempts fail, the reduced problem is solved
through an exact procedure. The algorithm can be outlined as follows G is a

given threshold value for which Balas and Zemel used 7 = 50).

procedureBZ:

input: n.c.(pj). (wj). 1!).7;
output: z.

(Xj);

begin

caii BZC ;
^

\342\226\240=Ej=iPjXj'

caii H ;

if z = [z'^J tfien return;
C := {1 n];
caiiR;

/I :=/r;
/0:=/0';
C :=C\\(/l U/0) (comment: new core);
if ICI > 7 tiien

begin
caii H ;

if z = [z'J tfien return;
caii R;

/I :=/l UJl';
JO:=JOUJO';
C :=C\\(Jl' U/00 (comment: reduced core);

end;
sort the items in C according to decreasing Pj/wj ratios;

exactly solve the core problem through the Zoltners A978) algorithm;
define the corresponding values of z and (xj) for KP

end.

Two effective algorithms for solving KP without sorting all the items have been
derivedfrom the Balas-Zemel idea by Fayard and Plateau A982) and Martello and

Toth A988).

2.9.2 The Fayard-PIateau algorithm

The algorithm, published together with an effective Fortran implementation (see

Fayard and Plateau A982)), can be briefly described as follows.

procedure FP:
input: \302\253.c.(/7y).(wy);

output: z.(xj):
begin

A^ :={1 \302\253};

2.9 Exact algorithms for large-sizeproblems 61

use a procedure similar to CRITICAL. ITEM (see Section 2.2.2) to determine
the critical item 5 and the subset Jl c N such that, in the continuous
solution of KP, Xj

= 1 fory G /1;

^'
'\342\226\240=Y.jej\\Pj+cps/ws;

apply the greedy algorithm (without sorting) to the items in A^\\/l with the
residual capacity c, and let (jcy) {j G N\\Jl) be the approximate solution

found;
^ '\342\200\242-

z2jejiPj
+

z2jeN\\jiPj^J'
if z = [z'J then return ;

apply reduction algorithm FPDHR (see Section2.7),defining sets JV and

JO';
C \342\200\242.=N\\(Jl' U/00 (comment: reduced problem);
sort the items in C according to increasing values of \\pj\\

=
\\pj

\342\200\224
WjPs/ws\\;

exactly solve the reduced problem through a specific enumerative technique;
define the corresponding values of z and (xj) for KP

end.

2.9.3 The Martello-Toth algorithm

The Martello and Toth A988) algorithm can be sketchedas follows.

Step 1. Partition A^ into J I.JO and C through a modification of the Balas-Zemel
method. Sort the items in C.

Step 2. Exactly solve the core problem, thus obtaining an approximate solution
for KP, and compute upper bound U(, (see Section 2.3.3).If its value

equals that of the approximate solution then this is clearly optimal: stop.
Otherwise

Step 3. Reduce KP with no further sorting: if all variables
Xj

such that y G /1

or 7 G /O are fixed (respectively to 1 and to 0), then we have it that C

is the exact core, so the approximate solution of Step 2 is optimal: stop.
Otherwise

Step 4. Sort the items correspondingto variables not fixed by reduction and exactly

solve the corresponding problem.

The algorithm improves upon the previous works in four main respects:

(a) the approximate solution determined at Step 2 is more precise (often optimal);

this is obtained through more careful definition of the approximate core and

through exact (instead of heuristic) solution of the corresponding problem;

(b) there is a higher probability that such an approximate solution can be proved

62 2 0-1Knapsack problem

to be optimal either at Step 2 (because of a tighter upper bound computation)
or at Step 3 (missing in previous works);

(c) the procedures for determining the approximate core (Step1)and reducing KP

(Step 3) have been implemented more efficiently;

(d) the exact solution of the subproblems (Steps 2 and 4) has been obtained by

adapting an effective branch-and-bound algorithm (procedure MTl of Section

2.5.2).

Step1

The procedure to determine the approximate core problem receives in input four

parameters: d (desiredcore problem size), a, C (tolerances) and rj (bound on the

number of iterations). It returns a partition (/ 1.C ./O) of A^, where C defines an

approximate core problem having residual capacity c = c \342\200\224
^ ^^j Wj, such that

(i) {\\-a)d <\\C\\< {\\ + l3)d,

(ii) E,\342\202\254C^J>c> 0,

(iii) max [pk/'^k '\342\226\240k G JO] < pj/wj < min [pk/'^k : /: G /1} for ally G C.

/1 and /O are initialized to empty, and C to A^. At any iteration we try to move

elements from A^ to /I or /O, until | C is inside the prefixed range. Following

Balas and Zemel A980), this is obtained by partitioning (through a tentative value

A) set C into three sets of items y such xhdApj/wj is less than A (set L), equal to A

(set \302\243\342\226\240)or greater than A (set G). Three possibilities are then considered, according

to the value of the current residual capacity c:

(^) X^/\342\202\254G^i \342\200\224^ <
^i\302\243G\\jE ^i' ^\342\200\242^\342\200\242'\342\200\242^~Ps/'^s'- if I \302\243^I is large enough, the desired

core is defined; otherwise A is increased or decreased, accordingto the values

of I GI and | L|, so that | C results closer to the desired size at the next iteration;

(b) X^.gc vvy > c, i.e., A < Ps/^s'- if I G^l is large enough we move the elements

oiL\\JE from C to /O and increase A; otherwise we decrease A so that, at the
next iteration, | G \\ results larger;

(c) X^.gGuf vvy < c, i.e., A > Ps/^s'- if ^| is large enough we move the elements
oi G\\JE from C to / 1 and decrease A; otherwise we increase A so that, at the
next iteration, \\L\\ results larger.

In the following description of procedure CORE, M^S) denotesthe median of

the profit /weight ratios of the first, last and middle element of S. If the desired

C is not obtained within r] iterations, execution is halted and the current partition

(/l.C./O) is returned. In this case, however, condition (i) aboveis not satisfied,

i.e. I C I is not inside the prefixed range.

2.9 Exact algorithms for large-size problems 63

procedure CORE:
input: n.c. (pj). (Wj). d. a. C. rj\\

output:/I.e./O;

begin
/I :=0;
/O:=0;
C :={1 n]\\

c := c;
k :=0;
A :=M3(C);

while I C > A + /^)i? and k < i^ do

begin

G:={7GC :/7,/wy > A};

L--{j eC :pj/wj < A};

\302\243:={7GC:/.,/w,=A};

if c' < c < c'' then

if |\302\243|> A
- a)i?then

begin
let\302\243= {^1 eg}:
a :=min {y : E^=i ^^, > c-c'};
5 := e^;
C :={er et'] with r. t such that

r - r + 1 is as closeas possible to -d

and (r +r)/2 to 5;
/0:=/OULU {^,+1 e^};
/I :=/l UGU {^1 e,_i}

end
else

if |GU\302\243| < I? then A :=M3(L)
else A :=M3(G)

else

if c' > c then
if |G| < A -a)t?then A :=M3(L)

else

begin
/0:=/OULU\302\243;
C :=G;
A :=M3(C)

end

else
if \\L\\ < A -a)i?then A :=M3(G)

else

begin
/I :=/lUGU\302\243;

C := L;
c:=c-c'';

64 2 0-1Knapsack problem

end;

k \342\226\240.=k + l

end
end.

The heaviest computations in the \"while\" loop (partitioning of C and definition

of c' and c\") require 0(n) time. Hence, if rj is a prefixed constant, the procedure

runs in linear time.

Steps2, 4

Exact solutions (xj) of the core problem and of the reduced problem are obtained

through procedure MTl of Section 2.5.2, modified so as also to compute, if

required, the value u of upper bound U(, (Section 2.3.3) for KP. We refer to this

procedure as MTl' and call it by giving the sets C (free items) and /I (items y

such that Xj
is fixed to 1).

procedure MTV:

input: n.c, (pj).(wj).C .J \\, bound;

output: (xj).u;
begin

define the sub-instance KP' consisting of the items in C with residual capacity

c-EjeJi'^J'
if bound = \"no\" then call MT1 for KP'
else call MT1 for KP' with determination oi u = Ue;
let (xj) be the solution vector returned by MT1

end.

Step 3

Reduction without sorting is obtained through the following procedure, which

receives in input the partition determined at Step 1 (with only the items in C

sorted according to decreasing Pj/wj ratios) and the value z^ of the approximate

solution found at Step 2. The procedure defines sets /I and /O accordingto the

same rules as in procedure MTR (Section 2.7), but computing weaker bounds u^
and

uj
when the current critical item ? is not in C.

procedure MTR':

input: n. c. (pj). (Wj). z^ JI .C JO;
output: 71,70;

begin
comment: it is assumed that the items in C are 1,2 f if =

I CI), sorted according to decreasing Pj/wj ratios;

P-=J2jeJiPJ'

2.9 Exact algorithms for large-sizeproblems 65

for7 := 1 to/ do compute Wj
=

Yl!=i ^i ^'^^ Pj = J2!=iPi'
find, through binary search, s e C such that w^_i < c < w^;
for each 7 G/1U{1 s] do

if c +
Wj < Wf then

begin
find, through binary search, J e C such that

_ Wj_ 1 <C+Wj < Wj,
\"c :='c +Wj

\342\200\224
Wj_ I;

uf :=p- Pj +Pj_x+ max (^pj+x/wj+x\\ \342\226\240

VP-^
- (^^ - 'c)Pj-X1^1-1J);

z^ := max {i^.p -pj +Pj_x)
end

else
begin

U^ \342\226\240=P-Pj +Pf+ [(C +
Wy

-
Wf)pf/Wf\\ ;

z^ := max (z'^.p
- pj +Pf)

end;
for eachy g /OU {5 /} do

if c \342\200\224
Wj > vv 1 then

begin

find, through binary search, J e C such that

_ Wj_ X <C-Wj < Wj;

c:=c-Wj-wj_x;
uj \342\226\240=p+Pj +Pj_x+ max ([cpj+x /wy+iJ \342\226\240

[pj
-

(\"^j
- ^pj- 1 /w7-1J);

z^ := max (z'^.p +pj +Pj_x)
end

else
begin

uj
:= [p+Pj + (c -

Wj)px/wx\\;

if c -
Wj

> 0 then z^ := max (z'' .p +pj)
end;

/0:={y eJOU{s /} :u} <z^};
7T:={7G/1U{1 s}-.uf <z^}

end.

The heaviest computations are involved in the two \"for each\" loops: for 0(n)
times a binary search, of time complexity 0(log|C|), is performed.The overall

time complexity is thus 0(\302\253log| C |), i.e. 0(n) for fixed \\C\\.

Algorithm

The algorithm exactly solves KP through Steps 1^, unless the size of core C
determined at Step 1 is too large. If this is the case, the solution is obtained

66 2 0-1 Knapsack problem

through standard sorting, reduction and branch-and-bound. On input, the items are
not assumed to be sorted.

procedure MT2:
input: n.c. (Pj)-('^j)- ^- Q- /3, r);

output: z. {xj);
begin

fory := 1 to n do x, := 0;
comment: Step 1;
callCORE;

if |C| < A -
a)\302\253then

begin
sort the items in C by decreasing Pj /wj ratios;
comment: Step 2;
bound := \"yes\";
call MTl';

\\i z'' = u then
for each j e JI U {k e C : Xk = I] do Xj

:= I

else (comment: Step 3)
begin

cajl_MTR'; _
if/1 D/1 and/OD/0 then

for each j eJlU{k eC :Jc^t = 1} do jcy := 1

else (comment: Step 4)
begin

C :={1 \302\253}\\(/lU/0);

sort the items in C according to

decreasing/7y/wy ratios;
bound := \"no\";

/I :=/l;
call Mir ; _
for each j eJlU{k eC : Xk = I] do Xj := 1

end

end

end
else (comment:standard solution)

begin
sort all the items according to decreasing pj/wj ratios;

call MTR;

z':=l-
C := {1 n]\\(Jl U/0);
bound.= \"no\";

call MTl';
for each j e JI U {k e C : Xk = I] do

Xj
:= I

end;

2.10 Computational experiments 67

En
if z < z^ then

begin
define the solution vector (xj) corresponding to z^;

end
end.

On the basis of the computational experiments reportedin the next section, the
four parameters needed by MT2 have been determined as

(n if n < 200,

[2y/n otherwise;

a = 0.2;

/3
= 1.0;

ri
= 20.

The Fortran implementation of MT2 is included in the present volume.

2.10 COMPUTATIONAL EXPERIMENTS

In this section we analyse the experimental behaviour of exact and approximate

algorithms for KP on sets of randomly generated test problems. Since the difficulty

of such problems is greatly affected by the correlation between profits and weights,

we consider three randomly generated data sets:

uncorrelated: pj and wy uniformly random in [1, v];

weakly correlated: Wj uniformly random in [1, v],
Pj uniformly random in [wj

\342\200\224r. Wj +r\\,

strongly correlated: Wj uniformly random in [1, v],

Pj
= ^j + f-

Increasing correlation means decreasing value of the difference msLXj{pj/wj]
\342\200\224

minj{pj/wj], hence increasing expected difficulty of the corresponding problems.

According to our experience, weakly correlated problems are closer to real world

situations.

For each data set we consider two values of the capacity: c = 2v and

c =
0.5J21^^Wj. In the first case the optimal solution contains very few items,

so the generated instances are expected to be easier than in the second case, where
about half of the items are in the optimal solution. (Further increasing the value of

c does not significantly increase the computing times.)

68 2 0-1Knapsack problem

2.10.1 Exact algorithms

We give separatetables for small-size problems (n < 200) and large-size problems

(n > 500).
We compare the Fortran IV implementations of the following algorithms:

HS = Horowitz and Sahni A974), Section 2.5.1;

MTR+HS = HSpreceded by reduction procedure MTR of Section2.7;

NA = Nauss A976), with its own reduction procedure;

MTl = Martello and Toth A977a), Section 2.5.2;

MTR+MTl = Martello and Toth A977a) preceded by MTR;

MTR+DPT = Toth A980), Section2.6.3,preceded by MTR;

BZ = Balas and Zemel A980), Section 2.9.1, with its own reduction

procedure;

FP =
Fayard and Plateau A982), Section 2.9.2, with its own reduction

procedure;

MT2 = Martello and Toth A988), Section 2.9.3, with MTR and MTR'.

NA, MTl, FP and MT2 are published codes, whose characteristicsare given

in Table 2.1. HS, MTR and DPT have been coded by us. For BZ we give the

computing times presented by the authors.

Table 2.1 Fortran codes for KP

Core Number of
Authors memory statements List

Nauss A976)
Martello and Toth A977a)

Fayard and Plateau A982)

Martello and Toth A988)

All runs (except those of Table 2.8) were executed on a CDC-Cyber 730. For

each data set, value of c and value of n, the tables give the average running time,

expressed in seconds, computed over 20 problem instances.SinceBalas and Zemel

A980) give times obtained on a CDC-6600,which we verified to be at least two

times faster than the CDC-Cyber 730 on problems of this kind, the times given in

the tables for BZ are those reported by the authors multiplied by 2.

Code FP includes its own sorting procedure. The sortings needed by HS, NA,
MTl, DPTand MT2 were obtained through a subroutine (included in MT2), derived

8rt

8rt

In

8rt

280

280

600

1400

Available from the author

This volume (also in

Martello and Toth A978))
In Fayard and Plateau A982)

This volume

2.10 Computational experiments 69

Table 2.2 Sorting times. CDC-Cyber 730 in seconds. Average times over 20 problems

n

time

50

0.008

100

0.018

200

0.041

500

0.114

1000

0.250

2000

0.529

5000

1.416

10000

3.010

Table 2.3 Uncorrelated problems: p and Wj uniformly random in [1,100]. CDC-Cyber730
in seconds. Average times over 20 problems

c

200

0.5 Ew,

n

50

100

200

50
100
200

HS

0.022

0.039

0.081

0.031
0.075
0.237

MTR

+HS

0.013

0.024
0.050

0.016
0.028
0.065

NA

0.015

0.025
0.055

0.015
0.029
0.073

MTl

0.015

0.026
0.051

0.016
0.030
0.068

MTR

+MT1

0.012
0.025
0.050

0.013
0.026

0.057

FP

0.013
0.018
0.032

0.013
0.021
0.053

MTR

+DPT

0.013
0.029
0.055

0.020
0.043

0.090

Table 2.4 Weakly correlated problems: Wj uniformly random in [1,100], pj in [wj\342\200\224lO,

Wj+\\0]. CDC-Cyber 730 in seconds. Average times over 20 problems

c

200

0.5 Ew,
7 = 1

n

50

100
200

50
100
200

HS

0.031

0.049
0.091

0.038
0.079
0.185

MTR

+HS

0.018

0.029
0.052

0.025
0.042
0.070

NA

0.019

0.038
0.060

0.035
0.086
0.151

MTl

0.017

0.032

0.055

0.022
0.040
0.069

MTR

+MT1

0.014

0.024
0.048

0.020
0.031
0.055

FP

0.016

0.023
0.030

0.021
0.039
0.057

MTR

+DPT

0.022
0.041
0.066

0.071
0.158
0.223

Table 2.5 Strongly correlated problems:Wj uniformly random in [1,100], Pj =
wj + 10.

CDC-Cyber 730 in seconds. Average times over 20 problems

c

200

0.5 Ew,
7 = 1

n

50

100
200

50
100
200

HS

0.165

1.035
3.584

time

MTR

+HS

0.101
0.392
2.785

time

NA

0.117

0.259
3.595

time

MTl

0.028

0.052
0.367

4.870
time

MTR

+MT1

0.025
0.047
0.311

4.019
time

FP

0.047

0.096
0.928

17.895
time

MTR

+DPT

0.041
0.070
0.111

0.370
1.409
3.936

70 2 0-1 Knapsack problem

from subroutine SORTZV of the CERN Library, whose experimental behaviour
is given in Table 2.2. All the times in the following tables include sorting and

reduction times.

Tables 2.3, 2.4 and 2.5 compare algorithms HS, MTR+HS, NA, MTl,

MTR+MTl, FP and MTR+DPT on small-sizeproblems (we do not give the times

of MT2, which are almost equal to those of MTR+MTl). For all data sets, v = 100

and r = 10.Table 2.3 refers to uncorrelated problems. Table2.4to weakly correlated

problems. All algorithms solved the problems very quickly with the exception \302\251fHS

and, for weakly correlated problems,MTR+DPT. MTl is only slightly improved
by previous application of MTR, contrary to what happens for HS. Table2.5refers

to strongly correlated problems. Because of the high times generally involved,
a time limit of 500 seconds was assigned to each algorithm for solution of the
60 problemsgenerated for each value of c. The dynamic programming approach

appears clearly superior to all branch-and-bound algorithms (among which MTl

has the best performance).

For large-size instances we do not consider strongly correlated problems, because
of the impractical times involved. Tables 2.6 and 2.7 compare algorithms MTl,
BZ, FP and MT2. Dynamic programming is not considered because of excessive

memory requirements, HS and NA because of clear inferiority. The problems were

generated with v = 1 000, r = 100 and c = 0.5 ^21=1^j-
FP is fast for \302\253< 2 000 but very slow for \302\253> 5 000, while BZ has the opposite

behaviour. MT2 has about the same times as FP for n < 2 000, the same times

as BZ for n = 5 000, and slightly higher than BZ for n = 10000, so it can
be considered,on average, the best code. MTl, which is not designed for large

Table2.6 Uncorrelated problems: pj and Wj uniformly random in [1,1000]; c = 0.5^\"^jWj

CDC-Cyber 730 in seconds. Average times over 20 problems

n

500

1000

2000
5 000

10000

MTl

0.199

0.381

0.787
1.993
4.265

BZ

\342\200\224

0.372

0.606

0.958
1.514

FP

0.104
0.188
0.358

1.745

7.661

MT2

0.157
0.258
0.462
0.982

1.979

Table 2.7 Weakly correlated problems: Wj uniformly random in [1,1000], Pj in [w^ \342\200\224100,

Wj + 100]; c = 0.5^. J Wj. CDC-Cyber 730 in seconds. Average times over 20 problems

n

500

1000
2000
5 000

10000

MTl

0.367

0.663

1.080
2.188
3.856

BZ

\342\200\224

0.588

0.586

0.744
1.018

FP

0.185
0.271
0.404

1.782

19.481

MT2

0.209
0.293
0.491
0.771
1.608

2.10 Computational experiments 71

Table 2.8 Algorithm MT2. Wj uniformly random in [1,1000]; c = 0.5 ^-'^j Wj.

HP 9000/840 in seconds. Average times over 20 problems

n

50

100

200
500

1000
2000
5 000

10000

20000
30000
40000
50000
60000

70000

80000

90000
100000
150000
200000
250000

Uncorrelated problems:

Pj uniformly random
in [1,1000]

0.008

0.016
0.025
0.067
0.122
0.220

0.515

0.872

1.507
2.222
2.835
3.562
4.185
4.731

5.176

5.723

7.001
9.739

14.372
17.135

Weakly correlated problems:

Pj uniformly random
in [Wj

- 100. Wj + 100]

0.015
0.038
0.070
0.076
0.160
0.260

0.414

0.739

1.330
3.474
2.664
3.492

504.935

4.644

5.515

6.108
7.046

time limit
\342\200\224

\342\200\224

problems, is generally the worst algorithm. However, about 80 per cent of its time

is spent in sorting, so its use can be convenient when several problems are to be
solved for the same item set and different values of c. A situation of this kind
arises for multiple knapsack problems, as will be seen in Section 6.4.

n = 10000 is the highest value obtainable with the CDC-Cyber 730 computer

available at the University of Bologna,becauseof a core memory limitation of 100
Kwords. Hence, we experimented the computational behaviour of MT2 for higher

values of n on an HP 9000/840 with 10 Mbytes available.We used the Fortran

compiler with option \"-o\", producing an object with no special optimization. The

results obtained for uncorrelatedand weakly correlated problems are shown in

Table 2.8. Uncorrelated problems were solved up to \302\253= 250000 with very regular

average times, growing less than linearly with n. Weakly correlated problemsshow

an almost linear growing rate, but less regularity; for high values of n, certain

instances required extremely high times (for \302\253= 60 000 one of the instances took

almost 3 hours CPU time, for n = 150000 executionwas halted after 4 hours).

2.10.2 Approximate algorithms

In Tables 2.9-2.11 we experimentally comparethe polynomial-time approximation

scheme of Sahni (Section 2.8.1) and a heuristic version of algorithm MT2

72 2 0-1 Knapsack problem

Table 2.9 Uncorrelated problems: Pj and Wj uniformly random in [1,1000]; c = 0.5
Yl'i=i ^r

HP 9000/840 in seconds. Average times (average percentage errors) over 20 problems

n

50

100

200
500

1000
2000
5 000

10000

20000
30000
40000
50000
60000

70000

80000

90000
100000
150000
200000
250000

MT2 approx.
time (% error)

0.004@.10569)

0.009@.05345)

0.015@.03294)
0.029@.00767)
0.058@.00418)
0.117@.00251)
0.296@.00182)

0.641@.00076)

1.248@.00032)

1.873@.00016)
2.696@.00016)
3.399@.00011)
3.993@.00009)
4.652@.00003)

5.307@.00008)

5.842@.00016)

6.865@.00007)
9.592@.00005)

13.223@.00008)
16.688@.00010)

S@)

time (% error)

0.005E.36560)
0.009B.25800)
0.017A.15739)
0.049@.49120)

0.105@.21213)

0.224@.10531)

0.618@.05540)
1.320@.02045)
2.852@.00897)
4.363@.00786)
6.472@.00521)

8.071@.00428)

9.778@.00403)

11.420@.00301)
13.075@.00329)
14.658@.00247)
16.347@.00231)
25.357@.00156)

35.050@.00144)

44.725@.00094)

S(l)
time (% error)

0.017E.13968)

0.060B.21412)

0.210A.12217)
1.242@.47978)
4.894@.20748)

19.545@.10338)
125.510@.05488)

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

SB)

time (% error)

0.319E.05006)
2.454B.19447)

19.376A.11691)
299.593@.47577)

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

(Section 2.9.3). The fully polynomial-time approximation schemes are not included

since a limited series of experiments showed a dramatic inferiority of these
algorithms (see also Section 4.4.2, where this trend is confirmed for the subset-sum

problem).

The heuristic version of MT2 was obtained by halting execution at the end of

Step 2, and returning the approximate solution of value z^. In order to obtain a

small core problem, procedureCOREwas executed with parameters

^ = 5;

a =0.0;

P= 1.0;

ri
= 200.

As for the Sahni scheme S(k), we experimented S@),S(l) and SB), since the

time complexity 6)(\302\253^\"^') makes the algorithm impractical for k >3.
Tables 2.9, 2.10and 2.11 give the results for the three data sets, with v =

1 000. r = 100 and c = 0.5 Yl^i ^j- P^r each approximate algorithm, we give (in
brackets) the average percentage error. This was computed as 100(z\342\200\224z'')/z,where

z^ is the approximate solution value and z either the optimal solution value (when

2.10 Computational experiments 73

Table 2.10 Weakly correlated problems: Wj uniformly random in [1,1000], Pj in [Wj
\342\200\224100,

Wj + 100]; c = 0.5^\"^,Wj. HP 9000/840 in seconds. Average times (average percentage
errors) over 20 problems

n

50

100
200
500

1000
2 000

5 000
10000
20000
30000
40000

50000

60000

70000
80000
90000

100000
150000
200000

250000

Table 2.11

c=0.5E;

n

50

100

200
500

1000
2000
5 000

10000

20000
30000
40000
50000
60000

70000

80000

90000
100000
150000
200000
250000

MT2 approx.
time (% error)

0.006@.17208)

0.008@.04296)

0.013@.06922)
0.033@.01174)
0.058@.00774)
0.114@.00589)
0.312@.00407)

0.645@.00261)

1.297@.00155)
1.943@.00104)
2.667@.00052)
3.374@.00036)
4.544@.00028)
4.662@.00040)

6.029@.00031)

6.249@.00040)

6.618@.00017)
10.231@.00019)
12.991@.00004)
16.062@.00009)

S@)

time (% error)

0.004B.13512)
0.008@.87730)
0.015@.31819)
0.046@.14959)

0.103@.08226)

0.222@.03740)

0.619@.01445)
1.324@.00630)
2.802@.00312)
4.372@.00216)
6.432@.00177)

8.013@.00139)

9.377@.00095)

11.069@.00083)
13.041@.00070)
15.662@.00071)
16.358@.00050)
25.530@.00041)

35.230@.00027)

45.234@.00020)

S(l)
time (% error)

0.017A.81004)

0.055@.78573)

0.194@.28838)
1.139@.14300)
4.432@.07842)

17.626@.03634)
113.527@.01413)

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

SB)

time (% error)

0.302A.77572)
2.281@.76862)

17.779@.28216)

273.118@.14135)
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

Strongly correlated problems: Wj uniformly random in [1,1000], Pj
=

Wj + 100;

L, Wj. HP 9000/840

MT2 approx.

time (% error)

0.008A.50585)
0.008@.81601)
0.015@.51026)
0.029@.27305)

0.059@.10765)

0.119@.06850)

0.315@.02148)
0.679@.01384)
1.266@.00559)
1.879@.00512)
2.603@.00292)

3.182@.00240)

3.795@.00224)

4.529@.00167)
5.090@.00154)
5.595@.00115)
6.320@.00132)
9.141@.00083)

12.005@.00077)

15.950@.00055)

in seconds. Average times (average percentage errors) over 20
problems

S@)

time (% error)
0.003C.25234)
0.007A.43595)
0.017@.77478)

0.046@.33453)

0.111@.15991)

0.236@.08866)
0.614@.02740)
1.341@.01573)
2.787@.00694)
4.333@.00504)

6.022@.00372)

7.598@.00239)
9.194@.00252)

10.760@.00214)
12.324@.00185)
13.968@.00179)
15.569@.00165)

24.583@.00082)

34.400@.00083)

44.001@.00044)

S(l)
time (% error)

0.019A.68977)
0.061@.73186)
0.226@.40653)
1.372@.17836)
5.388@.08409)

21.173@.05196)

132.973@.01421)
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

SB)

time (% error)
0.340@.74661)
2.574@.39229)

20.877@.26096)

316.804@.09783)
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

74 2 0-1 Knapsack problem

available) or an upper bound determined by the approximate version of MT2.
The execution of each approximate algorithm was halted as soon as the average

computing time exceeded 100 seconds.
Table 2.9 shows that it is not convenient to heuristically solve uncorrelated

problems,since the exact version of MT2 requires about the same times as its

approximate version, which in turn dominates S(k). The same consideration holds

for weakly correlated problemswith n < 50000 (Table 2.10); for n > 50000, the

approximate version of MT2 dominates S@), while S(l) and SB) have impractical
time requirements. Table2.11shows that the approximate version of MT2,'which

dominates S@), must be recommended for large-sizestrongly correlated problems;

for small values of n, S(l) and SB) can produce better approximations but require

dramatically higher computing times.
The Fortran code corresponding to MT2, included in the volume, allows use

either of the exact or the approximate version through an input parameter.

2.11 FACETS OF THE KNAPSACK POLYTOPE

In this section we give an outline of the main results obtained in the study of the

knapsack polytope.Sincesuch results did not lead, up to now, to the design of
effective algorithms for KP, the purpose of the present section is only to introduce
the reader to the principal polyhedral concepts and to indicate the relevant literature

concerning knapsack problems. Detailed introductions to the theory of polyhedra
can be found in Bachem and Grotschel A982), Pulleyblank A983), Schrijver A986)
and Nemhauser and Wolsey A988), among others.

We start with some basic definitions. Given a vector a ^ R\" and a scalar

qq ^ R, the set {x \302\243R\" :
Yl^i ^i^i ~ '^o} is called a hyperplane. A

hyperplane defines two halfspaces, namely {x E R\" :
Yl^i ^j^j \342\200\224^o) ^^^

{x \302\243R\" :
^21=1 ^j^j ^ ^o]- The intersection of finitely many halfspaces, when it

is bounded and non-empty, is called a polytope.Hence,polytopes can be written

as P = {x \302\243R\" :
Yl^i^u^j ^ ^io for / = 1, ... ,r}; alternatively, they can

be described as the convex hull of finitely many points, i.e. P = conv (S), with

S C R\" and S finite, m points x^ x\"^ \302\243R\" are called affinely independent if

the equations Yl'k=i '^kx'' = 0 and Y^=\\ ^k =0 imply A^t = 0 for /: = 1 m.
The dimension of a polytope P C R\". dim (P), is | P - 1, where P is the largest
subset of affinely independent points of P. A subset F of a polytope P C R\" is

called diface of P if there exists an inequality Yll=\\ ^j^J ^ ^o which is satisfied by

any jc G P and such that F = {x e P : J2\"= I CljXj
=

CIq }. In other words, a face is the

intersection of the polytope and a hyperplane defining a halfspace containing the

polytope itself. A face F of P such that dim (F) = dim (P)- 1 is called a. facet of P.
Hence an inequality ^J^, ajXj < ao defines a facetof P if (a) it is satisfied by any

X e P, and (b) it is satisfied with equality by exactly dim (P) affinely independent

X e P. The set of inequalities defining all the distinct facets of a polytope P

2.11 Facets of the knapsack poly tope 75

constitutes the minimal inequality representation of P. Hence the importance of

facets in order to apply linear programming techniques to combinatorial problems.
Coming to KP, its constraint set (conditionsB.2),B.3))defines the knapsack

polytope

K = conv <xeR\":^ WjXj
< c, jcy G {0. 1} for y

= 1, ...,\302\253>.

It is easy to verify that, with assumption B.6) (Wj
< c for ally),

dim(^) = n.

In fact (a) dim(/f) < n (obvious), and (b) dim(/f) > \302\253,since K contains the
n + 1 affinely independent points x^ (/: = 0 \302\253),where jc^ = @ 0) and x^

corresponds to unit vector e^ {k
= \\ n). The two main classes of facets of K

are based on minimal covers and A, k)-configurations.
A set 5 C A^ = {1 \302\253} is called a cover for K if

A cover is called minimal if

y^ Wj
< c for any / G S.

jes\\{i}

The set \302\243E)
= 5 U 5', where

S' = {j eN\\S :
Wj >max,g5 {w,}},

is called the extension of S to N. LetS be the family of all minimal covers S for K.
Balas and Jeroslow A972) have shown that constraints B.2), B.3) are equivalent
to the set of canonical inequalities

^ jcy
< I 5 I

- 1 for all 5 G S, B.46)

jeEiS)

in the sense that x G {0. 1}\" satisfies B.2), B.3) if and only if it satisfies B.46).
BalasA975), Hammer, Johnson and Peled A975) and Wolsey A975) have given

necessary and sufficient conditions for a canonical inequality to be a facet of K.
A rich family of facets of K can be obtained by \"lifting\" facets of lower

dimensional polytopes.Given a minimal cover S forK, let Ks C ^''^' denote

the I S I-dimensional polytope

76 2 0-1Knapsack problem

Ks =conv Ix e {0.1}'^' :
^wyjcy

<c\\, B.47)

i.e. the subset of K containing only points x such that Xj
= 0 for all j e N\\S. It

is known (see, for instance, BalasA975), Padberg A975), Wolsey A975)) that the

inequality

jes

defines a facet of the lower dimensional poly tope Ks. Nemhauser and Trotter A974)

and Padberg A975) have given a sequential lifting procedure to determine integer
coefficientsPj (j e N\\S) such that the inequality

jes jeN\\s

defines a facet of K. Calculating these coefficients requires solution of a sequence
of I A^\\5' I 0-1 knapsack problems. Furthermore, the facet obtained depends on the

sequence in which indices y E N\\S are considered. Zemel A978) and Balas and

Zemel A978) have given a characterization of the entire class of facets associated

with minimal covers, and a simultaneous lifting procedure to obtain them. These

facets have in general fractional coefficients (those with integer coefficients coincide

with the facets producedby sequential lifting).
A richer class of facetial inequalities of K is given by (l,/:)-configurations

(Padberg, 1979, 1980). Given a subset M C N md t e N\\M, define the set
S =MU{t].Sis SL (I, k)-configuration for K if (a) J^jeM^J ^ '^ ^'^^ C^) Q^i^]
is a minimal cover for every Q CM with \\Q\\

= k, where k is any given integer

satisfying 2 < k < \\M \\. Note that if k =
\\M \\, a A,/:)-configuration is a minimal

cover for K (and, conversely,any minimal cover S can be expressedas a (l,k)-

configuration, with /: = |5 | \342\200\224
1, for any t \302\243S). Padberg A980) proved that, given

a (l,/:)-configuration S = M U {t] of/f, the complete and irredundant set of facets
of the lower dimensional polytope Ks (see 2.47) is given by the inequalities

(r - k + l)x, +
^2 Xj

< r,

jesir)

where S(r) C M is any subset of cardinality r, and r is any integer satisfying

k < r < \\M \\. Sequential or simultaneous lifting procedures can then be used to
obtain facets of the knapsack polytope K.

Recently, Gottlieb and Rao A988) have studied a class of facets of K, containing
fractional coefficients, which can be derived from disjoint and overlapping minimal
covers and (l,/:)-configurations. For such class, they have given necessary and
sufficient conditions which can easily be verified without use of the computationally

2.12 The multiple-choice knapsack problem 77

heavy simultaneous lifting procedures. The computational complexity of lifted

inequalities has been analysed by Hartvigsen and Zemel A987) and Zemel A988).

2.12 THE MULTIPLE-CHOICE KNAPSACK PROBLEM

The Multiple-Choice KnapsackProblem (MCKP), also known as the Knapsack

Problem with Generalized Upper Bound (GUB)Constraints, is a 0-1 knapsack
problem in which a partition A^i A^^. of the item set A^ is given, and it is

required that exactly one item per subset is selected.Formally,

maximize z =
J2pjXj B.48)
7 = 1

subject to y^^J^J-'^' B.49)
7 = 1

^jcy
= 1. k = l r. B.50)

jeNt

xj =0or I. j eN = {1 n] = [jNk. B.51)
k=i

assuming

Nf,f]Nk
= 0 for all/z ^ k.

The problem is NP-hard, since any instance of KP, having r elements of profit pj

and weight wj (j = I r) and capacity c, is equivalent to the instance of MCKP
obtained by setting n = 2r, pj =

Wj
= 0 forj = r + I,... ,2r and N^ = {k. r + k]

for k = I,... ,r.
MCKP can be solved in pseudo-polynomial time through dynamic programming

as follows.Given a pair of integers / A < / < r) and c @ < c < c),consider the

sub-instance of MCKP consisting of subsetsA^i Ni and capacity c. Let//(c)
denote its optimal solution value, i.e.

fi(c) = max <
y^ pjXj : Y^ WjXj

< c, Y^ xj = I for k = I, ... ,1,

JC/
= 0 or 1 for j e N

78 2 0-1 Knapsack problem

where yv =
|J l=x^k, and assume that//(c) = -oc if the sub-instance has no

feasible solution. Let

=
minjwy

: j \302\243Nk} for /: = 1 r;

\342\200\224oc for c = 0 vvi
\342\200\224

1;

max {pj '\342\226\240j E Ni.Wj < c} for c = vvi c;

for / = 2 r we then have

\342\200\224oc for C = 0 J2k=l ^A: \342\200\224li

fi(c) = { max{ fi-iic -
Wj) +pj :y eNi.Wj < c}

for c =
Yl'k=i^k---- -c-

The optimal solution is the state corresponding to/;^(c). If we have ^^^, Wk > c

then the instance has no feasible solution, and we obtain/.(c) = \342\200\224oc.For each

value of /, the above computation requires 0{\\Ni\\c) operations, so the overall time

complexity of the method is 0(nc).
The execution of any algorithm for MCKP can be conveniently preceded by a

reduction phase, using the following

Dominance Criterion 2.1. For any Ni,(k = 1 r), if there exist two items

i.j G Nk such that

Pi ^ Pj and w, >
Wj

then there exists an optimal solution to MCKP in which jc, = 0, i.e. item i is
dominated.

Proof. Obvious from B.50). \342\226\241

As is the case for KP, dynamic programming can solve only instances of limited

size. Larger instances are generally solved through branch-and-bound algorithms,
based on the exact solution of the continuous relaxation of the problem, C (MCKP),
defined by B.48)-B.50) and

0<^y < 1- J eN. B.52)

An instance of C (MCKP) can be further reduced through the following

Dominance Criterion 2.2. For any Nkik = 1 r), if there exist three items
h.i J E Nk such that

2.12 The multiple-choice knapsack problem 79

A Pi -Ph ^ Pi
- Pi

^h < ^i < ^j and < -^

Wi -
Wh Wj

-
Wi

B.53)

then there exists an optimal solution to C{MCKP) in which jc,
= 0, i.e. item i is

dominated.

We do not give a formal proof of this criterion. However, it can be intuitively

verified by representing the items of Nj^ as in Figure 2.8 and observing that

(i) after application of DominanceCriterion 2.1, the remaining items can only

correspond to points in the shaded triangles;

(ii) for C(MCKP), all points / of each triangle are dominated by the pair of
verticesh.j (sincefor any value jc, ^ 0, there can be found a combination of

values Xfj. Xj producing a higher profit).
Hence

(iii) after application of Dominance Criterion 2.2, only those items remain which

profits

PJ

Pi

Ph

-r^-rrrTT^

Wh Wi Wi weights

Figure 2.8 Representation of items for Dominance Criteria 2.1 and 2.2

80 2 0-1Knapsack problem

correspond to the vertices defining the segments of the piecewise (concave)
linear function.

In addition, by analysing the structure of the Linear Program correspondingto

C(MCKP), it is not difficult to see that

(iv) in the optimal solution of C(MCKP), r - 1 variables (corresponding to items

in r - 1 different subsets) have value 1; for the remaining subset, either one

variable has value 1 or two variables (corresponding to consecutive vertices
in Figure 2.8) have a fractional value.

Formal proofs of all the above propertiescan be found, e.g., in Sinha and Zoltners

A979).

As previously mentioned, the reduction and optimal solution of C(MCKP)play

a central role in all branch-and-bound algorithms for MCKP.

The reduction, based on DominanceCriteria 2.1 and 2.2, is obtained (see, e.g.,
Sinha and Zoltners, A979)) by sorting the items in each subset according to

increasingweights and then applying the criteria. The time complexity for this

phase is clearly 0(J2[^i \\Nk\\\\og\\Nk\\), i.e. 0(\302\253log max{|A^;t| : I <k < r]).
Oinlogr) algorithms for the solution of the reduced C(MCKP) instance have

been presentedby Sinha and Zoltners A979) and Glover and Klingman A979).

Zemel A980) has improved the time complexity for this second phase to 0(n). A

further improvement has been obtainedby Dudzinski and Walukiewicz A984b),
who have presented an 0(r\\og^(n/r)) algorithm.

The reduction phase is clearly the heaviest part of the process. However, in a

branch-and-bound algorithm for MCKP, it is performed only at the root node, while

the second phase must be iterated during execution.

Algorithms for solving C(MCKP) in 0(n) time, without sorting and reducing
the items, have been independently developed by Dyer A984) and Zemel A984).
Theseresults, however, have not been used, so far, in branch-and-bound algorithms
for MCKP, since the reduction phase is essential for the effective solution of the

problem.
Branch-and-boundalgorithms for MCKP have been presented by Nauss A978),

Sinha and Zoltners A979), Armstrong, Kung, Sinha and Zoltners A983), Dyer,
Kayal and Walker A984), Dudzinski and Walukiewicz A984b, 1987).

The Fortran implementation of the Dyer, Kayal and Walker A984) algorithm
can be obtained from Professor Martin E. Dyer.

Bounded knapsack problem

3.1 INTRODUCTION

The Bounded Knapsack Problem (BKP) is: given n item types and a knapsack, with

Pj
= profit of an item of type j;

Wj
= weight of an item of type j;

bj
= upper bound on the availability of items of type j;

c = capacity of the knapsack,

C.1)

C.2)

0 <
jcy

< bj and integer, j eN = {\\, ... ,n]. C.3)

BKP is a generalization of the 0-1 knapsack problem (Chapter 2), in which bj
= 1

for all j eN.
We will assume, without loss of generality, that

Pj,Wj,bj and c are positive integers, C.4)

n

^bjWj
> c, C.5)

7 = 1

/?ywy < c fory G A^. C.6)

Violation of assumption C.4) can be handled through a straightforward

adaptation of the Glover A965) method used for the 0-1 knapsack problem

81

select a number Xj (j =

maximize z

subject to

1, ... ,n)
n

7 = 1

n

7 = 1

of

<

\"
items of each

c.

type so as to

82 3 Bounded knapsack problem

(Section 2.1). If assumption C.5) is violated then we have the trivial solution

Xj
=

bj for all j ^ N, while for each j violating C.6) we can replace bj with

[c/wj\\. Also, the way followed in Section 2.1 to transform minimization into

maximization forms can be immediately extended to BKP.

Unless otherwise specified,we will suppose that the item types are orderedso
that

\302\2431> ^ > . .. > ^ C.7)

A close connection between the bounded and the 0-1 knapsack problems is self-
evident, so all the mathematical and algorithmic techniques analysedin Chapter 2

could be extended to the present case. The literature on BKP, however,is not

comparable to that on the binary case, especially considering the last decade.

The main reason for such a phenomenon is, in our opinion, the possibility of

transforming BKP into an equivalent 0-1 form with a generally limited increase in

the number of variables, and hence effectively solving BKP through algorithms for

the 0-1 knapsack problem.
In the following sections we give the transformation technique (Section 3.2)

and consider in detail some of the basic results concerningBKP (Section3.3).
The algorithmic aspects of the problem are briefly examined in Section 3.4. We
do not give detailed descriptions of the algorithms since the computational results
of Section3.5 show that the last generation of algorithms for the 0-1 knapsack
problem, when applied to transformed instances of BKP, outperforms the (older)

specialized algorithms for the problem.

The final section is devoted to the special case of BKP in which bj
= +oc for all

j ^ N (Unbounded Knapsack Problem). For this case, interesting theoretical results

have been obtained. In addition, contrary to what happens for BKP, specialized
algorithms usually give the best results.

3.2 TRANSFORMATIONINTOA 0-1 KNAPSACK PROBLEM

The following algorithm transforms a BKP, as defined by C.1)-C.3), into an

equivalent 0-1 knapsack problem with

n = number of variables;

(Pj) =
profit vector;

(Wj)
= weight vector;

c = c =
capacity.

For each item-type y of BKP, we introduce a series of [log2/?yJ items, whose profits
and weights are, respectively, (pj.wj), (Ipj.lwj), Dpj, 4wy), ... , and one item
such that the total weight (resp. profit) of the new items equals bjWj (resp. bjPj).

3.2 Transformation into a 0-1 l^napsacli problem 83

procedure TB01 :
input: n.(pj).(wj).(bj);

output: n.(pj). (wj);
begin

n :=0;

for 7 := 1 to \302\253do

begin

k := 1;
repeat

a P + k > bj then A: := bj
- P;

n := n + I;
Pn \342\226\240=kpj ;

Wfi := kwj;

P:=P + k;
k :=2k

until /3 =
bj

end

end.

The transformed problem has n =
Yl'i=i l^^Bi^^J \342\226\240\342\200\242\"1I binary variables, hence

0(n) gives the time complexity of the procedure. To see that the transformed

problem is equivalent to the original one, let xy, Xj^ (q = [log2(/?y + 1)]) be the

binary variables introduced for Xj and notice that item y'/, corresponds to \302\253/,items

of type j, where
B^-^ if h <q;

f^h
= s ,

Uy-Eri 2'-^ ^^ h = q.

Hence
Xj

=
Yll=i ^h^j^

can take any integer value between0 and bj.

Notice that the transformation introduces 2^ binary combinations, i.e. 2'' \342\200\224
{bj + \\)

redundant representations of possibleXj values (the values from
\302\253^

to 2^~^ - 1
have a double representation). Since, however, q is the minimum number of

binary variables needed to represent the integers from 0 to bj, any alternative

transformation must introduce the same number of redundancies.

Example 3.1

Considerthe instance of BKP defined by

\302\253= 3;

iPj) =A0, 15, 11)

{Wj)
= (1, 3, 5)

{bj) = (6, 4, 2)

c = 10.

84 3 Bounded knapsack problem

Applying TBOl, we get the equivalent 0-1 form:

\302\253= 8;

ipj) = A0, 20, 30, 15,30, 15,11,11);
(Wj)

= (1, 2, 3, 3, 6, 3, 5, 5).

Items 1 to 3 correspond to the first item type, with double representation of the value

xi = 3. Items 4 to 6 correspond to the second item type, with double representation
of the values jc2 = 1, jc2 = 2 and X2 = 3. Items 7 and 8 correspond to the third item

type, with double representation of the value x^ = 1. \342\226\241

3.3 UPPER BOUNDS AND APPROXIMATE ALGORITHMS

3.3.1 Upper bounds

The optimal solution J of the continuous relaxation of BKP, defined by C.1), C.2)

and

0 <
jcy

< bj, j eN,

can be derived in a straightforward way from Theorem 2.1. Assume that the items

are sorted according to C.7) and let

5 = mm y :^/7,w,-
>cl C.8)

be the critical item type. Then

Yj
=

hj for 7 = 1, ... ,5 \342\200\2241.

Jy
= 0 for 7 = 5 + 1,...,\302\253.

_ c
Xs = \342\200\224

We

where
.5-1

C =
C-^hjWj.

Hence the optimal continuous solution value is

7 = 1

3.3 Upper bounds and approximate algorithms 85

and an upper bound for BKP is

7 = 1 \342\200\242-'^
C.9)

A tighter bound has been derived by Martello and Toth A977d) from
Theorem 2.2. Let

7 = 1

C.10)

be the total profit obtained by selecting bj items of type j for j = I, ... ,s \342\200\224I, and

[J^J items of type s. The corresponding residual capacity is

Then

U' = z' +
jPs + l

C.11)

is an upper bound on the solution value we can obtain if no further items of type

5 are selected, while selecting at least one additional item of this type produces

upper bound

U'=z' +

Hence
Ps -

(W,
- C)

(/2=max {U^.U^)

C.12)

C.13)

is an upper bound for BKP. Since from C.9) we can write U\\ = z' + [c'ps/ws\\,
U^ < U\\ is immediate, while U^ < Ui is proved by the same algebraic
manipulations as those used in Theorem 2.2 (ii). U2 < U\\ then follows.

The time complexity for the computation of U\\ or U2 is 0{n) if the item types
are already sorted. If this is not the case, the computation can still be done in

0{n) time through an immediate adaptation of procedure CRITICAL, ITEM of
Section2.2.2.

Determining the continuous solution of BKP in 0-1 form still produces bound

U\\. The same does not hold for U2, since C.11) and C.12) explicitly consider

the nature of BKP hence U^ and U^ are tighter than the corresponding values
obtainablefrom the 0-1 form.

Example 3.1 (continued)

The critical item type is 5 = 2. Hence

15
(/, = 60-H = 80.

86 3 Bounded knapsack problem

G^ = 75 +

U^ =15 +

U2 = 11.

11

5

15-2

= 77;

10
T

= 70;

Considering the problem in 0-1 form and applying B.10) and B.16), we would

obtain Ui = U2 = 80. D

SinceU2 < U\\ < z' +ps < 2z, the worst-case performance ratio of U\\ and U2

is at most 2. To see that p{U\\)
= p{U2) = 2, considerthe series of problems with

n = 3. pj =Wj
= k and bj = 1 for all j, and c = 2/: - 1:we have Ui = U2 = 2k - I

and z = k, so f/i/z and f/2/^ can be arbitrarily close to 2 for k sufficiently large.
All the bounds introduced in Section 2.3 for the 0-1 knapsack problem can

be generalizedto obtain upper bounds for BKP. This could be done either in a

straightforward way, by applying the formulae of Section2.3 to BKP in 0-1 form

(as was done for Ui) or, better, by exploiting the peculiar nature of the problem
(as was done for U2)- This second approach,not yet dealt with in the literature,

could be a promising direction of research.

3.3.2 Approximate algorithms

Value z' defined by C.10) is an immediate feasible solution value for BKP. Let
z be the optimal solution value. Then the absolute error z \342\200\224z' is bounded by ps
(since z' < z < Ui < z' + Ps), while the ratio z'/z can be arbitrarily close to 0

(consider, e.g., n = 2, pi = wi = I, p2 = W2 = k, bi = b2
= ^ and c = k, for k

sufficiently large). The worst-case performance ratio, however,can be improved to

1/2 by computing (still in 0(n) time)

z^ = max {z'.ps)

as the approximate solution value. In fact, z < z' + p^ < 2z^, and a tightness
example is: n = 2, pi =

wi
= I, p2 = W2

= k, bi = I, b2
= 2 and c = 2k, for k

sufficiently large.
If the item types are sorted according to C.7), a more effective greedy algorithm

is the following:

procedure GREEDYB:

input: n.c,(pj).(wj).(bj);
output: z^.(xj);
begin

c := c;
z^ :=0;

3.4 Exact algorithms 87

7* :
for

lib

end.

= 1;
j := 1 to

begin

xj :\342\226\240\342\226\240

c :=

zs :

end;

i*Pr > ^
begin

z^ :
for

Xj*
end

n do

= min([c/w
\342\226\240\342\226\240c-wjxj;
= ZS +PjXj
,Pj > bj'Pj'

s then

=
bj'Pj';

/ := 1 to \302\253

i\\-bjy,

. then7'

do xj := 0;

--J

The worst-caseperformance ratio is |, since trivially z^ > z'' and the series of

problems with n = 3, pi = wi = I, p2 =
W2

= P3 = w^ = k, bi = b2 = bs = I and
c = 2k proves the tightness. The time complexity is clearly0(n), plus 0{n\\ogn)

for sorting.

Transforming BKP into an equivalent 0-1 problem and then applying any of the

polynomial-time, or fully polynomial-time approximation schemesof Section 2.8,

we obtain approximate solutions obeying the worst-case bounds defined for such
schemes. In fact the two formulations of any instance have, of course, the

same optimal value, and the solution determined by the scheme for the 0-1

formulation preserves feasibility and value for the bounded formulation. Hence

the worst-case performance ratio is maintained. The time and space complexities

of the resulting schemes are given by those in Section 2.8, with n replaced by

fi =
EU\\^og,(bj

+ l)].
In this case too, better results could be obtained by defining approximation

schemes explicitly based on the specific structure of BKP.

3.4 EXACT ALGORITHMS

In this section we briefly outline the most important algorithms from the literature

for the exact solution of BKP. The reason for not giving a detailed description
of these methods is the fact that they are generally useless for effectivesolution

of the problem. In fact, the high level of sophistication of the algorithms for the

0-1 knapsack problem has not been followed in the algorithmic approach to BKP,
so the most effective way to solve bounded knapsack problems nowadays is to
transform them into 0-1 form and then apply one of the algorithms of Section 2.9.

(This is confirmed by the experimental results we present in the next section.) Of

course, a possibledirection of research could be the definition of more effective

specific algorithms for BKP through adaptation of the results of Chapter 2.

88 3 Bounded knapsack problem

3.4.1 Dynamic programming

Let/w(c) denote the optimal solution value of the sub-instance of BKP defined by

item types 1,... ,m and capacity c (l < m < n. 0 < c < c). Clearly

Mc)=<

0 for c = 0, ... ,wi
\342\200\224

1;

pi for c =
vvi .2wi \342\200\2241;

(bi
- l)pi for c = (bi-l)wi. \342\200\224biwi

\342\200\224I;

, b\\p\\ for c =
biWi . c.

fm(c) can then be computed, by considering increasing values of m from 2 to n,
and, for each m, increasing values of c from 0 to c, as

f^ic) =
msLx{ f^_i(c

-
Iwm) + Iprrr : I integer, 0< / < min(/?^,[c/w^J)}.

The optimal solution value of BKP is given by /\342\200\236(c).For each m, 0{cbm)

operations are necessary to compute/^(c) (c = 0, ... ,c).Hence the overall time

complexity for solving BKP is 0{c Y11i=\\ ^m)^ i-C- 0{nc^) in the worst case. The

space complexity is 0(nc), since the solution vector corresponding to each/w(c)
must also be stored.

The basic recursionabove has been improved on, among others, by Gilmore

and Gomory A966) and Nemhauser and Ullmann A969). Dynamic programming,

however, can only solve problems of very limited size. (Nemhauser and Ullmann

A969) report that their algorithm required 74 seconds to solve, on an IBM-7094,

a problem instance with n = 50 and bj
= 2 for each j.)

3.4.2 Branch-and-bound

Martello and Toth A977d) adapted procedure MTl of Section 2.5.2 to BKP.
The resulting depth-first branch-and-bound algorithm, which incorporates upper
bound U2 of Section 3.3.1, is not described here, but could easily be derived from

procedure MTUl presented in Section 3.6.2 for the unbounded knapsack problem.

(See also a note by Aittoniemi and Oehlandt A985).)

Ingargiola and Korsh A977) presented a reduction algorithm related to the one
in Ingargiola and Korsh A973) (Section 2.7) and imbedded it into a branch-search

algorithm related to the one in Greenberg and Hegerich A970) (Section 2.5). (See
also a note by Martello and Toth A980c).)

Bulfin, Parker and Shetty A979) have proposed a different branch-and-bound

strategy, incorporating penalties in order to improve the bounding phase.

Aittoniemi A982) gives an experimental comparison of the above algorithms,

indicating the Martello and Toth A977d) one as the most effective.As already

3.5 Computational experiments 89

mentioned, however, all these methods are generally outperformed by algorithm
MT2 (Section 2.9.3) applied to the transformed 0-1 instance. The Fortran

implementation of this algorithm (MTB2) is included in the present volume.

3.5 COMPUTATIONAL EXPERIMENTS

In Tables 3.1, 3.2 and 3.3 we analyse the experimental behaviour of exact and

approximate algorithms for BKP through data sets similar to those used for the 0-1

knapsack problem, i.e.:

uncorrelated:pj and Wj uniformly random in [1,1000];

weakly correlated: wy uniformly random in [1,1000],

Pj uniformly random in [wy
\342\200\224100. Wj + 100];

strongly correlated:
wy uniformly random in [1,1000],

pj =
Wj

+ 100.

For all data sets, the values bj are uniformly random in [5,10], and c is set to
0.5

Yl^=[^j^j (^o about half of the items are in the optimal solution).
The tables compare the Fortran IV implementations of the following methods:

Table 3.1 Uncorrelated problems: pj and Wj uniformly random in [1,1000], bj uniformly

random in [5,10]; c = 0.5 Yl,\"=\\ ^j^j- ^^ 9000/840 in seconds. Average times (average
percentage errors) over 20 problems

n

25

50

100

200
500

1000
2 000

5 000

10000
20000
30000
40000

50000

MTB

time

0.034
0.121
0.464
1.761
9.705

36.270

88.201

159.213
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

IK

time

0.022

0.115
0.149
0.462
5.220

11.288

33.490

106.550
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTB2

time

0.023

0.049
0.084
0.143
0.395

0.583

1.107

2.272

3.599
6.689
9.445

14.119
14.836

MTB2

approximate

time (% error)

0.011@.09851)

0.020@.04506)

0.031@.02271)

0.061@.01166)
0.158@.00446)
0.324@.00079)
0.649@.00097)

1.585@.00028)

3.055@.00031)

6.195@.00011)

9.692@.00010)
13.443@.00003)
15.298@.00005)

GREEDYB

time (% error)

0.001@.09721)
0.005@.04775)
0.012@.01354)
0.023@.00809)

0.065@.00246)

0.138@.00071)

0.272@.00033)

0.745@.00008)
1.568@.00003)
3.332@.00001)
5.144@.00000)

7.080@.00000)

8.942@.00000)

90 3 Bounded knapsack problem

Table 3.2 Weakly correlated problems: Wj uniformly random in [1,1000], pj
in [Wj

\342\200\224100,

Wj
+ 100], bj uniformly random in [5,10]; c = 0.5

J2\"=i ^j^j- HP 9000/840 in seconds.

Average times (average percentage errors) over 20 problems

n

25

50

100

200
500

1000
2000

5 000

10000

20000
30000
40000
50000

MTB

time

0.051

0.150
0.478
1.350
6.232

16.697

39.707

131.670
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

IK

time

0.206

0.855
3.425
8.795

25.840

59.182

57.566

131.212
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTB2

time

0.075

0.199
0.207
0.354
0.532

0.574

0.810

1.829

3.359
6.973
9.785

6435.178

\342\200\224

MTB2

approximate

time (% error)

0.012@.08072)

0.019@.03975)

0.037@.01384)

0.061@.00901)
0.147@.00414)
0.292@.00228)
0.568@.00242)

1.572@.00062)

3.052@.00037)

6.633@.00021)

9.326@.00016)
12.182@.00017)
15.473@.00010)

GREEDYB

time (% error)

0.001@.13047)
0.007@.04214)
0.014@.01374)
0.021@.00461)
0.057@.00126)

0.125@.00054)

0.265@.00015)

0.725@.00004)

1.572@.00001)
3.293@.00000)
5.089@.00000)
6.966@.00000)

8.533@.00000)

Table 3.3 Strongly correlated problems: Wj uniformly random in [1,1000], Pj
=

Wj
+ 100,

bj uniformly random in [5,10]; c = 0.5
Yl,\"=\\ ^J^J- HP 9000/840 in seconds. Average times

(average percentage errors) over 20 problems

n

MTB

time

IK

time

MTB2

time

MTB2

approximate

time (% error)

GREEDYB

time (% error)

25
50

100
200

500

1000

2 000

5 000
10000
20000

30000

40000

50000

3.319
279.782

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

216.864 23.091

4513.810
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

0.012@.36225)

0.018@.14509)

0.037@.14295)

0.066@.07570)
0.139@.03866)
0.283@.01688)
0.589@.00818)

1.529@.00352)

3.133@.00181)

5.794@.00064)

9.847@.00054)
12.058@.00042)
15.265@.00034)

0.002@.62104)

0.005@.22967)

0.010@.16482)

0.023@.08262)

0.059@.03919)
0.123@.01701)
0.265@.00822)
0.756@.00352)

1.558@.00181)

3.169@.00064)

5.065@.00054)

6.705@.00042)
8.603@.00034)

3.6 A special case: the unbounded knapsack problem 91

exact algorithms:

MTB = Martello and Toth A977d);

IK = Ingargiola and Korsh A977);

MTB2= Transformation through procedure TBOl (Section 3.2) and solution

through algorithm MT2 (Section 2.9.3);

approximate algorithms:

MTB2approximate
= MTB2 with heuristic version of MT2 (Section 2.10.2);

GREEDYB = greedy algorithm (Section 3.3.2).

All runs were executedon an HP 9000/840 (with option \"-o\" for the Fortran

compiler), with values of n ranging from 25 to 50000 (for n > 50000, the size of
the transformed instances could exceed the memory limit). The tables give average
times and percentage errors computed over sets of 20 instances each. The errors
are computed as 100(z \342\200\224

z\/z,") where z\" is the approximate solution value, and z

either the optimal solution value (when available) or upper bound U2 introduced in

Section 3.3.1. The execution of each algorithm was halted as soon as the average
time exceeded 100 seconds.

MTB2 is clearly the most efficient exact algorithm for uncorrected and weakly

correlated problems. Optimal solution of strongly correlated problems appears to be
practically impossible. As for the heuristic algorithms, GREEDYB dominates the

approximate version of MTB2 for uncorrelated and weakly correlated problems,
but produces higher errors for strongly correlated problems with n < 2 000. The

anomalous entry in Table 3.2 (MTB2 exact, n = 40000) was produced by an

instance requiring more than 34 hours!

3.6 A SPECIAL CASE: THE UNBOUNDED KNAPSACK

PROBLEM

In this section we consider the problem arising from BKP when an unlimited

number of items of each type is available, i.e. the Unbounded Knapsack Problem

(UK?)

maximize z = T.m C14)
7=1

subject to y^^wyjcy
< c. C.15)

Xj
> 0 and integer, j e N = {I.... .n}. C.16)

92 3 Bounded knapsack problem

The problem remains NP-hard, as proved in Lueker A975) by transformation

from subset-sum. However, it can be solved in polynomial time in the \302\253= 2 case

(Hirschberg and Wong A976), Kannan A980)). Notice that the result is not trivial,

since a naive algorithm, testing xi = i. X2
=

[(c
\342\200\224

iwi)/w2\\ for / taking on integer
values from 0 to [c/wij, would require a time 0(c), exponential in the input

length.
UKP can clearly be formulated (and solved) by defining an equivalent BKP

with bj
= [c/wj\\ for j - 1,... ,\302\253,but algorithms for BKP generally perform

rather poorly in instances of this kind. Also transformation into an equivalent 0-1

knapsack problem is possible (through a straightforward adaptation of the method of

Section 3.2), but usually impractical since the number of resulting binary variables

(^\"^j [log2([c/wyJ + 1)]) is generally too elevated for practical solution of the

problem.
We maintain assumptions C.4) and C.7), while C.6) transforms into

Wj
<c forjeN C.17)

and C.5) is satisfied by any instance of UKP.

3.6.1 Upper bounds and approximate algorithms

The optimal solution of the continuous relaxation of UKP, defined by C.14), C.15)

and

xj > 0. j eN,

is Ji = c/wi, Jj = 0 for j =2, ... ,n, and providesthe trivial upper bound

f/n = c-

By also imposing xi < [c/wij,which must hold in any integer solution, the

continuous solution is

X] =

Xj
= 0 for j = 3, ... ,n,

_ c
X2 = ,

W2

where

c = c(modwi). C.18)

This provides the counterpart of upper bound U[of Section 3.3.1, i.e.

3.6 A special case: the unbounded knapsack problem 93

U^= \342\200\224
c

Wi

P\\ +
-P2c \342\200\224

W2_
C.19)

(Note that the critical item type is always s = 2.)
The counterpart of the improved upper bound U2 is

(/2 = max((/^(/^).

where
c

Wi

P\\ +
c

_W2

P2,

c' = c(mod W2),

jP3

U'=z' +

W3

P2
- (W2 - C)

\342\200\224

W\\

C.20)

C.21)

C.22)

C.23)

C.24)

In this case, however, we can exploit the fact that s =2 to obtain a better bound.

Remember (see Section3.3.1)that U^ is an upper bound on the solution value we
can obtain if at least [c/w2j + 1 items of type 2 are selected. Noticenow that this

can be done only if at least [(w2 \342\200\224
c')/wi~\\ items of type 1 are removedfrom the

solution corresponding to z', and that c' + \\(W2
\342\200\224

c')/w{]wi units of capacity are
then available for the items of type 2. Hence, a valid upper bound can be obtained

by replacing U ^
with

U'=z' + ('ĉ' +

A

W2
\342\200\224c'

VVi

N

VVi
\\ P2

/ W2

W2
\342\200\224c'

VVi
Pi C.25)

Furthermore, U < U^ since, with c' + \\{W2
-

c')/w{\\wi > W2, U is obtained

by \"moving\" a greater number of capacity units from items of type 1 to (worse)
items of type 2. We have thus proved the following

Theorem 3.1 (Martello and Toth, 1990a)

(/3=max((/\".f/ ^). C.26)

where U^ andU ^
are defined by C.18), C.2l)-C.23) and C.25), is an upper bound

for UKP and, for any instance, U3 < 1/2-

The time complexity for the computation of Uq. U\\, U2 and U3 is 0(n), since
only the three largest ratios pj /wj

are needed.

94 3 Boundedknapsack problem

Example 3.2

Consider the instance of UKP defined by

n =3 \342\226\240

ipj)
= B0, 5, 1);

(Wj)
= A0, 5, 3);

c = 39.

The upper bounds are

(/o = 78.

(/i = 60+

G^ = 65 +

U^ =65 +

5

\025.

4i
3.

= 69.

= 66;

I'-SI
= 68;

G2 = 68.

G ^ = 65 +

U3 = 66. n

[{\342\200\242\342\200\242

\"

1
\"

To \i-

'
1

\"

To
201 =59;

J

Since Uj, < U2 <U\\ < Uq < z' +pi < 2z, the worst-case performance ratio of
all bounds is at most 2. To see that p(Uo) = p(U[) = p(U2) = piU^)= 2, consider

the series of problems with n = 3. pj =
Wj

= k for all j, and c = 2/: \342\200\2241: we

have Uo = Ui
= U2 = U3 = 2k - I and z = /:, so the ratio (upper bound)/z can be

arbitrarily close to 2 for k sufficiently large.

The heuristic solution value defined by C.21) has an interesting property.
Remember that the analogous values z' defined for BKP (Section3.3.2)and for the

0-1 knapsack problem (Section2.4)can provide an arbitrarily bad approximation
of the optimal value z. For any instance of UKP, instead, we have it that z'/z > |.
The proof is immediate by observing that z \342\200\224z' < pi and, from C.17), z' > pi.
The series of problems with n = 2. pi = wi = k + I. p2 =

W2
= k and c = 2k

shows that | is tight, since z'/z = (k + \\)/{2k) can be arbitrarily close to
\\

for k

sufficiently large. Also notice that the same property holds for the simpler heuristic

value z\" =
[c/wi\\pi.

The greedy algorithm of Section 3.3.2 can now be simplified as follows. (We
assumethat the item types are sorted accordingto C.7).)

3.6 A specialcase:the unbounded knapsack problem 95

procedure GREEDYU:

input: \302\253.c.(/7y).(wy);

output: z^.(jcy);
begin

c := c;
z8 :=0;

for 7 := 1 to \302\253do

begin

xj
\342\226\240.=[c/wj\\;

c:=c-WjXj;
Z8 -.= 28 +PjXj

end
end.

The time complexity of GREEDYU is 0(n), plus 0(n\\ogn) for the preliminary

sorting.

Magazine, Nemhauser and Trotter A975) studied theoretical properties of the

greedy algorithm when applied to the minimization version of UKP. In particular,

they determined necessary and sufficient conditions for the optimality of the greedy
solution (see also Hu and Lenard A976) for a simplified proof), and analysed

the worst-case absolute error producedby the algorithm. Ibarra and Kim A975)
adapted their fully polynomial-time approximation scheme for the 0-1 knapsack

problem (Section 2.8.2) to UKP. The resulting scheme produces, for any fixed

\302\243> 0, a solution having worst-case relative error not greater than e in time

Oin + (l/\302\243'^)log(l/\302\243)) and space 0{n +{l/\302\243^)). Also Lawler A979) derived from
his algorithm for the 0-1 knapsack problem (Section2.8.2)a fully polynomial-time

approximation scheme for UKP, obtaining time and space complexity Oin+(l/\302\243^)).

3.6.2 Exact algorithms

An immediate recursionfor computing the dynamic programming function/^(c)
(see Section3.4.1),is

/i(c) = for c = 0, ... ,c;

fm(c)
= max

<j frrt-i(c
~

Iwrrt) + Ipm \342\226\240I integer. 0 < / <

for m = 2, ... ,n and c = 0,c.

The time complexity for determining z =fn(c) is 0{nc^).
Gilmore and Gomory A965) have observed that a better recursion for computing

fm(c), for m = 2, ...,\302\253, is

96 3 Boundedknapsack problem

(fm-dc) forc=0 Wm
- I;

fm(c)={
[max {fm-\\{c),f,ri{c- Wm)+Pm) for C = W^ ,C,

which reduces the overall time complexity to 0(nc).
Specializeddynamic programming algorithms for UKP have been given by

Gilmore and Gomory A966), Hu A969), Garfinkel and Nemhauser A972),
Greenbergand Feldman A980), Greenberg A985, 1986). Dynamic programming,

however, is usually capable of solving only instances of limited size.
More effective algorithms, based on branch-and-bound, have beenproposedby

Gilmore and Gomory A963), Cabot A970) and Martello and Toth A977d). The
last one has proved to be experimentally the most effective (Martello and Toth,

1977d), and derives from algorithm MTl for the 0-1 knapsack problem, described
in Section 2.5.2. Considerations (i) to (iii) of that section easily extend to this

algorithm, while parametric computation of upper bounds (consideration(iv)) is no

longer needed, since the current critical item type is always the next item type to
be considered.The general structure of the algorithm and the variable names used
in the following detailed description are close to those in MTl. It is assumed that

the item types are sorted accordingto C.7).

procedure MTLI1:

input: n,c,(pj),iwjy,
output: z.ixj);
begin
1. [initialize]

z :=0;
z :=0;
c := c;
Pn+i :=0;

w\342\200\236+i:= H-oc;
for k := 1 to \302\253do Xk := 0;

compute the upper bound U = U3 on the optimal solution value;
for k := n to I step -1 do compute nik = min{w, : / > k];
j \342\226\240\342\226\240=1;

2. [build a new current solution]
while Wj > c do

if z > z +
[cpj+i/wj+i\\ then go to 5 else 7 :=y + 1;

y \342\226\240=[c/wyj;
u := [(c -ywj)pj+i/wj+i\\;
if z > z +ypj + u then go to 5;
if M = 0 then go to 4;

3. [save thef current solution]
c := c \342\200\224

ywj;
z \342\226\240.=z+ypj;

Xj \342\226\240=y;

J-=J + U

3.6 A special case: the unbounded knapsack problem 97

if c >
my_i then go to 2;

\\i z > z then go to 5;
y:=0-

4. [update the best solution so far]

z -z+ypji
for ^ := 1 to y

- 1 do x/, := xi,;

Xj :=y;
for k :=j + I to n do Xk := 0;
if z = (/ then return ;

5. [backtrack]
find / =

n\\ax{k <j : Xk > 0};
if no such / then return ;

c := c + Wi;

z := z - Pi;
Xj .\342\200\224Xj 1,
if z > z +

[cpi+i/wi+i\\ then

begin
comment: remove all items of type /;
c := c +WjXi;

z := z -
piXi;

i, := 0;

J \342\226\240=r,

go to 5

end;
J :=/ + !;
if c - w, > nij then go to 2;
/z := /;

6. [try to replace one item of type / with items of type h]

h:=h + \\;

if z > z +
\\cph/wh\\ then go to 5;

if w/, = w, then go to 6;
if w/, > w, then

begin
if w/, > c or z > z +/?/, then go to 6;
z := z +ph\\

for /: := 1 to \302\253do x^ := Xk;

jc/, := 1;
if z = (/ then return;
/ := h;
go to 6

end

else

begin
if c -

w/, < nih-i then go to 6;

goto 2
end

end.

98 3 Bounded knapsack problem

Example 3.3

Considerthe instance of UKP defined by

n =7 ;

ipj) = B0, 39, 52, 58, 31,4, 5);

(Wj)
= A5, 30, 41, 46, 25, 4, 5);

c = 101.

Figure 3.1 gives the decision-tree produced by algorithm MTUl. \342\226\241

The Fortran implementation of procedure MTU1is included in that of procedure
MTU2, which is described in the next section.

3.6.3 An exact algorithm for large-sizeproblems

Experimental results with algorithm MTUl, reportedin Martello and Toth A977b),
show a behaviour close to that of analogous algorithms for the 0-1 knapsack

problem, i.e.: (i) in spite of its worst-case complexity, many instances of UKP can
be exactlysolved within reasonable computing times, even for very large values of

n; (ii) when this is possible, the sorting time is usually a very large fraction of the

total time; however, (iii) only the item types with the highest values of the ratio

Pj/wj are selected for the solution, i.e. maxjy : xj > 0} <C \302\253\342\200\242

The concept of core problem (Section2.9)can be extended to UKP by recalling

that, in this case, the critical item type is always the second one. Hence, given
a UKP and supposing, without loss of generality, that Pj/wj > pj+\\/wj+\\

for

7 = 1,...,\302\253
\342\200\2241, we define the core as

C = {1,2,...,7i =
maxjy : Xj > 0}}.

and the core problem as

maximize z =
^Pj^J
jec

subject to 'y^'^jXj < c,
jec

Xj
> 0 and integer, j G C

If we knew \"a priori\" the value of n, we could solve UKP by setting Xj
= 0 for all

j such that pj/wj < pj[/wj^, determining C as {y :
Pj/wj

> pj^/wj^] and solving
the resulting core problem by sorting only the items in C. n cannot, of course, be
\"a priori\" identified, but we can determine an approximate core without sorting as
follows.

3.6 A special case: the unbounded knapsack problem 99

[Ih

100 3 Boundedknapsack problem

Assuming no condition on the ratios pj /wj, we select a tentative value for pj^/wj^
and solve the corresponding core problem: if the solution value equals that of an

upper bound, then we have the optimum; otherwise, we reduce the variables not

in the core and, if any variables are left, we try again with a decreased tentative

value. Reduction is based on the following criterion. Let Uq{j) denote upper bound

Uq {q = \\. 2 or ?)) of Section 3.6.1 for UKP, with the additional constraint Xj
= \\,

i.e. an upper bound on the solution value that UKP can have if item type j is used

for the solution. If, fory not in the approximate core, we have Uq{j) < z (where z

denotes the solution value of the approximate core problem),then we know that
Xj

must take the value 0 in any solution better than the current one. Given a tentative

value d for the initial core problem size, the resulting algorithm is thus (Martello
and Toth, 1990a) the following.

procedure MTLI2:

input: n.c.(pj). (Wj). 1!);

output: z.ixj);

begin

^:= 0;
A^ := {1.2.....\302\253};

repeat _
k \342\226\240=mHk+ i3.\\N\\y, _
find the kXh largest value r in {pj/wj '\342\226\240j EN];

G:={j eW:pj/wj>r};
E:={j eN :pj/wj=r];
E :=any subset of E such that \\E\\= k -

\\G\\;

C \342\226\240=GUE;

sort the item types in C according to decreasing Pj/wj ratios;
exactly solve the core problem, using MTLI1, and let z and (xj) define

the solution;

\\i k = d (comment: first iteration) then

compute upper bound U3 of Section 3.6.1;
if z < (/s then (comment: reduction)

for each j e N\\C do
begin

if M > z then u_:= lh{j)',
if M < z thenF :=A^\\{7}

end^
until z = (/3 or A^ = C;
for eachy g {1 n}\\C do

jcy
:= 0

end.

At each iteration, the exact solution of the core problem is obtained by first

identifying dominated item types in C, then applying algorithm MTUl to the

undominated item types. Dominances are identified as follows.

Definition 3.1 Given an instanceof UKP, relative to item types set N, item type

3.6 A special case: the unbounded knapsack problem 101

k E N is dominated if the optimal solution value does not change when k is removed
from N.

Theorem 3.2 (Martello and Toth, 1990a) Given any instance ofUKP and an item

type k, if there exists an item type j such that

Wk_

Wi
Pj>Pk C.27)

then k is dominated.

Proof. Given a feasible solution in which jc^t = a > 0 and Xj
=

f3, a. better solution

can be obtained by setting Xk = 0 and
Xj =13+ _Wk/wj\\a. In fact: (i) the new

solution is feasible, since
\\wk/wj\\awj

< aw^; (ii) the profit produced by item

type j in the new solution is no less than that produced by item types j and k in

the given solution, since, from C.27), [wk/wj\\apj > apk- D

Corollary 3.1 All dominated item types can he efficiently eliminated from the core
as follows:

1. sort the item types according to C.7), breaking ties so that Wj
< Wj+i;

2. fory := 1 to |C| - 1do
for A: :=7 + l to | C | do if C.21) holds \\hen C :=C\\{k}.

Proof. Condition C.27) never holds if either Pj/wj < pk/wk or Wk <Wj.\\Z\\

Hence the time complexity to eliminate the dominated item types is 0(| C |^)(or

O(n^), if the original UKP is considered).

Example 3.3 (continued)

Taking i? = 4, the core problem is defined by:

(pj) = B0. 39.52.58);

(wj) =A5^ 30. 41. 46).

Applying Corollary 3.1, we find that item type 1 dominates item types 2 and 4.

Applying MTUl to the resulting problem, defined by

iPj) = B0. 52);

(wj) =A5. 41).

we obtain the branch-decision tree of Figure 3.2.

102 3 Bounded knapsack problem

c=101 I ^
G=132

c=\\\\

Figure 3.2 Decision-treeof procedure MTU2 for Example 3.3

The core problem solution value (z = 132) is not equal to upper bound

U3 relative to the original instance without the dominated item types (U3 =

maxA20+[11\302\247J.
120+ [A1+ fffll5)|f

- [ffl20J) = 133).Hence we apply

the reduction phase:

7=5: (/iE) = 31+
A00

+
52

41

7=6: (/iF) = 4+ A20 +

7=7: (/iG) = 5+ A20 +

52
'4-1

65?41

= 132 <z:

= 132 < z;

= 132<z.

Since all the item types not in core are reduced, we conclude that the core

problem has produced the optimal solution z = 132. (xj) = D, 0, 1,0,0,0, 0). Q

The initial tentative value 1!) was experimentally determined as

I? = max 100
100

The Fortran implementation of algorithm MTU2 is included in the present volume.

3.6.4 Computational experiments

Table 3.4 compares the algorithms for UKP on the same data sets of Section 3.5,
but with Wj uniformly randomly generated in the range [10,1000], so as to avoid
the occurrence of trivial instances in which the item type with largest pj /wj ratio
has Wj

= 1 (so xi = c is the optimal solution).

For all problems, c was set to 0.5
^21=1 ^j for n < 100000, to 0.1 Yll=i ^J (^^

order to avoid integer overflows) for n > 100000.

We compare the Fortran IV implementations of algorithms MTUl and MTU2.

The kth largest ratio pj/wj was determined through the algorithm given in Fischetti
and Martello A988) (including Fortran implementation). All runs have been

3.6 A special case: the unbounded knapsack problem 103

Table 3.4 w^ uniformly random in [10,1000];c =0.5̂ \"^,Wj forn < 100 000, c =0.1Y.\"=\\^j
for n > 100000. HP 9000/840in seconds. Average times over 20 problems

n

50

100

200
500

1000
2000

5 000

10000

20000
30000
40000
50000

60000

70000

80000

90000
100000
150000
200000

250000

Sorting

0.01

0.01
0.02
0.05
0.11
0.24

0.60

1.35

3.21

4.71
6.12
8.04

10.53
12.50
13.86
15.56
17.96
27.41
37.56

48.55

Uncorrelated:

Pj unif. random in

[1,1000]

MTUl

0.01

0.01
0.02
0.05
0.11
0.24

0.68

1.44

3.31

5.38
9.67

21.91
41.11
17.63

172.00
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTU2

0.01

0.01

0.02
0.04
0.07
0.13
0.32
0.60
1.23
1.82
2.73

3.25

3.90

4.89

5.28
5.88
5.83

10.05
13.08
17.35

Weakly

Pj unif.

correlated:

random in

[Wj
- 100, Wj

+ 100]

MTUl

0.01
0.01
0.02
0.05

0.11

0.24

0.62

1.37
494.93

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTU2

0.01

0.01

0.03
0.05
0.08
0.14
0.29
0.66
1.18
1.94
2.48

3.30

3.71

4.50

5.00
5.41
6.22

10.14
11.98
17.52

Strongly correlated:

Pj=Wj + 100

MTUl

0.01
0.01
0.06

131.70
\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

\342\200\224

MTU2

0.01

0.01

0.02
0.04
0.08
0.14
0.35

0.62

1.39

1.91

2.66
3.34
4.10
4.81
5.12
5.68

5.81

9.95

13.26

17.94

executed on an HP 9000/840 with option \"-o\" for the Fortran compiler. For each
data set and value of n. Table 3.4 gives the average running times (including

sorting), expressed in seconds, computed over20 problem instances. Sorting times

are also separatelyshown. Execution of an algorithm was halted as soon as the

average running time exceeded 100 seconds.
The table shows that MTU2 always dominates MTUl, and can solve very large

problems with reasonable computing time also in the case of strongly correlated
data sets. The initial value of d always produced the optimal solution. With

the exception of strongly correlated data sets, MTUl requires negligible extra

computational effort after sorting, when n < 10000. For larger values of n, the

branch-and-bound phase can become impractical. This shows that the superiority
of MTU2 (particularly evident for very large instances and for strongly correlated

problems) derives not only from the avoided sorting phase but also from application
of the dominance criterion. In fact, the number of undominated item types was

always very small and almost independent of n.

Subset-sum problem

4.1 INTRODUCTION

The Subset-Sum Problem (SSP) is: given a set of n items and a knapsack, with

Wj
= weight of item j;

c =
capacity of the knapsack,

select a subset of the items whose total weight is closest to, without exceeding, c.

I.e.

maximize z = J2wjXj D.1)
7 = 1

subject to y^>^y-^y < c, D.2)
7 = 1

jcy=Oorl, y G A^ = {1, ... ,\302\253}. D.3)

where

Xi =
1 if item j is selected;

\342\200\2427

0 otherwise.

The problem is related to the diophantine equation

n

Y,WjXj=c,
D.4)

7 = 1

jcy=Oorl, j = l,...,n, D.5)

in the sense that the optimal solution value of SSP is the largest c < c for which

D.4)-D.5) has a solution.

SSP, which is also called the Value Independent Knapsack Problem or

Stickstacking Problem, is a particular case of the 0-1 knapsack problem
(Chapter2)\342\200\224arising when pj

=
Wj for all j\342\200\224hence, without loss of generality,

we will assume that

105

106 4 Subset-sum problem

Wj and c are positive integers, D.6)
n

J2^j>c, D.7)

7 = 1

Wj < c for 7 G N. D.8)

Violation of such assumptions can be handled as indicated in Section 2.1. -

The problem arises in situations where a quantitative target should be reached,
such that its negative deviation (or loss of, e.g., trim, space, time, money) must be
minimized and a positive deviation is not allowed. Recently, massive SSP's have
been used in several coefficient reduction procedures for strengthening LP bounds

in general integer programming (see Dietrich and Escudero A989a, 1989b)).
SSPcan obviously be solved (either exactly or heuristically) by any of the

methods describedin Chapter 2 for the 0-1 knapsack problem.It deserves, however,

specific treatment since specializedalgorithms usually give much better results. A

macroscopic reason for this is the fact that all upper bounds of Sections2.2 and

2.3 give, for SSP, the trivial value c (since Pj/wj = 1 for all j). SSP can be
seen, in fact, as the extreme case of correlation between profits and weights (see
Section2.10).As a consequence, one would even expectcatastrophic behaviour of

the branch-and-bound algorithms for the 0-1 knapsack problem, degenerating,for

SSP, into complete enumeration (because of the value c produced, at all decision

nodes, by upper bound computations). This is not always true. In fact, as soon as
a feasible solution of value c is determined, one can obviously stop execution and,
as we will see, this phenomenon often occurs for problemsin which the number

of items is not too small. Also note that the reduction procedures of Section 2.7
have no effect on SSP, because of the bound's uselessness.

We describe exact and approximate algorithms for SSP in Sections 4.2 and 4.3,

respectively, and analyse computational results in Section 4.4.

4.2 EXACT ALGORITHMS

4.2.1 Dynamic programming

Given a pair of integers m (I < m < n) and c @ < c < c),let/w(c) be the optimal
solution value of the sub-instance of SSP consisting of items 1 m and capacity
c. The dynamic programming recursion for computing/\342\200\236(c) (optimal solution value

of SSP) can be easily derived from that given in Section 2.6 for the 0-1 knapsack
problem:

@ for c =0, ... ,wi - 1;

Kwi tor c = wi, ... ,c;

4.2 Exact algorithms 107

for m =2, ... ,n:

fm(c)
=

fm-i(c) for c = 0, ... ,Wm
- I;

max(/^_i(c). fm-i(c -Wm) + Wm) for c = w^, ... ,c.

The time and space complexity to compute/\342\200\236(c) is thus 0(nc).
Faaland A973) has presenteda specialized dynamic programming approach of

the same complexity, which is also suitable for the bounded version of SSP, defined

by D.1), D.2) and

0 <
Xj

< hj. j = I, ... ,n,

Xj integer, y = 1,...,\302\253.

The algorithm derives from a recursive technique given by Verebriusova A904) to

determine the number of non-negative integer solutions to diophantine equations

D.4).

Ahrens and Finke A975) proposeda more effective approach which reduces, on

average,the time and space required to solve the problem. The method derives from
their dynamic programming algorithm for the 0-1 knapsack problem (Section 2.6.2)
and makes use of the \"replacement selection\" technique, described in Knuth A973),

in order to combine the partial lists obtained by partitioning the variables into four

subsets.
Because of the large core memory requirements (the Ahrens and Finke A975)

algorithm needs about 2\"/'^\"^'^ words) dynamic programming can be used only for

small instances of the problem.

Martello and Toth A984a) used \"partial\" dynamic programming lists to obtain

a hybrid algorithm (described in the next section) to effectively solve also large

instances of SSP. These lists are obtained through a recursion conceptually close
to procedure REC2 given in Section 2.6.1 for the 0-1 knapsack problem, but

considering only states of total weight not greater than a given value c < c. The

particular structure of SSP produces considerablesimplifications. The undominated

states are in this case those corresponding to values of c for which the diophantine

equation D.4)-D.5) has a solution. At stage m, the undominated states are
determined from the following information, relative to the previous stage:

5 = number of states at the previous stage; D.9)

/? = 2'\"-'; D.10)

W 1, = total weight of the /th state (/ = !,... ,s)\\ D.11)

X\\i =
{x\\, X2, ... , Xm-\\] for / = 1, ... ,5, D.12)

108 4 Subset-sum problem

where
Xj defines the value of theyth variable in the solution relative to the ith state,

i.e. Wli =
YlTJi ^j^j- Vector W![is assumed to be ordered according to strictly

increasing values. The procedure updates values D.9) and D.10), and stores the

new values of D.11) and D.12) in (Wlk) and (Xlk). SetsX1, and X2k are encoded

as bit strings. Note that, for SSP, stateshaving the same weight are equivalent, i.e.
dominating each other. In such situations, the algorithm stores only one state, so
vector (W2i^) results are ordered according to strictly increasing values. On input,
it is assumed that Wlo=X\\o = 0.

procedureRECS:

mpuX:s.b.(Wh).(Xli).w,\342\200\236.c;

output: s.b.(W2k), (XIk);
begin

/ :=0;
k :=
h :=

y \342\226\240=

Wl

W2

X2o

= 0;

= 1;

^+1 := +oc;

o:=0;
i:=0;

while min(j. Wl^,) < c do

5 :=
b :=

end.

begin

k :=k + l;
\\iWlh <y then

begin
W2k:=Wh;
X2k :=X1/,;

h:=h + \\

end

else

begin
W2k:=y;
X2k :=X1, +b

end

\\\\W2k=y then

begin
/ :=/ + !;
y

\342\226\240=Wli +Wm
end

end
k;

\342\226\240\342\226\2402b

Procedure RECS is a part of the hybrid algorithm described in the next section.

It can also be used, however, to directly solve SSP as follows.

4.2 Exact algorithms 109

procedure DPS:

input: n.c. (wj);

output: z. (xj);
begin

c :=c;
Wlo :=0;

Xlo:=0;
5 := 1;
b :=2;
W li := wi;
Xli := 1;
m := 2;

repeat
call RECS;
renameW2 and X2 as H^ 1 and XI, respectively;
m := m + I

until m > n or W Is = c;
z :=Wh;
determine (xj) by decoding Xl^

end.

The time complexity of RECS is 0(s). Since 5 is bounded by min B'\" \342\200\2241. c),

the time complexity of DPSis 0(min B\"\"^'.\302\253c)).

4.2.2 A hybrid algorithm

Martello and Toth A984a) used a combination of dynamic programming and tree-

search to effectively solve SSP.Assume that the items are sorted beforehandso
that

wi > W2 > \342\226\240\342\226\240\342\226\240> w\342\200\236. D.13)

The algorithm starts by applying the dynamic programming recursion to a subset
containing the last (small) items and by storing the corresponding state lists. Tree-
search is then performed on the remaining (large) items. In this way, the state

weights in the lists are small and close to each other, while, in the branch-decision

tree, the current residual capacity c takes small values after few forward moves,

allowing use of the dynamic programming lists.

The algorithm starts by determining two partial state lists:

(i) given a prefixed value MA < n \342\200\224
I, list (WAj.XAi). i = 1, ... ,SA, contains

all the undominated states inducedby the last MA items;

(ii) given two prefixed values MB (MA < MB < n) and c (w\342\200\236< 'c < c), list

(WBi.XBi). i = I, ... ,SB, contains the undominated states of weight not

greater than c induced by the last MB items.

110 4 Subset-sum problem

Figure 4.1, in which NA = n \342\200\224MA + 1 and NB = n - MB + 1, shows the states

covered by the two lists: the thick lines approximate the step functions giving, for
each item, the maximum state weight obtained at the corresponding iteration.

maximum

state weight

(WAi, XA,)

NA

1

VlD

MA

n Items

Figure 4.1 States covered by the dynamic programming lists

The following procedure determines the two lists. List (W4,,XA,) is first

determined by calling procedure RECS in reverse order, i.e. determining, for
m = n.n \342\200\224I, ... ,NA(= n \342\200\224MA + 1), the optimal solution value ifmic) of the sub-
instance defined by items m.m+l n and capacity c < c.List (WBi, XBi) is then
initialized to contain those states of (WAi. XA,) whose weight is not greater than c,
and completed by calling RECS for m = A^A - 1. A^A - 2, ... , NB(=n-MB + l).

Note that the meaning of XA and XB is consequently altered with respect to D.12).

procedure LISTS:
input: n.c. (Wj).NA.NB.c;

output: SA. (WAi).(XA,). SB. (WBi). (XBi);

begin
comment: determine list (WA,.XA,);

c := c;
Wlo :=0;
Xlo:=0;
5 := 1;

b :=2;

Wli \342\200\242=Wn\\

Xli := 1;

4.2 Exact algorithms 111

m := n \342\200\224I;

repeat
call RECS;
rename W2 and X2 as H^ 1 and XI, respectively;
m := m \342\200\224I

until m < A^A or H^ 1^ = c;
for / := 1 to 5 do

begin

WA, :=Wli;
XA, :=Xh

end;

SA :=s;
if WAsA < c then (comment: determine list {WBi.XBi))

begin
c := c;
determine, through binary search, / = max{/ : W/i, < c};
5 := /;
repeat

call RECS;
rename Wl and X2 as H^ 1 and XI, respectively;
m \\=m \342\200\224\\

until m < NB;
rename W1 and XI as WB and XB, respectively;
SB:=s

end

end.

Example 4.1

Consider the instance of SSP defined by

n = 10;

(wj) = D1, 34, 21,20,8, 7, 7, 4, 3, 3);

c = 50;

MA =4;

MB = 6;

c = 12.

Calling LISTS, we obtain SA = 9. SB=S and the values given in Figure 4.2. n

We can now state the overall algorithm. After having determined the dynamic
programming lists, the algorithm generates a binary decision-tree by setting Xj

to

1 or 0 fory = 1, ... ,NA
\342\200\2241. Only the first NA \342\200\2241 items are considered, since all

the feasible combinations of items NA,..., n are in list (W4,.XA,). A forward

112 4 Subset-sum problem

i

0

1

2

3

4

5

6

7

8

9

WAi

0

3

4

6

7

10

11

13

14

17

XA/(decoded)

0

1

100

11

101

111

1100

1011

1101
1111

WB,

0

3

4

6

7

8

10

11

12

X5,(decoded)

0

1

100

11

101

100000

111

1100

100100

Figure 4.2 Dynamic programming lists for Example 4.1

move starting from an item j consists in: (a) finding the first item j' > j which

can be added to the current solution; (b) adding to the current solution a feasible

sequence7'.y + 1, ... ,j\"of consecutive items until the residual capacity c is no

greater than c. A backtracking step consistsin removing from the current solution

that item j'\" which was inserted last and in performing a forward move starting

fromy''' + 1.

At the end of a forward move, we determine the maximum weight 6 of a dynamic
programming state which can be added to the current solution. This is done by

assuming the existence of two functions, A and B, to determine, respectively.

A(c)
= rmiXo<i<sA{i \342\226\240WAi < c}.

B(c,j) = maxo<,<sB{/ : WBi < c and j^ = 0 for all k <j].

where iy[) denotesthe binary vector encoded in XBi. (Both A{c) and B(c.j) can be

implemented through binary search.) After updating of the current optimal solution

z (z := max(z,(c \342\200\224
c) + 6)), we proceed to the next forward move, unless we find

that the solution values of all the descendent decision nodes are dominated by

(c
\342\200\224

c) + 6. This happens when either the next item which we could insert is one
of the MA last items, or is one of the MB last items and the residual capacity c is
no greater than c.

Values Fk =
Yl'i=k^J (^ = 1> \342\200\242\342\200\242\342\200\242\342\226\240.\302\253)are used to avoid forward moves when

c > Fj' or an upper bound on the optimal solution obtainable from the move is no

greater than the value of the best solution so far.

4.2 Exact algorithms 113

procedure MTS:
input: n. c.(wj).'c.MA.MB]

output: z ,(xj);
begin
1. [initialize]

NA :=n-MA+l;

NB :=n-MB + 1;
call LISTS;
z :=WAsa;

for yt := 1 to A^A - 1 do Xk := 0;

let (yk) be the binary vector encoded in XAsa',

for k := NA to n do Xk := yk',
\\i z = c then return;
for k := n to I step -1 do compute Fk =

Yl%k ^j >

z :=0;

c := c;
for k := I \\o n do Xk := 0;

j \342\200\242=1;

2. [try to avoid the next forward move]
while Wj > c and7 < A^A doy :=j + l;
if 7

= A^A then go to 4;
if Fj < c then

begin
if z +Fy > z then (comment: new optimal solution)

begin
z :=z+Fy;
for /: :=1to y

- 1 do jc^t := xt;
for ^ :=y to \302\253do jcyt := 1;
\\\\ z = c then return

end;

go to 5
end;

determine, through binary search, r =
m'\\n{k > j : Fk < c};

s :=n \342\200\224r + I;
comment: at most ^ items can be added to the current solution;
u := Fj \342\200\224

Fj+s;

comment: u =
Ylitj' ^j = ^o^a' weight of the ^ largest available items;

\\i z + u < z then go to 5;
3. [perform a forward move]

while Wj
< c andy < A^A and c > c do

begin
C := C \342\200\224W;

\"J

z := z +Wj;
Xj

:= 1;

end;

114 4 Subset-sum problem

4. [use the dynamic programming lists]
if c < c then

begin
6 := WBBic.j)-,

flag:=\"h\"

end

else

begin
6 := WAAic)-,

flag :=\"a\";

if 6 < c and z < z +c' then

begin

6:=WBBicj)\\

flag:=\"h\"
end

end;
comment: 6 is the maximum additional weight obtainable from the lists;
if z + 6 > z then (comment: update the optimal solution)

begin
z := z + 6;
for k := 1 to 7 - 1 do Xk := Xk;

if flag = \"a\" then

begin
for k :=j to A^A - 1 do Xk := 0;
let (yk) be the vectorencodedin XA^^^-y,
for k := NA to n do Xk := yk

end
else

begin
for A: :=j to NB ~ I do x/, := 0;
let (jk) be the vectorencodedin XBb(c.j)',
for k := rr\\ax(NB .j) to n do xi, := jyt

end;

\\i z = c then return

end;

if (c < wyv^_i ory = NA) then go to 5;
if (c < wyvB-1 ory > NB) and (c < c) then go to 5
else go to 2;

5. [backtrack]

find / =
rr\\ax{k <j:xi, = l];

if no such / then return;
c := c +Wi;

z := z \342\200\224
Wi]

X, := 0;

J :=/ + !;
goto 2

end.

4.2 Exact algorithms 115

Example 4.1 (continued)

Executing MTS, we obtain:

NA =7,

NB =5,

(F;^) = A48, 107, 73, 52, 32, 24, 17,10,6, 3),

the dynamic programming lists of Figure 4.2 and the branch-decision tree of Figure

4.3. D

z-17
0) x=@,0,0,0,0,0,l,l,l.l)

xi=0

f=41

c=9

?=42

x=@.0,1,0,1,1,1,1.0,1)

Figure 4.3 Branch-decision tree of Procedure MTS for Example 4.1

116 4 Subset-sum problem

The Fortran implementation of procedureMTSis included in that of procedure
MTSL, which is described in the next section. The parameters for the dynamic

programming lists must take into account the \"difficulty\" of the problem. They

have been experimentally determined as the following functions of n and wmax =

msLx{wj]:

MA = minB\\og^Qwmax, 0,7n);

MB = minB,51ogiowmajc,0,8n);

c= \\3wnb-

These values are automatically decreased by the code corresponding to MTS
whenever the space required from the lists is larger than the available core memory.

A different hybrid algorithm for SSP canbe found in Plateau and Elkihel A985).

4.2.3 An algorithm for large-size problems

Computational experimentswith algorithm MTS show (Martello and Toth, 1984a)

that many instances of SSP can be exactly solved in reasonable computing time,

since they admit a large number of feasible solutions of value c (i.e. optimal).
Hence,for large-size problems, there is the possibility of finding one such solution

by considering (and sorting) only a relatively small subset of the items. This can

be obtained by defining a core problem which has a structure similar to that

introduced for the 0-1 knapsack problem (Section2.9)but can be determined much
more efficiently as follows. Given an instance of SSP, we determine the critical

item s = min{y :
YlUi ^' > <^} ^^^^ ^^^ ^ prefixed value ^ > 0, we define the

core problem

maximize z = V^
^j^j D.14)

s+d s-d-\\

subject to 2_] ^j^j < c = c \342\200\224
2_] ^j\342\226\240 D.15)

Xj=OoTl. j =s -'d, ... ,s + ^. D,16)

Then we sort items s \342\200\224
{I,... ,s + {1 according to D.13) and solve the core problem

through procedure MTS. If the solution value found is equal to c then we have an

optimal solution of value c for SSP, defined by values x^_^,... ,x^+^ returned by

MTS, and by Xj
= I for j < s \342\200\224

{I, Xj
= 0 for 7 > s + {1.Otherwise, we enlarge the

core problem by increasing ^ and repeat.

4.3 Approximate algorithms 117

procedure MTSL:

input: n.c. (wj). d.MA.MB .T;
output: z, {xj);
begin

determine s = m\\n{j :
Y1L\\ ^' > '^l-

repeat
a := max(l,5-

^);

b := m\\r\\(n.s + ^);

sort items a.a + \\. b according to decreasing weights;

call MTS for the core problem D.14)-D.16) and let z be the solution

value returned;
^:=2^

until z = c or b \342\200\224a + \\ = n;
l6t

yj U
= a, ... ,b) be the solution vector returned by MTS;

for 7 := 1 to a - 1do Xj
:= 1;

for 7 := a \\o b do Xj
:= yj;

fory := ^ + 1to n do Xj := 0;
z := z + (c \342\200\224

c)

end.

A \"good\" input value for ^ was experimentally determined as

^ = 45,

The Fortran implementation of MTSL is includedin the present volume.

4.3 APPROXIMATE ALGORITHMS

4.3.1 Greedy algorithms

The most immediate approach to the heuristic solution of SSP is the Greedy

Algorithm, which consists in examining the items in any order and inserting each
new item into the knapsack if it fits. By defining pj

=
Wj for all j, we can use

procedure GREEDY given in Section 2.4 for the 0-1 knapsack problem. This

procedure will consider, for SSP, the item of maximum weight alone as a possible
alternative solution, and guarantee a worst-case performance ratio equal to j. No

sorting being needed, since B.7) is satisfied by any instance of SSP, the time

complexity decreases from 0(n\\ogn) to 0{n).
For SSP, better average results can be obtained by sorting the items according

to decreasingweights. Since in this way the item of maximum weight is always
considered first (and hence inserted), we no longer need to explicitly determine it,
so a considerably simpler procedureis the following. We assume that the items are
sorted according to D.13).

118 4 Subset-sum problem

procedure GS:

input: n

output:

begin
c :=

for

\342\226\240c.iwj);

z^ixj);

- c;

j := 1 to n do
if Wj > c tlien

Xj

else

begin

Xj := 1;
c := c \342\200\224

end;

^j

0

z^ := c
end.

The worst-case performance ratio is still |, while the time complexity grows to

0{n\\ogn) becauseof the required sorting.
An 0{n^) greedyalgorithm, with better worst-case performance ratio was given

by Martello and Toth A984b). The idea is to apply the greedy algorithm n times,

by considering item sets {1,... ,n], {2,... ,n], {3,...,n],and so on, respectively,
and take the best solution. Assuming that the items are sorted according to D.13),
the algorithm is the following.

procedure MTGS:
input: n.c. (Wj);

output: z^X^
begin

z^ :=0;
for / := 1 to n do

begin
c :=c;
Y :=0;

for 7 := / to n do

if Wj < c tlien

begin
c :=c \342\200\224

Wj]
Y \342\226\240.=Yij{j]

end;
if c - c > z^ then

begin

z^ := c \342\200\224c;

X^ :=r;
if z^ = c then return

end

end

end.

4.3 Approximate algorithms 119

The time complexity of MTGSis clearly 0{n^). Its worst-case performance ratio

is established by the following

Theorem 4.1 (Martello and Toth, 1984b) /(MTGS) = |.

Proof. We will denote hy z(k) the value c \342\200\224c of the solution found by the algorithm
at the kth iteration, i.e. by considering item set {k,... ,n]. Let

q = max {j -.3 k <j such that item7 is not selected for z{k)]. D,17)

n

G=5Ivv,, D,18)

and note that, because of D.17), items q + \\,...,n are selected for all z{k)
with k < q + I. Let z =

Yl%\\ ^j^j* ^^ ^^^ optimal solution value and define

A = {j <q:x; = l].

(a) If /l| < 2 then z^ = z. In fact: (i) if \\A\\
= 1, with A = {j\\}, we have

^^ > 2G1)> >^y, +Q = z; (ii) if \\A\\
= 2, with A = {71,72} and71 < 72, we

have z^ > zGi) >
wy, +Wp_ + Q - z.

(b) If \\A\\ > 2 then z^ > |c > |z. In fact: (i) if
w<^ > \\c, we have

z^ > z{q-
2)

=
w<^_2 + w<^_i +

w<^
+ Q > |c; (ii) if

w<^
< |c, there must

exist an iteration k < q \342\200\224\\ '\\x\\ which item q is not selected for z(/:) since

Wq> c ~^c\342\200\224
z{k), and hence we have z^ > z{k)> c \342\200\224

w^ >\\c.

To prove that value | is tight, consider the series of instances with n = 4, vvi =

2R, W2 = R + \\, w^ = w^ = R and c = AR. The optimal solution value is z =4^,
while z(l) = zB) = 3^ + 1,zC)= 2R and zD) = R, so z^ = 3^ + 1. Hence the

ratio z^/z can be arbitrarily close to |, for ^ sufficiently large. D

Note that, for the series of instances above, the optimal solution would have
been producedby a modified version of the algorithm applying the greedy search at

iteration k to item set {^,... ,n, 1,...,/:- 1}(the result would be z^ = zC) =4^).
However, adding a fifth element with W5 = 1 gives rise to a series of problems

whereby z^/z tends to | for the modified algorithm as well. Also, from the practical

point of view, computational experiments with the modified algorithm (Martello

and Toth, 1985a) show very marginal average improvements with considerably
higher computing times.

More accurate approximate solutions can obviously be obtained by using any of

the approximation schemes described for the 0-1 knapsack problem (Section 2.8).
However,by exploiting the special structure of the problem, we can obtain better
schemes\342\200\224both from the theoretical and the practical point of view\342\200\224for the

approximate solution of SSP.

120 4 Subset-sum problem

4.3.2 Polynomial-time approximation schemes

The first polynomial-time approximation scheme was given by Johnson A974).

The idea is to identify a subset of \"large\" items (according to a given parameter k)
and to find the corresponding optimal solution. This is completedby applying the

greedy algorithm, for the residual capacity, to the remaining items. The algorithm
can be efficiently implemented as the following procedure (slightly different from

the original one presentedby Johnson A974)), in which k is supposed to be a

positive integer:

procedure J(^):
input: n.c. (wy);

output: z^X^
begin

L:={j -.Wj >c/(k + \\)];
determine X^ C L such that z^ = Ylj^x'-^J '^ closestto, without exceeding,

c,
c \342\200\242=c-z'';

S :={l n]\\L;
sort the items in S according to decreasing weights and let m =

m\\r\\j^sWj]',

wliile S^ 0 and c > m do

begin

let) be the first item in S;

s:=s\\{jy,
if Wj < c tlien

begin
c :=c \342\200\224

Wj]

X^ :=X^ U{j]
end

end;
z^ := c \342\200\224c

end.

The time complexity to determine the initial value of z^ and the corresponding
X^ through complete enumeration is 0(n''), since | X^ | < k. The remaining part of

the algorithm requires time 0{n\\ogn)\342\200\224for sorting\342\200\224plus 0{n). The overall time

complexity of J(k) is thus 0{n\\ogn) for k = \\, and 6>(n^) for ^ > 1. The space

complexity is 0(n).

Theorem 4.2^(Johnson,1974) r{i(k))=k/(k+ l).

Proof. Let z =
Yljex* ^j ^^ ^^^ optimal solution value and consider partition of

the optimal item set X* into L* = {j G X* : Wj > c/{k + 1)} and S* = X*\\L*.

Similarly, partition item setX^ returned by J(^) into L^ = {j G X^ : Wj > c/{k+l)]
and 5^ = X^\\L^SinceL^ is the optimal subset of L = {j :

Wj > c/{k + 1)},

4.3 Approximate algorithms 121

initially determined by the algorithm, we have Yl-^t'^^j \342\200\224Y1-^l*^j- Hence, if

S* C S'\\ we also have
Ylj^s'^^j \342\200\224Z^/es* ^> ^'^^ ^^^ solution found by the

algorithm is optimal. Otherwise,let q \302\243S* be any item not selected for S^: it

must be w^
+ z^ > c, so z'^ > c -

w^
> ckf{k + 1) > zkf{k + 1).

Tightness of the k/{k + 1) bound is proved by the series of problems with

n = k+2. vvi = ^ + 1. Wj
= R for7 > 1 and c = {k + 1). The optimal solution value

is z ={k + \\)R. Since it results that L = {1}, the heuristic solution is z^ = Z:^ + 1,

so the ratio z'^/z can be arbitrarily close to k/{k + 1)for R sufficiently large. \342\226\241

Note that J(l) produces the greedy solution. In fact L = {j :
Wj > c/2}, so

only one item (the one with largest weight) will be selected from L while, for the

remaining items, a greedy searchis performed.

Example 4.2

Consider the instance of SSP defined by

n = 9;

{Wj)
= (81, 80, 43, 40, 30, 26, 12,11,9);

c = 100.

MTGS gives, in 0{n^) time: z^ = max (93, 92, 95, 96, 88, 58, 32, 20, 9) =
96,X^ = {4, 5, 6}.

J(l) (as well as GS) gives, in C>(nlogn) time: L = {1,2},z^ = 93, X^ = {1, 7}.
JB) gives, in 0(n^) time: L = {1, 2, 3, 4}, z^ = 95, X^ = {3, 4, 7}.
JC) gives, in Oin^) time: L = {1, 2, 3, 4, 5, 6}, z^ = 99, X^ = {3, 5, 6}.
The optimal solution z = 100. X = {2, 8. 9} is found by J(ll). D

A better polynomial-time approximation scheme has been found by Martello

and Toth A984b) by combining the idea in their algorithm MTGS of the previous
section with that in the Sahni A975) scheme for the 0-1 knapsack problem (see
Section 2.8.1).For k = 2, the resulting scheme applies MTGS to the original

problem (for k = I the scheme is not defined but it is assumed to be the greedy

algorithm). For k = 3, it imposes each item in turn and applies MTGS to the

resulting subproblem, taking the best solution. For k = 4, all possible item pairs
are imposed, and so on. It will be shown in Section 4.4.2 that, for practical purposes,
/: = 2 or 3 is enough for obtaining solutions very close to the optimum. It is assumed
that the items are sorted according to D.13).

procedureMTSS(/:):
input: n.c.(Wj);

output: zVX^

begin
z^ :=0;

122 4 Subset-sum problem

for each McA^ = {l n] such that \\M\\ < k -2do
begin

\342\226\240\342\226\240=^jeM^J
if g < c tlien

begin
call MTGS for the subproblem defined by item set

N\\M and reduced capacityc \342\200\224
g, and let z^ =

Yliev ^J (^ C A^\\M) be the solution found;

if zs > z^ then

begin
z^ :=zS;
X^ :=M UV;
if z^ = c then return

end

end

end
end.

Since there are0(n'^~^)subsets M c N of cardinality not greater than k \342\200\2242, and

recalling that MTGS requires O(n^) time, the overall time complexity of MTSS(/:)
is 0{n'^).The space complexity is clearly 0{n). From Theorem 4.1 we have

r(MTSSB)) = |. Martello and Toth A984b) have proved that r(MTSSC)) =
f

and (k + 3)/{k+ 4) < r(MTSS(A:)) < k{k + \\)/{k{k + 1) + 2) for k > A. Fischetti

A986) exactly determined the worst-case performance ratio of the scheme:

Theorem 4.3 (Fischetti, 1986) r(MTSS(A:))= CA:
-

3)/CA:
- 2).

Proof. We omit the part proving that r(MTSS(A:)) > CA: - 3)/CA:
- 2). Tightness

of the bound is proved by the series of problems with n = 2k, Wj
= 2R for

j < k, Wk
= R + I, Wj

= R for j > k and c = Ck -
2)R (e.g., for k = A,

(Wj)
= BR.2R.2R.R + l.R.R.R.R). c =

lOR). The unique optimal solution, of
value z = Ck \342\200\224

2)R, includes all the items but the kih. Performing MTSS(/:), there
is no iteration in which M contains all items 7 < /:, so the optimal solution could

be found only by a greedy search starting from an item 7 < k. All such searches,

however, will certainly include item k (since, at each iteration, at least two items

of weight R are not in M), hence producing a solution value not greater than the

greedy solution value z^ = z^ = Ck \342\200\224
3)R + 1. It follows that the ratio z^/z can

be arbitrarily close to Ck \342\200\224
3)/Ck

\342\200\224
2) for R sufficiently large. \342\226\241

MTSS(/:) dominates the Johnson A974) scheme }(k), in the sense that, for

any k > 1, the time complexity of both schemes is 0(n'^), while r(MTSS(/:)) =
Ck -

3)/Ck
- 2) > k/(k + 1)= r(](k))(for example: r(MTSSB)) = | = r(JC)),

r(MTSSC))
=

f
= r(JF)), r(MTSSD)) = -^ = r(}(9))).Also note that, for

increasing values of/:, the solution values returned by MTSS(/:) are non-decreasing
(because of the definition of M), while those returned by }(k) are not (if, for

4.3 Approximatealgorithms 123

example, (Wj)
= (8,5,5,3) and c = 12, J(l) returns z^ = 11, while JB) returns

z^ = 10).

Example 4.2 (continued)

We have already seen that MTSSB) gives, in 0{n^) time: z^ = 96, X^ = {4,5,6}.
MTSSC) gives, in 0{n^) time: z^ = 100, X^ = {2,8,9}(optimal). The solution is

found when M = {2} and the greedy search is performed starting from item 8. \342\226\241

A more effective implementation of MTSS(/:)can be obtained if, at each iteration

/ in the execution of MTGS,we update a pair (L.c) having the property that all

items in 5 = {/ n]\\{M UL) will be selected by the greedy searchstarting from

/, and c = c \342\200\224
Ylj^B ^J- ^^ ^^^^ way, the greedy search can be performed only for

the items in L with residual capacity c. Since each iteration removes items from

L, executionof MTGS can be halted as soon as L = 0. The improved version of

MTSS(/:) is obtained by replacing the call to MTGS with the statement

call MTGSM,
where:

procedure
input: n

output:

begin
z^ :
L:--
c :=
S :-.

i :=

,c.
z^.

:= z
=

{1
: C -

= 0

\342\226\2400;

repeat

i :\342\226\240

if 2

MTGSM:

(wj).M.g.z'';
V;

h.

n]\\M;
-g;

= / + l;
^ M then

begin
while L ^ 0 and w/ < c

begin
c :
S
L

end;
c :=c;
T \342\226\240.=S;

for each j
begin

c :
T

end;

:= c \342\200\224
Wj;

\342\226\240\342\226\240=SU{j];

\342\226\240\342\226\240=L\\{J}

G L do if Wj

:= c \342\200\224
Wj;

\342\226\240=TU{j]

\342\226\240u

< c

the first item

^
then

inL) do

124 4 Subset-sum problem

if c - c > z^ then

begin

z^ := c \342\200\224c;

V :=T

end;
c :=c +Wi;

S:=S\\{i]

end;

until L = 0 or z^ = c

end.

Example 4.2 (continued)

Calling MTGSM with z^ = 0. M = 0 and g = 0, the execution is:

L={1, ... ,9},c= 100, S =0;

/ = 1 : c = 19,5 =
c= 1, T =

c = 100, S =0;

i =2: c= 20, 5 =
c= 8, r =

/ =4

c = 100, S =0;

/ = 3 : c = 17, 5 =
c= 5, r =
c = 60, S =

c= 4, S =
c= 4, T =

c= 44, S =

i =5: c= 12, S =

c= \\2, T =
c= 42, S =

l],L ={2,...,9];
1,7}, z^ =93, V ={l, 7};

2},L= {3,... ,9};
2, 7};

3,4},L={5, ... ,9};
3,4, 7}, z^ =95, V ={3,4, 7};
4};

4, 5, 6},L = {7,8,9};
4, 5, 6}, z^ =96, y = {4, 5, 6};
5, 6};

5,6, 7, 8, 9},L = 0;
5, 6, 7, 8, 9};
6,7,8,9}, n

For large values of n, the computing time required by MTSS(/:) can be further

reduced in much the same way used for MTSL (Section 4.2.3), i.e. by determining

the solution for an approximate core problem and then checking whether the

requested performance (evaluatedwith respect to upper bound c on z) has been

obtained.

Fischetti A989) has proposed a polynomial-time approximation scheme, FS(/:),
based on the subdivision of A^ into a set of \"small\" items and a number of sets of
\"large\" items, each containing items of \"almost equal\" weight. Although the worst-
case performanceratio of the scheme has not been determined, it has been proved

4.3 Approximate algorithms 125

that r(FS(k)) > {(k + if -
A)/{k + if. With this ratio, the result is r(MTSS(A:)) >

r(FS(A:)) for A: < 6, while r(MTSS(A:)) < r(FS(A:)) for A: > 6.

4.3.3 Fully polynomial-time approximation schemes

The algorithms of the previous section allow one to obtain any prefixed worst-case

performance ratio r in polynomial time and with linear space. The time complexity,
however,is exponential in the inverse of the worst-case relative error e = \\ \342\200\224r.

The fully polynomial-time approximation scheme proposedby Ibarra and Kim

A975) for the 0-1 knapsack problem (procedure IK(\302\243)of Section 2.8.2) also

applies to SSP. No sorting being required, the time complexity decreases from

6>(nlogn) -I- 0{njz^) to 0{n/e^), polynomial in \\/e, while the space complexity
remains 0{n + {\\/e^)). Lawler A979) adapted to SSP his iniproved version of
the Ibarra and Kim A975) scheme for the 0-1 knapsack problem, obtaining time

complexity 0{n +{\\/e^))and space complexity 0{n + {\\/e^)), or time and space

complexity 0{n +{\\fe^)\\og{\\fe)).
All of the above schemes are based on the same idea, i.e. (see Section2.8.2);

(a)partitioning the items, basing on the value of e, into \"large\" and \"small\" ones;

(b) solving the problems for the large items only, with scaled weights, through
dynamic programming; (c) completing the solution, in a greedy way, with the

small items. Gens and Levner A978, 1980) have proposed a fully polynomial-

time approximation scheme based on a different (and simpler) principle. They
solve the complete problem through ordinary dynamic programming but, at each

iteration, reduce the current dynamic programming lists by keeping only state

weights differing from each other by at least a threshold value depending on e.
The schemecan be conveniently defined using procedure RECSof Section 4.2.1.

Note that the algorithm results similar to procedure DPS for the exact dynamic

programming solution of SSP (Section4.2.1).The main difference consists in

determining, after each RECS call, reduced lists W\\ and XI, instead of simply
renaming Wl and XI as W \\ and XI.

procedure GL(\302\243):

input: n.c. (w,);

output: zVX^
begin

determine a = maxjy : ^^.^j w, < c};
z := max(^J^[Wj. maxy{wy}) (comment: z <z < Iz);
c :=c;
Wlo :=0;

Xlo:=0;
s := 1;
b :=2;
W l\\ := w\\;
Xli := 1;
m := 2;

repeat

126 4 Subset-sum problem

call REGS ;
h :=0;
j :=0;
repeat

if 1^2^+1 > Wlh + \302\243zthen 7 :=] + 1

else7 := max{q :
Wl^ <Wlh +\302\243z];

h:=h + \\;

W\\h \342\226\240.=W2j\\

X\\h \342\226\240.=X2j
until y = s;
m := m + I;
s := h

until m > n or Wig = c;
z^ \342\226\240.=W\\s;

determine X^ by decoding X1^
end.

At each iteration, the reduced dynamic programming lists clearly satisfy W Ih+i \342\200\224

W Ifi > \302\243zfor h = I, ... ,s \342\200\2242. Hence the number of states is always bounded

by 5 < 2z/(\302\243z), that is, from z < 2z, by 5 < D/s). It follows that the scheme

has time and space complexity 0{n/e). The proof that the solution determined by

GL(\302\243)has worst-case relative error not greater than e is given in Levner and Gens

A978) and Gens and Levner A978).
The time and space complexity of GL(\302\243)can be better or worse than that of the

Lawler A979) scheme,according to the values of n and e.

Example 4.2 (continued)

Calling GL@ , we initially find a = \\ . z = 81 and the weight list Wl given in

the first column of Figure 4.4. No state is eliminated for m =2.3. For m = 4.W24
is eliminated since W25 \342\200\224

W2-i = 3 < sz =27. The approximate solution found

has the final value of W I4, i.e. z^ = 96 (with X^ = {4, 5,6}).D

4.3.4 Probabilistic analysis

As for the 0-1 knapsack problem (Section2.8.3),we give a brief outline of the

main results obtained in probabilistic analysis.
The first probabilistic result for SSP was obtained by d'Atri and Puech A982).

Assuming that the weights are independently drawn from a uniform distribution
over {l,2y... ,c(n)} and the capacity from a uniform distribution over {1,

2,...,nc(n)], where c(n) is an upper bound on the weights value, they proved
that a simple variant of the greedy algorithm solves SSP with probability tending

to 1.

Lagarias and Odlyzko A983) considered SSP with equality constraint and

assumed that the weights are independently drawn from a uniform distribution

4.3 Approximate algorithms 127

ON

II

S

00
II

s

t^
II

s

NO

II

s

>n
II

S

^
II

s

m
II

s

(N

II

s

,

II

s

^-,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

(N

^

,

^

-s:

O\342\200\224'NOt^r<-)^0\342\200\224'NO
^(Nm^int^ooON

ONOOr<-)NOONOr<-)NO
(Nm^inNOt^ooON

o

o

o

o

o

o

o

o

m
^

m
^

o
00

O
00

m^

m̂

o
00

O
00

00

00

o
00

o
00

00

00

00

00 00

CI.
S
X

[Ih

(N m ^ in NO t^ 00

128 4 Subset-sum problem

2
over {1,2, ... ,2*^\" } and the capacity is the total weight of a randomly chosen
subset of the items. They presented a polynomial-time algorithm which finds the

solution for \"almost all\" instances with c > 1. The result was extended to c > ^
by Frieze A986).

The probabilistic properties of a \"bounded\" variant of SSP were investigated by

Tinhofer and Schreck A986).

4.4 COMPUTATIONALEXPERIMENTS

In the present section we analyse the experimental behaviour of exact and

approximate algorithms for SSP on random and deterministic test problems.
The main class of randomly generated test problems we use is

(i) problemsP{E) :
Wj uniformly random in [1, 10^];

10^
c = n .

4

For each pair (n, E), the value of c is such that about half the items can be expected
to be in the optimal solution. In all algorithms for SSP, execution is halted as soon
as a solution of value c is found. Hence the difficulty of a problem instance is related
to the number of different solutions of value c. It follows that problems P{E) tend

to be more difficult when E grows. As we will see, truly difficult problems can be
obtained only with very high values of 10^.This confirms, in a sense, a theoretical
result obtained by Chvatal A980), who proved that, for the overwhelming majority

of problems P{n/2) (with n large enough), the running time of any algorithm

based on branch-and-bound and dynamic programming is proportional at least to

2\302\253/io jj^g Chvatal problems, as well as problemsP{E) with very high values of

E, cannot be generated in practice because of the integer overflow limitation. A
class of difficult problems which does not have this drawback is

(ii) problems EVEN/ODD :
Wj even, uniformly random in [1, 10-^];

nlO^
c = + 1 (odd).

Since these problems admit no solution of value c, the execution of any enumerative

algorithm terminates only after complete exploration of the branch-decision tree.

Deterministic problems with the same property have been found by Todd A980)
and Avis A980):

(iii) problems TODD :
Wj

= 2^+\"+' + I'^^J + 1, with k = [log^n];

c =
LO-5 E;=i ^yJ

=
(\302\253+ 1J'\"\" - 2^ +

[|J.

4.4 Computational experiments 129

(iv) problems AVIS : Wj
= n(n + I) +j

n - 1
c = \342\200\224z\342\200\224n{n + 1) +

4.4.1 Exact algorithms

We first compare, on small-size difficult problems, the Fortran IV implementations
of the dynamic programming algorithm of Ahrens and Finke A975) and of

algorithm MTSL (Section 4.2.3). We used a CDC-Cyber730 computer, having

48 bits available for integer operations, in order to be able to work with the large
coefficients generated.

Table4.1gives the results for problems P(E), with E = 3, 6, 12, Table4.2 those

for problems EVEN/ODD, TODD, AVIS. Each entry gives the average running

Table 4.1 Problems P(E). CDC-Cyber730 in seconds. Average times over 10 problems

n

8
12
16
20
24
28

32

36

40

n

8

12

16
20
24
28
32

36

40

POy.Wj uniformly

random in [1, 10^];
c =

Ahrens

and Finke

0.012
0.023
0.040
0.069
0.137
0.349

0.940

2.341

5.590

Table 4.2

\342\226\2407103/4

MTSL

0.004
0.010
0.011
0.007
0.010
0.010
0.009

0.009

0.011

PF): Wj uniformly
random in [1, 10^];

c =/7lOV4

Ahrens

and Finke

0.012
0.029
0.091
0.322

0.640

1.341

2.284
4.268
9.712

Problems EVEN/ODD, TODD

EVEN/ODD;
average times over

10 problems

Ahrens
and Finke

0.013

0.028
0.090
0.392
1.804
7.091

21.961
time limit

\342\200\224

MTSL

0.005

0.021
0.053
0.190
0.525
0.969

1.496

2.184
2.941

MTSL

0.004
0.013
0.049

0.185

0.513

0.647
0.661
0.605
0.663

AVIS. CDC

TODD;

singl

Ahrens
and Finke

0.013

0.050
0.199
0.785
3.549

15.741
70.677

308.871
\342\200\224

s trials

MTSL

0.002
0.005
0.020
0.257

0.400

0.403

0.407
0.409

\342\200\224

Piuy.wj
random ir

c = n

Ahrens

and Finke

0.013
0.029
0.092
0.422

2.070

9.442

time limit

\342\200\224

\342\200\224

uniformly

[1, 10'2];
10'2/4

MTSL

0.004
0.013
0.050

0.232

1.098
6.306

time limit

\342\200\224

\342\200\224

-Cyber 730 in seconds

AVIS;

single trials

Ahrens
and Finke

0.016

0.041

0.111
0.326
0.815
2.010
4.348

8.345

15.385

MTSL

0.002
0.005
0.012
0.046

0.126

0.291

0.579
1.146
1.780

130 4 Subset-sum problem

time, expressed in seconds, computed over 10 problem instances(except for the

deterministic TODD and AVIS problems, for which single runs were executed).

Each algorithm had a time limit of 450 seconds to solve the problems generated
for each data set. MTSL was always faster than the Ahrens and Finke A975)

algorithm. Table 4.1 shows that problems P{E) become really hard only when

very high values of 10^are employed. Table 4.2 demonstrates that the \"artificial\"

hard problems can still be solved, in reasonable time, by MTSL. (Problems TODD

cannot be generatedfor n > 40 because of integer overflows.)
We used a 32-bit HP 9000/840 computer, having a core memory limitation of

10 Mbytes, to test MTSL on very large \"easy\" P{E) instances. Since the Fortran

implementation of MTSL requires only two vectors of dimension n, we were
able to solve problems up to one million variables. Because of integer overflow

limitations, the capacity was set to n 10^/50, hence E could not be greater than 5.
Table 4.3 gives the average times, computed over 20 problem instances, relative

to problems FB), FC), FD), FE). The results show very regular times, growing

almost linearly with n. No remarkable differencecomes from the different values

of E used. The initial value of ^ (^ = 45) always produced the optimal solution.
All runs were executed with option \"-o\" for the Fortran compiler, i.e. with the

lowest optimization level.

Table 4.3

n

1000

2500

5 000
10000
25000
50000

100000

250000

500000
1000000

Problems P{E).

Pi2)
Wj uniformly

random in

[1, 102];
C =/7 102/50

0.007
0.009
0.016
0.028
0.070

0.136

0.277

0.691
1.361
2.696

HP 9000/840 in seconds.

PO)
Wj uniformly

random in

[1, 10-^];
c = n 10V50

0.010

0.014
0.020
0.032
0.071
0.138
0.272

0.674

1.360

2.720

Average times over 20 problems

Pi4)
Wj uniformly

random in

[1, 104];
c =n\\0V50

0.022

0.025

0.031
0.046
0.088
0.156
0.295

0.716

1.418

2.857

Pi5)
Wj uniformly

random in

[1, 10^];
c = n 10V50

0.125

0.116
0.121
0.126
0.173
0.252

0.392

0.801
1.527
2.948

4.4.2 Approximate algorithms

We used the hard problems of the previous section to experimentally compare
approximate algorithms for SSP. The runs were executed on a CDC-Cyber 730
computer, with values of n ranging from 10 to 1000 for problems EVEN/ODD and

FA0) (E = 10being the maximum value not producing integer overflows), from

10 to 35 for problemsTODD.We compared the Fortran IV implementations of the

4.4 Computational experiments 131

polynomial-time approximation schemes of Johnson A974) and Martello and Toth

A984b) and those of the fully polynomial-time approximation schemes of Lawler
A979) and Gens and Levner A978, 1980) (referredto as J{k), MTSS(A:), L(f) and

GL(f), respectively). The size of the approximate core for MTSS(^) was set to
200/A:.

We used the values \\, | and ^ of the worst-case performance ratio r. These are
the smallest values which can be imposedon all the schemes. Table 4.4 shows the

parameters used and the time and space complexities.

r k

Kk)

time space

Table 4.4 Time and space complexities

MTSS(A:) L(\302\243)

k time space e time space

GL(\302\243)

time space

i 1 0{n) 0{n) 1 0{n) 0{n) \\ 0(n-H ^) 0(n-H ^) 0(f) 0(f)

I 3 0{n^) 0{n) 2 0{n'^) 0{n) \\ 0(n-H ^) 0(n-H ^) 0(f) 0(f)

f
6 0{n^) 0{n) 3 0{n^) 0{n) \\ 0(n-H ^) 0(n-H ^) 0(f) 0(f)

For each triple (type of problem, value of r, value of n), we generated ten

problems and solved them with the four algorithms. The tables give two types

of entries: average running times and average percentage errors. The errors were

computed with respect to the optimal solution for problems TODD. For problems
FA0) and EVEN IODD we used the optimal solution when n < 50, and the upper

bound c (for FA0)) or c- 1 (for EVEN/ODD) when n > 50. When all ten problems

were exactly solved by an algorithm, the corresponding error entry is \"exact\" (entry
0.0000 means that the average percentage error was less than 0.00005).

Table 4.5 gives the results for problems FA0). L(\302\243)has, in general, very short

times and very large errors. This is because the number of large items is very small

(for n < 50) or zero (for n > 100). MTSS(^) dominates the other algorithms,

i(k) dominates GL(\302\243). For any n > 25, i(k) gives exactly the same results,

independently of r since, for all such cases, set L is empty, so only the greedy
algorithm is performed. The running times of GL(\302\243)grow with n and with r, those

of J(^) only with n, those of MTSS(^) only with r (for n > 50), while L(\302\243)has

an irregular behaviour.
Table 4.6 gives the results for problems EVEN/ODD. As in Table 4.5, L(\302\243)

always has very short times and very large errors, MTSS(/:) dominates the other

algorithms and J(^) dominates GL(\302\243). The running times and the growing rates

of errors are the same as in Table 4.5 while the absolute errors are different. In

many cases MTSS(yt) found the optimal solution; since, however, the corresponding

value does not coincide with c, execution could not stop, so the running times grow
with r.

Table 4.7 gives results for problems TODD. Since these problems are

deterministic, the entries refer to single trials. MTSS(/:) dominates all the

132 4 Subset-sum problem

Table 4.5 Problems PA0): Wj uniformly random in [1, lO'^];c = /7lO'0/4. CDC-Cyber
730 in seconds. Average values over 10 problems

n

10

25

50

100

250

500

1000

r

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

J(A:)

0.001

0.001

0.003

0.002

0.002

0.003

0.004

0.004

0.004

0.009

0.009

0.010

0.020

0.022

0.022

0.049

0.042

0.047

0.100

0.102

0.102

Time

MTSS(A:)

0.001

0.001

0.006

0.003

0.005

0.035

0.005

0.009

0.166

0.014

0.020

0.207

0.022

0.029

0.158

0.022

0.033

0.180

0.024

0.030

0.224

L(\302\243)

0.004

0.012

0.025

0.001

0.008

0.069

0.001

0.001

0.016

0.002

0.001

0.001

0.003

0.003

0.003

0.008

0.006

0.007

0.013

0.013

0.013

GL(\302\243)

0.005

0.009

0.014

0.014

0.020

0.037

0.029

0.050

0.079

0.061

0.093

0.157

0.112

0.235

0.374

0.254

0.438

0.685

0.540

0.909

1.374

Kk)

2.0871

2.0044

0.8909

0.3515

0.3515

0.3515

0.0833

0.0833

0.0833

0.0082

0.0082

0.0082

0.0032

0.0032

0.0032

0.0010

0.0010

0.0010

0.0002

0.0002

0.0002

Percentage error

MTSS(A:)

2.0871

0.4768

0.1894

0.3515

0.0467

0.0049

0.0833

0.0058

0.0002

0.0082

0.0004

0.0001

0.0039

0.0004

0.0000

0.0040

0.0001

0.0000

0.0014

0.0001

0.0000

He)

5.5900

3.7928

2.8857

5.3916

1.9958

1.5973

0.8870

0.8870

0.9902

1.0991

1.0991

1.0991

0.7441

0.7441

0.7441

0.2890

0.2890

0.2890

0.1954

0.1954

0.1954

GL(\302\243)

2.0307

1.2864

0.9088

1.8044

0.6695

0.6100

0.2519

0.1008

0.0794

0.0611

0.0708

0.0541

0.0077

0.0070

0.0059

0.0016

0.0016
0.0015

0.0005

0.0006

0.0005

4.4 Computational experiments 133

Table 4.6 Problems EVEN/ODD. CDC-Cyber 730 in

10 problems

seconds. Average times over

Time Percentage error

n

10

25

50

100

250

500

1000

r

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

J(A:)

0.001

0.001

0.003

0.002

0.002

0.002

0.004

0.004

0.004

0.009

0.009

0.008

0.022

0.021

0.021

0.047

0.047

0.047

0.104

0.104

0.104

MTSS(A:)

0.001

0.002

0.007

0.003

0.005

0.048

0.006

0.011

0.287

0.011

0.028

0.274

0.022

0.028

0.242

0.026

0.031

0.257

0.029

0.033

0.293

He)

0.005

0.012

0.025

0.001

0.011

0.077

0.001

0.001

0.019

0.002

0.002

0.002

0.003

0.004

0.003

0.007

0.007

0.007

0.013

0.014

0.014

GL(\302\243)

0.005

0.009

0.013

0.015

0.026

0.042

0.030

0.051

0.084

0.060

0.100

0.166

0.141

0.235

0.380

0.291

0.483

0.774

0.595

0.992

1.567

i{k)

2.2649

2.3209

0.9202

0.2432

0.2432

0.2432

0.0400

0.0400

0.0400

0.0160

0.0160

0.0160

0.0019

0.0019

0.0019

0.0003

0.0003

0.0003

exact

exact

exact

MTSS(A:)

2.2649

0.8325

0.0720

0.2432

0.0384

exact

0.0400

0.0016

exact

0.0160

exact

exact

0.0006

exact

exact

0.0006

exact

exact

0.0010

exact

exact

L(\302\243)

7.5859

3.1369

2.5209

7.6416

2.3360

1.9808

2.4480

2.4480

1.1232

0.7352

0.7352

0.7352

0.4221

0.4221

0.4221

0.2682

0.2682

0.2682

0.1325

0.1325

0.1325

GL(\302\243)

1.5131

0.8403

0.9041

1.0688

0.4288

0.3584

0.1424

0.1680
0.0816

0.0792

0.0792

0.0520

0.0080

0.0070

0.0058

0.0021

0.0021

0.0024

0.0002

0.0002

0.0001

134 4 Subset-sum problem

Table 4.7 Problems TODD.CDC-Cyber730 in seconds. Single trials

Time Percentage error

i{k) MTSS(A:) L(\302\243) GL(\302\243) i{k) MTSS(A:) L(\302\243) GL(\302\243)

^ 0.001 0.001 0.002 0.005 9.9721

10 I 0.001 0.002 0.013 0.008 9.9721

I 0.004 0.006 0.022 0.011 exact

9.9721

exact

exact

8.2795

4.4157

2.1366

exact

exact

exact

15

0.001 0.001 0.001 0.008 exact

0.002 0.002 0.016 0.016 exact

0.001 0.012 0.033 0.023 exact

exact 12.3660 6.1343

exact 6.2072 3.0185

exact 1.4548 exact

20

25

30

35

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

1

2

3

4

6
7

0.001

0.001

0.002

0.001

0.001

0.001

0.002

0.003

0.002

0.003

0.002

0.002

0.003

0.003

0.018

0.003

0.004

0.028

0.003

0.005

0.038

0.004

0.004

0.045

0.001

0.006

0.036

0.001

0.001

0.048

0.001

0.001

0.017

0.001

0.001

0.015

0.014

0.023

0.040

0.016

0.036

0.059

0.017

0.030

0.052

0.021

0.035

0.062

4.7761

4.7761

4.7761

exact

exact

exact

3.2261

3.2261

3.2261

exact

exact

exact

4.7761

exact

exact

exact

exact

exact

3.2261

exact

exact

exact

exact

exact

4.7482

4.7482

2.3787

7.6896

7.6896

3.3638

3.2255

3.2255

0.8063

5.5555

5.5555

1.3888

4.7482

exact

exact

7.6896

exact

1.9210

3.2255

3.2253

exact

2.7777

2.7777

exact

algorithms, while h{e) is generally dominated by all the algorithms. J(^) dominates
GL(\302\243) for n odd (J(l) always finds the optimal solution). For n even, GL(\302\243)

has higher times but much smaller errors than]{k), MTSSB) always finds the

optimal solutions, MTSS(l) only for n odd. This behaviour of the algorithms can

be explained by analysing the structure of the optimal solution to problems TODD.
Let m =

[n/2J, so c =
(n + 1J^\"^\" - 2^ + m. Hence the number of items in any

feasible solution is at most m since, by algebraic manipulation, the sum of the

m + 1 smallest weights is
m + \\

^w,
= 2(m + 1J^^\"+ 2^'^'B'\"^'

- 1) + (m + 1)> c
/=i

4.4 Computational experiments 135

(in problems TODD the vv/'s are given for increasing values). For n odd in =

2m + I), the sum of the m largest weights is feasible, since

n

and hence optimal. So, after sorting, the greedy algorithm (J(l) or MTSS(l))finds

the optimal solution. For n even (n = 2m), (a) any solution including w\342\200\236includes

at most m \342\200\2242 further items, since

w\342\200\236+ ^ Wi
= Bm + 1J^^\" + 2^B'\"- 2)+ m > c;

(b) it follows that the best solution including w\342\200\236has value

n

i=n \342\200\224m+2

(c) the best solution not including w\342\200\236has value

n-\\

Z2= Y ^' =
^^'^ + ^^^^^\" ~ ^^^\"\"'^ + ^ < C''

i=n \342\200\224m

and Z2 > z\\. So Z2 is the optimal solution value and MTSSB) finds it when, after

sorting, it applies the greedy algorithm starting from the second element.
We do not give the results for problems AVIS, for which the algorithms have

a behaviour similar to that of problems TODD.In fact, let s =
\\{n

--
1)/2J, so

c = sn{n + \\) + n{n - l)/2. Since the sum of the 5 + 1 smallestweights is

5+1

y^w,
= sn{n + \\) + n{n + 1)+ ^ {s + \\){s +2) > c,

/=i

any feasible solution will include, at most, s items. The sum of the s largest weights

is feasible, since

n

y^ Wi = sn(n + l) +s{n- s)+ ^ s{s + 1) < c,
i=n\342\200\224s+l

hence optimal. So, after sorting, the greedy algorithms 7A) and MTSS(l) always

find the optimal solution.
The computational results of this section (and others, reported in Martello and

Toth A985a)) show that all the polynomial-time approximation schemes for SSP

136 4 Subset-sum problem

have an average performance much better than their worst-case performance. So,
in practical applications, we can obtain good results with short computing times,
i.e. by imposing small values of the worst-case performance ratio.

Although polynomial-time approximation schemes have a worse bound on

computing time, their average performance appears superior to that of the fully

polynomial-time approximation schemes, in the sense that they generally give better
results with shorter computing times and fewer core memory requirements.

The most efficient scheme is MTSS(/:).For n > 50, the largest average error of

MTSSB) was 0.0075 per cent, that of MTSSC) 0.0005 per cent. So, for practical

purposes, one of these two algorithms should be selected while using higher values

of k would probably be useless.

Change-making problem

5.1 INTRODUCTION

In Chapter 1 the change-making problem has been presented, for the sake of

uniformity, as a maximization problem with bounded variables. However, in the

literature it is generally considered in minimization form and, furthermore, the main

results have been obtained for the case in which the variables are unbounded. Hence

we treat the bounded case in the final section of this chapter, the remaining ones

being devoted to the Change-Making Problem (CMP) defined as follows.Given n

item types and a knapsack, with

Wj
= weight of an item of type j;

c =
capacity of the knapsack,

select a number Xj (j
= I, ... ,n) of items of each type so that the total weight is

c and the total number of items is a minimum, i.e.

minimize z =
J2^j E.1)
y=i

subject to y]vvyX/=c. E.2)

Xj
> 0 and integer, j \302\243N = {I n}. E.3)

The problem is NP-hard also in this version, since Lueker A975) has proved
that even the feasibility question E.2)-E.3) is NP-complete. The problem is

called \"change-making\" since it can be interpreted as that of a cashier having
to assemble a given change, c, using the least number of coins of specified values

Wj (j = 1, ... ,n) in the case where, for each value, an unlimited number of

coins is available. CMP can also be viewed as an unbounded knapsack problem

(Section 3.6) in which pj
= \342\200\2241 for all j and, in the capacity constraint, strict

equality is imposed. (On the other hand, imposing inequality ^\"^i WjXj
> c gives

rise to a trivial problem whose optimal solution is xi =
[c/vv/] (where / is the item

type of maximum weight) and Xj
= 0 for; e N\\{1], since item type / \"dominates\"

all the others in the sense of Theorem 3.2.) Note that, because of E.2), a feasible

137

138 5 Change-making problem

solution to the problem does not necessarily exist.
It is usual in the literature to consider positive weights Wj. Hence, we will also

assume, without loss of generality, that

Wj
and c are integers; E.4)

Wj < c for j e N; E.5)

Wi^Wj
if i^j. E.6)

Violation of assumption E.4) can be handled by scaling. If assumption E.5) is

violated, then we can set Xj
= 0 for all j such that Wj > c and, if there is an

item type (say k) with w^ = c, immediately determine an optimal solution {x^ = I,

Xj
= 0 for j G N\\{k]). If assumption E.6) is violated then the two item types

can be replaced by a single one. Note that, on the contrary, the assumption on
the positivity of

Wj (j EN) produces a loss of generality, because of the equality
constraint.

CMP can arise, in practice, in some classes of unidimensional cargo-loading and

cutting stock problems. Consider,for example, a wall to be coveredwith panels:

how is it possible, given the available panel lengths, to use the least possible number

of panels?
In the following sections we examine lower bounds (Section 5.2), greedy

solutions (Sections 5.3, 5.4), dynamic programming and branch-and-bound

algorithms (Sections 5.5, 5.6), and the results of computational experiments
(Section5.7).Section 5.8 analyses the generalization of the problem to the case

where, for eachj, an upper bound on the availability of items of type j is given

(Bounded Change-Making Problem).

5.2 LOWER BOUNDS

Assume, without loss of generality, that the item types satisfy

vvi > W2 > W3 > Wj for 7 =4, ... ,n. E.7)

Let us consider the continuous relaxation of CMP,i.e.E.1),E.2)and

Xj > 0, j e N.

From E.7), its optimal solution J is straightforward (Ji = c/wi.Xj = 0 for
j =2, ... ,n)and provides an immediate lower bound for CMP:

Lo =
\\^'

.

5.2 Lower bounds 139

If we also impose, similarly to what has been done for the unbounded knapsack

problem (Section 3.6.1), the obvious condition Ji < [c/vvij, which must hold in

any integer solution, the continuous solution becomes

X\\ =
c

Xj
= 0 for j =3, ... ,n.

X2
= ,

W2

where

c = c(mod vvi)

This gives an improved lower bound:

E.8)

c
VVi

+
c

W2

Suppose now that [c/vviJ items of type 1 and [c/w2j items of type 2 are initially
selected, and let

E.9)

E,10)

z' = c
VVi

+
c

W2

c' = c(mod W2).

In the optimal solution to CMP, either X2 < [c/w2\\ or X2 > [c/w2\\. In the former
case the continuous relaxation gives a lower bound

L'> = z' +

while in the latter a valid lower bound is

L'=z' -1 +

c
W3

C + VVi

W2

E,11)

E,12)

since the condition implies xi < [c/wij - 1.We have thus proved the following

Theorem 5.1 (Martello and Toth, 1980b). The value

L2 = min(L^L'),

where LP and O are defined by E.8)-E.12), is a lower bound for CMP.

140 5 Change-making problem

Since L\\ can be re-written as z' +
\\c'/w2\\, we have LP > L\\. Also, by noting

that L' = z' + \\{c' + vvi - W2)/w2] and vvi
-

W2 > 0, we have L' > Li. Hence Li

is dominated by the new bound.

The time complexity for the computation of the above bounds is clearly 0(n).
No sorting is in fact needed, since only the three largest weights are required.

Example 5.1

Consider the instance of CMP defined by

n = 5;

(wy)
= A1, 8, 5,4, 1);

c =29.

We obtain

Lo =3.

L, =2+[|l=3.

LO =2-h[|1=4;

L' =2- 1+ [fl =4;

^2 =4. D

Lower bounds Lq. L\\ and L2 are the respective conceptualcounterparts of

upper bounds Uq.U\\ and Uj, introduced for the unbounded knapsack problem
(Section3.6.1),for which we have proved that the worst case performance ratio is

2. As often occurs, however, maximization and minimization problems do not have

the same theoretical properties for upper and lower bounds (see, e.g.. Section 2.4).
For CMP, the worst-case performance of the lower bounds above is arbitrarily

bad. Consider in fact the series of instances with n = 3, w\\ = k, W2
= k \342\200\224

1,

W3 = 1 and c = 2k \342\200\2243 (k > 3): we have Lq
= L\\ = L2 = 2, while the optimal

solution has value z = /: \342\200\224
2, so the ratio Lj/z ii = 1,2 or 3) can be arbitrarily

close to 0 for k sufficiently large.

5.3 GREEDY ALGORITHMS

In the present section we consider both the change-making problem E.1)-E.3) and

the generalization we obtain by associating an integer non-negative cost
qj

with

each item type j E N and changing the objective function to

minimize z = 2_]qjXj. E.13)

5.3 Greedy algorithms 141

We obtain an Unbounded Equality Constrained Min-Knapsack Problem(UEMK).
UEMK contains, as special cases:

(i) CMP,when qj
= 1 for all j eN;

(ii) the unbounded knapsack problem (Section 3.6) in minimization form, when an

extra item type n + 1 is added, with q^+i = 0 and w\342\200\236+i= -1.

For convenience of notation, we assume that the item types are sorted according

to decreasing values of the cost per unit weight, i.e.

^>^> ... >^, E.14)

and note that, for CMP, this implies

Wi < W2 < ... < W\342\200\236.

A greedy algorithm for UEMK can be derived immediately from procedure
GREEDYU of Section3.6.1as follows.

procedure GREEDYUM:

\\npu\\:n.c,{qj).{wjy,
output: z^.(xj).c;
begin

c :=c;
z^ :=0;

for; := n to 1 step -1 do
begin

Xj :=[c/wj\\;
c

\342\226\240=c-WjXj;

z^ := z*' +qjXj
end

end.

The time complexity of GREEDYUM is 0(n), plus 6>(nlogn) for the preliminary

sorting. By replacing the last statement with

z^ := z^ +Xj

we obtain a greedy algorithm for CMP.
On return from GREEDYUM, if c = 0 then z^ and (Xj) give a feasible (not

necessarily optimal) solution. If c > 0 then no feasible solution has been found by

the procedure.

Example 5.1 (continued)

Applying GREEDYUM we obtain ixj) = B. 0. 1.0. 2),z^ = 5 and c = 0, while

the optimal solution has value z = 4 (as will be seen in Section 5.5.2). Q

142 5 Change-making problem

The case in which at least one item type has weight of value 1, has interesting

properties. First, a feasible solution to the problem always exists. Furthermore,
GREEDYUM always returns a feasible solution, since the iteration in which

this item is considered producesc = 0. The worst-case behaviour of the greedy
algorithm, however, is arbitrarily bad, also with this restriction. Consider in fact
the series of instances (both of CMP and UEMK) with: n = 3.

qj
= \\ for

ally, vvi = 1. W2 = k. W2
= k + l and c = 2k > 2, for which z = 2 and z^ = k, so the

ratio z^/z goes to infinity with k. (The absolute error producedby GREEDYUM

for UEMK has been investigated by Magazine, Nemhauser and Trotter A975), the

relative error produced for CMP by Tien and Hu A977).)
Consider now a change-making problem for the US coins, i.e. with: n = 6.

vvi
= 1.W2 = 5. W3

= 10. W4 = 25. W5
= 50. W(,

= 100. It is not difficult to be

convinced that GREEDYUM gives the optimal solution for any possible value of
c (expressedin cents). Situations of this kind are analysed in the next section.

5.4 WHEN THE GREEDY ALGORITHM SOLVESCLASSESOF
KNAPSACK PROBLEMS

We consider instances of CMP and UEMK in which at least one item type has

weight of value 1.
For CMP, this implies that, after sorting,

1 =
wi < W2 < ... < w\342\200\236. E.15)

A weight vector (vvi,.. .,w\342\200\236)is called canonical if the greedy algorithm exactly

solves all instances of CMP defined by the vector and any positive integer c.

Chang and Gill have given the following necessary and sufficient condition for

testing whether a vector is canonical.

Theorem 5.2 (Chang and Gill, 1970a) A vector (vvi,... ,w\342\200\236)satisfying E.15) is

canonical if and only if for all integers c in the range

w\342\200\236(w\342\200\236w\342\200\236_ 1 + w\342\200\236
-

3w\342\200\236_ 1)
W3 < C <

Wn
-

W\342\200\236_ 1

the greedy solution is optimal.

The proof is quite involved and will not be reported here. Furthermore,
application of the theorem is very onerous, calling for optimality testing of a usually

high number of greedysolutions.

5.4 When the greedy algorithm solves classes of knapsack problems 143

Example 5.2

Considerthe instance of CMP defined by

n =7;

(wy) = (l, 2, 4, 8, 10,16).

This vector can be proved to be canonical.However, application of the Chang
and Gill A970a) test requires us to solve, both in an exact and greedy way, 386

instances. \342\226\241

We now turn to instances of UEMK. Let j* denote an item type such that

Wj*
= 1 and qj*

= min {qj :
Wj

= I] and note that all item types k for which

Qk/'^k > '?/*/^y* ^re \"dominated\" by j* so they can be eliminated from the

instance. Hence we assume, without loss of generality, that the item types, sorted
accordingto E.14), satisfy

\\ = w\\ <Wj for y
= 2, ... ,n, E.16)

For k = I, ... ,n and for any positive integer c, let/^(c) and gk(c) denote,

respectively, the optimal and greedy solution value to

k

mmimize
I]^y-^y
;=i

subject to 2, ^j^j - <^'

Xj > 0 and integer, j = 1,... ,k.

When/^(c)
= gk{c) for all c\342\200\224or,more concisely,/^t =

gk\342\200\224wesay that the pair of
vectors({q\\,...,qk), (wi,... ,Wk)) is canonical. The following theorem provides a

recursive sufficient condition for checking whether a pair of vectors is so.

Theorem 5.3 (Magazine, Nemhauser and Trotter, 1975) Assume that (qi,... ,qn)

and (vvi,... ,w\342\200\236)satisfy E.14) and E.16). If for fixed k (l < k < n). fk
= gk and

Wk+\\ > Wk, then, by defining m =
\\wk+\\/wk^ and 7 = mwk

\342\200\224
Wk+i, the following

are equivalent:

(i) fk+i
= gk+i,

(ii) fk+\\imwk)
= gk+\\imwk),

(Hi) qk+\\ +gkG) < mqk.

144 5 Change-making problem

Proof. It is obvious that (ii) follows from (i). Since gk+\\ijnwk)
= qk+\\ + gkil)

and fk+\\{mwk) < mqk, (iii) follows from (ii). To prove that (i) follows from

(iii), suppose, by absurdity, that (iii) holds but there exists a value c for which

fk+\\ic) < gk+\\ic). It must be c > Wk+\\, since for c < w^+i we have/;t+i(c) =

fkic) = gkic) =
gk+\\(c) while for c = Wk+i we have/^+i(W;t+i) = gk+ii^k+i) =

qk+\\-

Let p = [c/wk\\ and 6 = c \342\200\224
pwk, and note that p > m \342\200\224I.

If Xk+\\ > 0 in an optimal solution, then/^+i(c) -
gk+i(c) =fk+\\(c

-
Xk+\\Wk+i)

-

gk+i(c \342\200\224
Xk+iWk+i) (since the greedy solution includes at least Xk+\\ items of type

^ + 1),sowe can assume that c is such that Xk+\\ = 0 in any optimal solution. Hence

fk+i(c) =fk(c) = gk(c)=pqk+fk{^)
= mqk + (p -

m)qk +fk{S). E.17)

From the definition of 6, by algebraic manipulation we can write c = Wk+\\ + (p
\342\200\224

m)wk + 'J + 6. Hence:(a) if p > m then

fk+i{c) < qk+\\ +{p
- m)qk+gk{-f)+fki^y, E.18)

(b) ifp =m - 1then -f + 6-Wk =c -Wk+\\ > 0 and fkij + 6)=fk(j+ 6-Wk)+ qk,

so

fk+\\(c) < qk+\\ +fk{l + b -Wk) < qk+i -
qk + gkif)+fki^),

showing that E.18) holds for all p > m - 1. Combining E.17) and E.18) we obtain

tnqk < qk+i +gki'y), a contradiction. D (An alternative proof has been given by Hu

and Lenard A976).)

Theorem 5.3 is known as the \"one-point theorem\" since, given a canonical pair

{(qi,... ,qk), (vvi,... ,Wk)) and a further item, k + I, satisfying qk+\\/wk+\\ > qk/^k
and Wk+\\ > Wk, the canonicity of {(qi,... ,qk+\\), (wi,... ,Wk+\\)) is guaranteed by

optimality of the greedy solution for the single value c = mwk. Moreover, this

check does not require exact solution of the instance, since execution of the greedy

algorithm for the value c = 7 (requiring 0(k) time) is sufficient to test condition

(iii).
Given qj, Wj G

= 1, ... ,n) satisfying E.14) and E.15), the following procedure

checks condition (iii) for k = I, ... ,n \342\200\224I. Note that condition E.15), always

satisfied by CMP, is not necessarily satisfied by an instance of UEMK.

procedureMNT:

input: n.(^y).(wy);

output: opt,
begin

n := n;

n := 1;
optimal := \"yes\";
wliile n < n and optimal =

\"yes\" do

begin
m :=

[w\342\200\236+i/w\342\200\236];

5.5 Exact algorithms 145

c \342\226\240.=mw\342\200\236-w\342\200\236+i;

call GREEDYUM;
if q^+i + z^ < mqn then n := n + 1 else optimal := \"no\"

end;

opt := n;
n := n

end.

The time complexity of MNT is clearly 0{n^). On return, we know that the

pairs ((Gi,... ,G,t), (wi,... ,W;t)) are canonical for all k < opt. If opt < n, then the

pair with k = opt + 1 is not canonical, while, for the pairs with k > opt + 1 the

situation is undecided.

Example 5.2 (continued)

By setting qj
= I for 7 = 1, ... ,6,and applying MNT, we have

n = 1, 2, 3 :m =2, c =0, z\302\253=0;

n = 4 : m = 2, c = 6, z^ = 2, opt
= 4.

Hence the greedy algorithm exactly solves all the instances induced by items

A,...,/:) with k < 4, while it fails for at least one instance with k = 5 (see, e.g.,
the case with c = 16). The situation for (vvi,... ,W6) cannot be decided through

procedure MNT, although the vector is canonical,as can be proved using Theorem
5.2. D

Further characterizations of instances for which the greedy solution is optimal
have been given by Chang and Korsh A976) and Tien and Hu A977).

5.5 EXACT ALGORITHMS

Chang and Gill A970a) have presented a recursiveprocedure for the exact solution
of those instances of CMP in which one item type has weight of value 1. An Algol

implementation of this method has been given by Chang and Gill A970b) and

corrected by Johnson and Kemighan A972).The resulting code is, however, highly

inefficient, as shown in Martello and Toth A977c, 1980b) through computational
experiments, so no account of it will be taken in the following.

In the following sections we consider algorithms for the exact solution of CMP
with no special assumption.

5.5.1 Dynamic programming

Given a pair of integers m (l < m < n) and c @ < c < c), consider the

sub-instance of CMP consisting of item types 1,..., m and capacity c, and denote

146 5 Change-making problem

v/ithfm(c) the corresponding optimal solution value (fmic) = ex: if no solution of
value c exists).Then, clearly.

/i(c)=<^

'
ex: for all positive c < c such that c(mod vvi) 5<^0;

/ for c =
Iwi, with / = 0, ..

c

fm(c) can be computed, by considering increasing values of m from 2 to n and,
for each m, increasing values of c from 0 to c, as

frr,(c)
= min

<^ fm-\\{c
-

Iwm) + 1:1 integer. 0 < / <
w\342\200\236

The optimal solution value of CMPis then given by/\342\200\236(c).The time complexity
for this computation is 0(nc^), the space complexity 0(nc).

By adapting to CMP the improved recursionproposedby Gilmore and Gomory

A965) for the unbounded knapsack problem (Section 3.6.2), we obtain

(fm-\\ic) for c =0, ... ,w\342\200\236,
- 1;

fmic)=<
[mm {fm-\\(c),fm(c- w^)+ 1) for c = w^, ... ,c,

which reduces the time complexity to 0{nc). Wright A975) has further noted that,

if the items are sorted accordingto increasing weights, only values of c not greater

than Wm^Vrri+x need be considered at each stage m. In fact, w^ items of type m + 1

give the same weight as Wm+\\ items of type m and a better value for the objective

function. A specialized dynamic programming algorithm for CMP can be found in

Wright A975).

5.5.2 Branch-and-bound

In the present section we assume that the item types are sorted so that

wi > W2 > ... > w\342\200\236. E.19)

To our knowledge, the only branch-and-bound algorithms for CMP are those in

Martello and Toth A977c, 1980b).We give a description of the latter, which has a

structure similar to that of MTUl (Section 3.6.2), with one important difference.

As in MTUl, at a forward move associated with the yth item type, if a lower
bound on the best solution obtainable is less than the best solution so far, the

largest possible number of items of type j is selected. As usual, a backtracking
move consists in removing one item of the last inserted type. Before backtracking
on item type /, let x, G = 1, ... ,/) be the current solution, c = c \342\200\224

J2i=\\ ^j^i

and z = ^.'^j Xj the corresponding residual capacity and value, and z the best
solution value so far. The following is then true (Martello and Toth, 1980b):

5.5 Exact algorithms 147

if c < Wi, the value l^ = z \342\200\224z is a lower bound on fnic) (= number of items

needed to obtain a change c with item weights (vvi,... ,w\342\200\236),see Section 5.5.1). In

fact: (a) only item types / + 1,..., n can produce c(< w,), so (b) if the solution of

value z has been obtained at a decision node descending from the current one, then,

clearly, k-
= fnic)', otherwise, at each leaf A of the decision sub-tree descending

from the current node, the lower bound, say z + Lx, allowed the search to be

stopped, so a valid lower bound on/\342\200\236(c)is min;^{LA} > z \342\200\224z = Ic.
The consideration above leads to a dominance criterion which is particularly

strong, since it allows one to fathom nodes of the decision tree basing oneself
on a value depending only on the current residual capacity, independently of the

variables currently fixed. In the resulting algorithm, Ic- is defined at Step 5, and

tested at Steps 2a and 5.

Also, it is useful to initially define a vector (m^)such that m^- = min {j '\342\226\240Wj < c],
so that, for each residual capacity c produced by branch-and-bound, the next

feasible item type is immediately known. Vectors (Ic) and (mc) clearly require

pseudo-polynomial space, hence, in the following implementation, their size is
limited by a constant parameter 7. It is assumed that the item types are sorted
according to E.19), and that 7 < vvi. (Note that vector (mc) can be used only after

a forward move, i.e. when c < vvi, while after a backtracking, say on item type /,

the next feasible item type is / + 1.)

procedure MTC1:
input: n.c. {Wj).'y;

output: z, (Xj);

begin

1. [initialize]
z := c + 1;
w\342\200\236+i:= 1;

for ^ := 1 to n do Xk := 0;

compute the lower bound L = L2 (Section 5.2) on the optimal solution value;
j \342\226\240=n;

wliiley > 1 and Wj
< 7 do

begin
for h := Wj to minG,vv/_i

- 1)do m/, :=];

end;

for h := \\ \\o minG, w\342\200\236
- 1) do //, := ex:;

for h := Wn to 7 do 4 := 0;
xx := [c/wij;
z := X\\;

c := c \342\200\224
wiXi;

J :=2;
if c > 0 tlien go to 2a;
z := Xi;
for y := 1 to n do Xj

:= Xj;
return ;

2a. [dominance criterion]

148 5 Change-making problem

if c < 7 tlien
if /^ > z - z then go to 5 elsej :=m^

else

if c < w\342\200\236then go to 5 else find; =
min{^ >j : w^. < c};

2. [build a new current solution]

y \342\226\240=Lc/w;J;
c := c \342\200\224

ywj;
if z < z +y + Ic/wj+i]then go to 5;
if c = 0 then go to 4;
ify

= n then go to 5;
3. [save the current solution]

c := c;
z := z +y;

Xj
\342\226\240.=y;

J-=J + U

go to 2a;
4. [update the best solution so far]

z := z +y;
for ^ := 1toy - 1do Xk := x/,;

Xj -y;
for ^ :=y + 1to n do Xk := 0;

if z = L then return;
5. [backtrack]

find / = max{k < j : Xk > 0};
if no such / then return ;

if c < minG,w, - 1) then /^ := max(/f.z - z);
c :=c + Wi;

z :=z - 1;
Xi := Xi

\342\200\224
I;

if z < z + [c/w,+i] then (comment: remove all items of type /)

begin
c := c + WiXi;

z := z \342\200\224
Xi',

X, := 0;

j \342\226\240=i;

go to 5

end;
j :=/ + !;
if c < 7 and l^. > z - z then go to 5;
if c -

Wi > Wn then go to 2;
h := /;

6. [try to replace one item of type / with items of type h]

h \342\226\240.=h + l;
if z < z +

\\c/wh] or h > n then go to 5;
W c -Wh <w\342\200\236then go to 6;
j:=h-
goto 2

end.

5.6 An exact algorithm for large-sizeproblems

Example 5.1 (continued)

Recall the instance

149

n = 5,

iwj)
= A1, 8, 5,4, 1),

c =29.

Figure 5.1 gives the decision-tree produced by MTCl (with 7 = 10). \342\226\241

w=E.5.5.4.3.3.3.2.2.2) ^\"n L=4
I =@.0.0.0.0.0.0.0.0.0) (0] z=30

f=2 \302\251

z=5

x=B.0,l

f=2 /Z\\ /2=2

c^7 \\fy
z<z + 1+[3/h'5]

1,0.2)

z=3
c-2

b>Z-2 z=4=L

x=(l.1.2.0.0)

Figure 5.1 Decision-tree of procedure MTCl for Example 5.1

The Fortran implementation of procedure MTCl is included in that of procedure

MTC2, which is described in the next section.

5.6 AN EXACT ALGORITHM FOR LARGE-SIZE PROBLEMS

Computational experiments with algorithm MTCl (Martello and Toth, 1980b) show

that, similarly to what happens for other knapsack-type problems(seeSections 2.9,

3.6.3, 4.2.3), many instances of CMP can be solved efficiently even for high

values of n and, in such cases, the number of item types used for the solution

is considerably smaller than n.
For CMP,however, the core problem does not consist of the most \"favourable\"

item types (those with highest weight), since the equality constraint often forces
the optimal solution to include also some items with medium and small weight.

An experimental analysis of the structure of the solutions found by MTCl shows

two facts: (a) the optimal solution value is often equal to the value of bound L2
(Section 5.2); (b) many equivalent solutions usually exist. Hence we define the

core as

150 5 Change-making problem

C = {j\\, ... Jn],

with

ji^ J2,73 = the three item types of maximum weight,

J4,...,jn =
any 71\342\200\2243other item types,

and the core problem as

minimize

subject to V^ WjXj
= c,

Xj
> 0 and integer, j E C.

Noting that 71,72 and 73 are the only item types needed to compute L2, the

following procedure attempts to solve CMP by sorting only a subset of the item

types. In input, 71 < n \342\200\2243 is the expected size of the core, 7 the parameter needed

by MTCl.

procedure MTC2:

input: n.c. (wj).'y.n;
output: z.ixj);

begin
determine the three item types (jijij^) of maximum weight;

compute lower bound L2;

C :={1 n]U{ji.J2.J2];
sort the item types in C in order of decreasing weights;
solve the core problem exactly, using MTC1, and let z and (xj) define the

solution;

if z = L2 tlien for eacli7 e {1 n]\\CdoXj
:= 0

else

begin
sort item types 1 n in order of decreasing weights;

solve CMP exactly, using MTC1, and let z and (xj) define the
solution

end

end.

\"Good\"'values for 71 and 7 were experimentally determined as

71 = min (n.max E00. \342\200\224

V V L20

7=minA0000, wi - 1),

5.7 Computational experiments 151

The Fortran implementation of algorithm MTC2 is included in the present
volume.

5.7 COMPUTATIONAL EXPERIMENTS

In the present section we analyse the computational behaviour of the Fortran IV

implementations of algorithms for CMP on data sets having

Wj uniformly random in [1, M],

In Table 5.1 we compare the dynamic programming approach of Wright

(Section 5.5.1), algorithm MTCl (Section 5.5.2) and the approximate algorithm
GREED YUM (Section 5.3) on problems with M =

An, for two values of c.
The recursive approach of Chang and Gill (Section 5.5) is not considered since

computational experiments (Martello and Toth, 1980b) showed that it is very much
slower than the Wright algorithm. For each value of n and c, we generated 100
problems admitting of a feasible solution. Each algorithm had a time limit of 250
secondsto solve them. The entries give the average running times (including sorting

times) obtained by the three algorithms on a CDC Cyber 730, the percentages of

approximate solutions which are sub-optimal, infeasible and optimal, respectively,
and the average running time of MTCl when GREED YUM finds the optimum.
The table shows that MTCl clearly dominates the Wright algorithm. The greedy
algorithm is about twice as fast as MTCl, but the quality of its solutions is rather

poor. In addition, for the instances in which it gives the optimal solution, the running

Table 5.1

c

\\0n

T^U^j

Wj uniformly random in [1,

n

25

50

100
200
500

1000

25

50

100

200
500

1000

Wright

(time)

0.135

0.451
1.612
time

\342\200\224

\342\200\224

0.166

0.518

1.768
time

\342\200\224

\342\200\224

4a7].CDC -Cyber 730
100 feasible problems

MTCl

(time)

0.006
0.011
0.022
0.045
0.119
0.241

0.006

0.011
0.022

0.045
0.121
0.240

Greedy

(time)

0.002

0.006
0.013
0.029
0.078
0.155
0.002

0.006

0.013

0.030
0.078
0.154

in seconds . Average

Greedy solutions

Sub-
optimal

(%)

35

35
35
40
42
33

35

32
29
40
29
24

Not

feasible

(%)

43
38
47
42
35

40

43
45
44
37
43
41

Optimal

(%)

22

27
18
18
23
27

22

23

27

27
28
35

values over

MTCl
When

Greedy is
optimal

(time)

0.004

0.009
0.018
0.035
0.098
0.202

0.004

0.009

0.018

0.035
0.096
0.204

152 5 Change-making problem

time of MTCl is only slightly higher. The running times of all the algorithms are

practically independent of the value of c.

Table 5.2 gives the average times obtained, for larger problems, by MTCl

and MTC2 (Section 5.6) on an HP 9000/840 (with option \"-o\" for the Fortran

compiler). The problems,not necessarily feasible, were generated with M = 4n

and c = 0.5
Yl\"j=i ^j- The sorting times, included in the entries, are also separately

given. The table shows that, forn > 1000, i.e.when the core problem is introduced,
MTC2 is considerablyfaster than MTCl.

Table 5.3 analyses the behaviour of MTC2 when M varies,and shows that higher
values of M tend to produce harder problems. This can be explained by noting

that increasing the data scattering makes it more difficult to satisfy the equality
constraint. Hence, in order to evaluate MTCl and MTC2 on difficult problems, we
set M = 10^for all values of n. Table 5.4 confirms the superiority of MTC2 also

Table 5.2 Wj uniformly random in [1, 4n]; c = 0.5
Y.j=i^j-

HP 9000/840 in seconds.
Average times over 20 problems

Sorting MTCl MTC2

50
100
200
500

1000
2 000

5 000
10000
20000

0.003
0.006

0.013

0.036

0.079
0.165
0.468
0.963
2.073

0.007

0.010

0.021
0.054
0.114
0.237
0.595

1.198

12.860

0.003
0.008
0.019
0.051
0.064

0.087

0.121

0.179
0.370

Table 5.3 Algorithm MTC2. Wj uniformly random in [1,M]; c =0.5E\"=i^i-
HP 9000/840

in seconds. Average times over 20 problems

M = 4n M =^n M = \\ln

100

1000

10000

0.008
0.064
0.179

0.013
0.081
0.309

0.017

0.096

4.743

Table 5.4 w^ uniformly random in [1, lO^];c = 0.5
J2\"=i^j-

HP 9000/840 in seconds.
Average times over 20 problems

n Sorting MTCl MTC2

50
100
200
500

1000

2000

5 000
10000
20000

0.004
0.007

0.012

0.037

0.082
0.171
0.456
0.948
2.124

1.205
0.754

0.862

2.321

3.078
7.778

11.141
time

1.172

0.744

0.855
2.306
1.098
1.654
0.810
1.939

5.480

5.8 The bounded change-making problem 153

for this generation. Note that, for n > 1 000, the time difference is considerably
higher than the sorting time, indicating that MTC2 takes advantage of the lesser

number of item types also in the branch-and-bound phase. For n = 10000, MTCl

could not solve the generated problems within 250 seconds.

5.8 THE BOUNDED CHANGE-MAKING PROBLEM

The Bounded Change-Making Problem (BCMP) is the generalization of CMP we
obtain by introducing

bj
= upper bound on the availability of items of type j,

and formulating the problem as

minimize z =
1]^; E.20)
;=i

subjectto
Y^vvyX/=c, E.21)

0 <
Xj

< bj and integer, j = I, ... ,n. E.22)

We will maintain the assumptions made in Section 5.1. In addition we will

assume, without loss of generality, that values
bj (positive integer for ally) satisfy

n

^bjWj>c, E.23)

bj^Vj<c, j = l,...,n. E.24)

Violation of assumption E.23) produces an infeasible or trivial problem, while for

eachy not satisfying E.24), we can replacebj
with [c/wj\\.

By assuming that the item types are sorted so that

vvi > W2 > ... > w\342\200\236, E.25)

the continuous relaxation of BCMP can easily be solved, as for the bounded

knapsack problem, through a straightforward adaptation of Theorem 2.1. Define
the critical item type s as

s = min < j :
2_]biWi

> c >,

154

and
^-1

5 Change-making problem

E.26)

Then the optimal solution J of the continuous relaxation is

x'j =
bj for j = I, ... ,s \342\200\224I,

for j = s + I, ... ,n,
c

J, =0

X, =

and the corresponding value produces a lower bound for BCMP:

^-1

LB, = Y,bj +

A tighter bound, conceptually close to bound L2 of Section 5.2, can be obtained

by noting that, in the optimal solution, either Xs < [c/vv^J or x^ > [c/vv^J. By
defining

^-1

c' = c (mod Ws),

the respective lower bounds are

Ws+\\

LB' = z' -1 +

E.27)

E.28)

E.29)

E.30)

Hence,

Theorem 5.4 (Martello and Toth, 1977c) Thevalue

LB2 = mm (LB^, LB^),

where LB^and LB
*

are defined by E.26)-E.30), is a lowerbound for BCMP.

LB2 clearly dominates LBi, since LBi = z' + \\c'/wg] < LB^ and LB^ =
z' + \\{c' +Ws-1 \342\200\224

Ws)/ws'\\ > LBi. The time complexity for the computation of LBi

5.8 The bounded change-making problem 155

or LB2 is 0{n) if the item types are already sorted accordingto E.25). If this is
not the case, the computation can still be done \\r\\0{n) time, through an adaptation
of procedure CRITICAL, ITEMof Section 2.2.2.

A greedy algorithm for BCMP immediately derives from procedure
GREEDYUM of Section 5.3, by replacing the definition of Xj and z^ with

Xj := min ([c/vvyj, bj) and z^ := z^ +Xj, respectively. In this case too, the worst-
case behaviour is arbitrarily bad, as shown by the counterexample of Section 5.3
with bi = k, b2 = 2, b^

= 1. To our knowledge, no further theoretical result on the
behaviour of greedyalgorithms for BCMP is known.

Exact algorithms for BCMP can also be obtainedeasily from those for CMP.
In particular, a branch-and-bound algorithm MTCB derives from procedure MTC1

of Section 5.5.2 as follows. Apart from straightforward modifications at Step 1

(bn+i := +cx:; L = LB2\\ x\\ := min([c/wij, ^1); if c > 0 then go to 2), the
main modification concernsSteps2 and 4. For BCMP it is worth building a new
current solution by inserting as many items of types jj + 1,... as allowed by their

bounds, until the first is found whose bound cannot be reached. In order to avoid
uselessbacktrackings, this solution is saved only if its value does not represent the

minimum which can be obtained with item type j. The alteredstepsare then as

follows.

2. [build a new current solution]
y' :=0;
c :=c;
i:=J-U
repeat

/ :=/ + !;

y :=min([c/w,J.^,);

y' \342\200\242\342\226\240=y'+y;

c := c \342\200\224
ywi;

if y = bi then W := w,+i else W := w,;
if z < z +y' + [c/vv] then go to 5;
if c = 0 then go to 4;
if / = n then go to 5

until y < bi;
z := z +(y' -y);
for k :=] to / - 1 do Xk := bk]

j \342\226\240=i;

4. [update the best solution so far]
z := z +y';
for /: := 1 to y

- 1 do Xk := Xk',

for k :=j to / - 1do Xk := bj;

Xi :=y;
for k := i + I Xo n do Xk := 0;

if z = L then return;

The Fortran code of algorithm MTCB is included in the present volume.

156 5 Change-making problem

Table 5.5 Algorithm MTCB. c =
0.5^\"^jW,.

HP 9000/840 in seconds. Average times over

20 problems

n

50

100

200

500
1000
2000
5 000

10000

Wj uniformly

hj in [1,5]

0.009
0.016
0.038
0.100
0.213
0.453

1.207

2.429

randorr

bj

I in [1,

in [1,

0.010
0.019
0.036

0.099

0.210

0.449
1.201
2.377

4n]

10]

Wj uniformly random

hj in [1, 5]

1.646
1.230
1.073
1.233
9.894

6.145

18.622
\342\200\224

bj

in [1, 105]

in [1, 10]

1.442

1.033
0.934
2.051

11.377
20.145

35.799

\342\200\224

Table 5.5 gives the results of computational experiments performed on the data

generation of Tables5.2and 5.4, with values bj uniformly random in ranges [1.5]

and [1. 10]. The solution of BCMP appears harder than that of CMP. The times in

the first two columns are approximately twice as high as those obtained by MTCl

in Table 5.2. Increasing the range of values bj did not alter the difficulty. The times
in the third column are higher than those of MTCl in Table 5.4. Larger values of

bj considerably increased in this case the difficulty, especially for large values
of n.

0-1 Multiple knapsack

problem

6.1 INTRODUCTION

The 0-1 Multiple Knapsack Problem(MKP) is: given a set of n items and a set of
m knapsacks (m < n), with

Pj =
profit of item j,

Wj
= weight of item j,

Ci = capacity of knapsack /,

select m disjoint subsets of items so that the total profit of the selected items is a

maximum, and each subset can be assigned to a different knapsack whose capacity
is no less than the total weight of items in the subset. Formally,

m n

maximize ^ =/_]/_] Pj^ij F1)
/=i ;=i

subject to y^^y-^y < c,, / G M = {1, ... ,m}. F.2)
;=i

where

J2^
< 1' j eN = {h... ,n}, F.3)

/=i

jcy=0orl, ieMJeN, F.4)

1 if item) is assigned to knapsack /;

0 otherwise.

When m = 1, MKP reducesto the 0-1 (single) knapsack problem consideredin

Chapter 2.

We will suppose, as is usual, that the weights wj are positive integers.Hence,
without loss of generality, we will also assume that

157

158 6 0-1Multiple knapsack problem

Pj and Ci are positive integers, F.5)

Wj
< max;gM{c/} for j EN, F.6)

Ci > minyg/v{vvy} for i EM, F.7)

n

y^vvy > c; for / G M. F.8)

If assumption F.5) is violated, fractions can be handled by multiplying through

by a proper factor, while nonpositive values can easily be handled by eliminating all

items with pj < 0 and all knapsacks with c; < 0. (There is no easy way, instead, of

transforming an instance so as to handle negative weights, since the Glover A965)

technique given in Section 2.1 does not extend to MKP. All the considerations in

this Chapter, however, easily extend to the case of nonpositive values.) Items j
violating assumption F.6), as well as knapsacks/ violating assumption F.7), can
be eliminated. If a knapsack, say /*, violates assumption F.8), then the problem
has the trivial solution x,-.; = 1 for 7 EN. Xy

= 0 for / \302\243M\\{i*] and 7 G A^.

Finally, observe that if m > n then the (m
\342\200\224

n) knapsacks of smallest capacity can
be eliminated.

We will further assume that the items are sorted so that

^>^>...>^. F.9)

In Section 6.2 we examine the relaxation techniques used for determining upper

bounds. Approximate algorithms are consideredin Sections 6.3 and 6.6 . In Section

6.4 we describe branch-and-bound algorithms, in Section 6.5 reduction techniques.
The results of computational experiments are presented in Section 6.7.

6.2 RELAXATIONSAND UPPER BOUNDS

Two techniques are generally employed to obtain upper bounds for MKP: the

surrogate relaxation and the Lagrangian relaxation. As we show in the next section,
the continuous relaxation of the former also gives the value of the continuous
relaxation of MKP.

6.2.1 Surrogaterelaxation

Given a positive vector (tti, ... , tt^^) of multipliers, the standard surrogate
relaxation,S{MKP .it), of MKP is

6.2 Relaxations and upper bounds 159

maximize EE^i-^'^ F.10)
/=i y=i

subject to E^'E^^'^y - E^'*^' F11)

m

J2^,j<l, jeN, F.12)

Xij =0or 1, / eMJ eN. F.13)

Note that we do not allow any multiplier, say ttj, to take the value zero, since this
would immediately produce a useless solution

(Xy
= \\forjeN) of value Yll=iPj-

The optimal vector of multipliers, i.e. the one producing the minimum value of
z{S{MKP,tt)) and hence the tightest upper bound for MKP, is then defined by the

following

Theorem 6.1 (Martello and Toth, 1981a) For any instance of MKP, the optimal

vector of multipliers for S(MKP.tt) is tt, = k (k any positive constant) for all i E M.

Proof Let 1 = arg minJTr, : i e M], and suppose that (x*-) defines an optimal
solution to S(MKP, it). A feasible solution of the same value can be obtained by

setting x*j
= 0 and x-* = 1 for each j \302\243N such that

x*j
= 1 and / ^ 1 (since the only

effect is to decrease the left-hand side of F.11)). Hence S(MKP,it) is equivalent

to the 0-1 single knapsack problem

n

maximize
Z_\\Pj^ij

subject to
2_\\\"^j^ij

<

;=i L/=i
^TT/Q/tTj

JCy =0 or 1, j e N.

Since
[Y17=\\ ^'^'/^~\\ - Yl7=i^'^ the choice tt,- = k (k any positive constant)

for all / G M produces the minimum capacity and hence the minimum value of
z(S(MKP.Tr)).n

By setting tt, = A: > 0 for all i eM, and yj
=

J27=\\ ^u for aWj eN, S (MKP, tt)

becomes

160 6 0-1 Multiple knapsack problem

maximize
Y.pjyj
i=i

subject to z^i^J^J \342\200\2247^*^'^

M '=1

j^ =0 or 1, j eN,

which we denote simply with S(MKP) in the following. Loosely speaking, this

relaxation consists in using only one knapsack, of capacity

c = J]q. F.14)
/=i

The computation of upper bound z (S iMKP)) for MKP has a non-polynomial time

complexity, although many instances of the 0-1 knapsack problem can be solved
very quickly, as we have seen in Chapter 2. Weaker upper bounds, requiring 0{n)

time, can however be computed by determining any upper bound on ziSiMKP))
through the techniques of Sections 2.2 and 2.3.

A different upper bound for MKP could be computed through its continuous

relaxation, CiMKP), given by F.1), F.2), F.3) and

0<JCy < 1, / eM, j eN. F.15)

This relaxation, however, is dominated by any of the previous ones, since it can be

proved that its value is equal to that of the continuous relaxation of the surrogate

relaxation of the problem, i.e.

Theorem 6.2 z(C(MKP)) = ziCiS(MKP))).

Proof. It is clear that, by setting tt,-
= /: > 0 for all /, C(S(MKP)),which is obtained

from F.10)-F.13) by relaxing F.13) to F.15), coincides with S{C{MKP)), which

is obtained from F.1), F.2), F.3) and F.15) by relaxing F.2) to F.11). Hence
we have z(C{SiMKP))) > z{CiMKP)). We now prove that z{C{MKP)) >
z ids (MKP)))alsoholds.

The exact solution (Jj) of the continuous relaxation of S(MKP) can easilybe
determined as follows. If Ylj=i ^j ^ <^' where c is given by F.14), then Jj

= 1 for

7 = 1, ... ,n and z{C{S{MKP))) =
T.\"j=\\Pj- Otherwise, from Theorem 2.1,

6.2 Relaxations and upper bounds 161

jy
= 1 for y = 1, ... ,5 - 1,

y^
= 0 for j = s + I, ... ,n,

ys=
{^-J2^j]

/^^'

where

F,16)

and

,5-1 / ,5-1
z(C(S(MKP)))=Y,Pj+ c -

J]wJ ps/ws. F,17)

It is now easy to show that there exists a feasible solution (Jy) to CiMKP) for

which Yl^r^x ^'j
~

^j f\302\260^^11 J ^ ^ \342\226\240Such a solution, in fact, can be determined by

consecutively inserting items j = 1,2,... into knapsack 1 (and setting Ji y
= 1,

Jij = 0 for / ^ 1), until the first item, say j*, is found which does not fit

since the residual capacity ci is less than Wj*. We then insert the maximum

possible fraction of Wj* into knapsack 1 (by setting Ji j. =
ci/vvy.)

and continue

with the residual weight vv).
= wy.

- ci and knapsack 2, and so on. Hence
z (C (MKP))>z(C (S {MKP))). n

Example 6.1

Considerthe instance of MKP defined by

n = 6;

m = 2;

{Pj) = A10,150,70,80,30,5);

(Wj)
= (40, 60, 30, 40, 20, 5);

(Ci)
= F5, 85).

The surrogate relaxation is the 0-1 single knapsack problem defined by (Pj). (wj)
and c = 150. Its optimal solution can be computed through any of the exact

algorithms of Chapter 2:

162 6 0-1Multiple knapsack problem

(Xj)
= A, 1, 1,0, 1,0),z{S{MKP))

= 360.

Less tight values can be computed, in 0(n) time, through any of the upper
bounds of Sections2.2,2.3.Using the Dantzig A957) bound (Theorem 2.1), we

get

s = 4, (xj) =
A, 1, 1, i, 0, 0), Ui = 370 (= z(C(MKP))).

This is also the value produced by the continuous relaxation of the given problem
since, following the proof of Theorem 6.2, we can obtain, from (J/),

(r,,,) = (l, -^,0,0,0,0),

(^2,,)= @, ^, 1, ^,0,0).

Using the Martello and Toth A977a) bound (Theorem 2.2), we get U2 = 363. D

6.2.2 Lagrangian relaxation

Given a vector (Ai,..., A\342\200\236)of nonnegative multipliers, the Lagrangian relaxation
L{MKP.A) of MKP is

m n n / m \\

maximize ^ J^Py-^y
\" I] ^n Jl^'-J\" ^ ^^l^)

n

subject to y^^/-^y < <^M ' ^ ^' F.19)

jCy=Oorl, ieMJeN. F.20)

Since F.18) can be written as

m n n

maximize
T^ y^^j-^iy + T^''^i' F21)

where

Pj=Pj-\\^ yeM F.22)

the relaxed problem can be decomposed into a series of m independent 0-1 single
knapsack problems{KPi.i = 1,... ,m), of the form

6.2 Relaxations and upper bounds 163

maximize z, = Y1pj'''j
y=l

subject to z_]^j^ij ^ Q'

Xy
= 0 or 1, j E N.

Note that all these problems have the same vectors of profits and weights, so the

only difference between them is given by the capacity. Solving them, we obtain

the solution of L{MKP.A), of value

m n

z{L{MKP. A)) = ^ z, + ^ A,. F.23)

For the Lagrangian relaxation there is no counterpart of Theorem 6.1, i.e. it is not

known how to determine analytically the vector (A^) producing the lowest possible
value of z(L(MKP. X)). An approximation of the optimum (Xj) can be obtained

through subgradient optimization techniques which are, however, generally time

consuming. Hung and Fisk A978) were the first to use this relaxation to determine
upper bounds for MKP, although Ross and Soland A975) had used a similar

approach for the generalized assignment problem (see Section7.2.1),of which

MKP is a particular case. They chose for (Xj) the optimal dual variables associated
with constraints F.3) in C(MKP). Using the complementary slackness conditions,
it is not difficult to check that such values are

F.24)
if; > s,

where s is the critical item of S(MKP),defined by F.14) and F.16). (For S(MKP),
Hung and Fisk A978) used the same idea, previously suggested by Balas A967)

and Geoffrion A969), choosingfor (tt,) the optimal dual variables associatedwith

constraints F.2) in C(MKP), i.e. \302\245,=Ps/^s for all /. Note that, on the basis of
Theorem 6.1, this is an optimal choice.)

With choice F.24), in each KPj (i = l,...,m) we have Pj/wj
= Ps/^s for

/ < s and pj/wj < Ps/w,, for ; > s. It follows that z(C(L(MKP , X))) =

iPs/'^s)Z^,=i Ci + Z^/li Ay, SO from F.17) and Theorem 6.2,

z(C(L(MKP , A)))= z(C(S(MKP)))= z(C(MKP)),

i.e.both the Lagrangian relaxation with multipliers Xj and the surrogate relaxation

164 6 0-1Multiple knapsack problem

with multipliers tt,
= /: > 0 for all /, dominate the continuous relaxation. No

dominance exists, instead, between them.

Computing z(L(MKP. A)) requires a non-polynomial time, but upper bounds on
this value, still dominating z(C(MKP)), can be determined in polynomial time,

by using any upper bound of Sections 2.2 and 2.3 for the m 0-1 single knapsack
problemsgenerated.

Example 6.1 (continued)

From F.24), we get

(\\j) = C0, 30, 10,0,0, 0), (pj)
= (80, 120, 60, 80, 30, 5).

By exactly solving KPi and KP2, we have

(jci,y)
= @, 1,0,0,0, 1), zi = 125,

{X2,j)
= A,0,0, 1,0, 1), Z2= 165.

Hencez(L(MKP,A))
= 360, i.e. the Lagrangian and surrogate relaxation produce

the same value in this case.
By using Ui or U2 (see Sections2.2.1and 2.3.1) instead of the optimal solution

values, the upper bound would result in 370 (= 130-1-170-1- 70). \342\226\241

It is worth noting that feasibility of the solution of L(MKP.A) for MKP can

easily be verified, in 0(nm) time, by checking conditions F.3) (for the example

above, xi (, + X2,(, < 1 is not satisfied). This is not the case for S{MKP), for
which testing feasibility is an NP-complete problem. In fact, determining whether

a subset of items can be inserted into knapsacks of given capacities generalizes the

bin-packing problem (see Chapter 8) to the case in which containers of different

capacity are allowed.

We finally note that a second Lagrangian relaxation is possible. For a given
vector {fjt\\,...,fim)of positive multipliers, L{MKP,fi) is

maximize

subjectto
y^Xij

< I, j \302\243N,

i=\\

Xij =0 or 1, i eM,j eN.

Note that, as in the case of S(MKP , tt), we do not allow any multiplier to take

6.2 Relaxations and upper bounds 165

the value zero, which again would produce a useless solution value. By writing

F.25) as
m n m

maximize ^ Yl^PJ
~

A''^/)-^y
+

Yl ^'^\"

it is clear that the optimal solution can be obtained by determining /* = arg min{/i, :
/ \302\243M], and setting, for each j \302\243N : xi*j

= 1 if pj \342\200\224
^i*Wj > 0, Xi\302\273j

= 0

otherwise, and Xy
= 0 for all / G M\\{i*]. Since this is also the optimal solution of

C{L{MKP ,yt)), we have z{L{MKP,^i))> z(C{MKP)),i.e.this relaxation cannot

produce, for MKP, a bound tighter than the continuous one. (Using /J-
=

p^/vv^

for all / G M, we have z(L(MKP ,JI)) =
Yl'j=\\(Pj

-
iPsl^s)^]) + cp^M =

z{C{MKP)),with c and s given by F.14) and F.16), respectively.)

6.2.3 Worst-caseperformance of the upper bounds

We have seen that the most natural polynomially-computable upper bound for MKP

is

(/, =
\\z{C{MKP))\\

=
[z{C{S(MKP)))\\

= [z(C(L(MKP.m\\.

Theorem 6.3 p{U\\)
= m + I.

Proof. We first prove that p(Ui) < m + 1, by showing that

z (C (S (MKP))) < (m + 1)z (MKP).

Consider the solution of C{S{MKP)) and let us assume, by the moment, that

Yl\"j=\\ ^j > Y^=\\ ^'- ^^^ ^' denote the critical item relative to knapsack i (i EM)

defined as

s; = min < k : Y^ w, > Y^ ci >. F.26)

Note that, from Theorem 6.2, the only fractional variable in the solution is _y^, with

s = Sm. Hence the solution value can be written as

^1 \342\200\2241 ^2\342\200\2241 Sm\342\200\224l

z{CiSiMKP))) =
J2Pj+Ps.+ Y. PJ^P^^^---^ Jl Pj

F.27)

166 6 0-1 Multiple knapsack problem

from which we have the thesis, since

(a) Selecting items {si^i + l,...,^, \342\200\224
1} (where ^o = 0) for insertion into

knapsack / (/ = l,...,m), we obtain a feasible solution for MKP, so

(b) From assumption F.6), z(MKP) > p^_ for all i e M, hence also z(MKP) >

(c-t:m^j)ps/^s-

If
Yll=\\ ^j \342\200\224Yl?=\\ ^i ^^^ result holds a fortiori, since some terms of F.27) are

null.

To see that m + 1 is tight, consider the series of instances with: n > 2m; ci =
2k (k > 2),C2 = ... = Cm = k; pi = ... =

p^+i =k,wi = ... =
w\342\200\236,+i=k + l; pm+2 =

... =
p\342\200\236

= l,Wm+2 = ... =
w\342\200\236

= k. We have s < m + \\,z{C{S{MKP))) =

(m + l)k{k/{k + \\)),z{MKP)
= k + (m - I), so the ratio Ui/z{MKP) can be

arbitrarily close to (m + 1), for k sufficiently large. \342\226\241

Any upper bound U, computable in polynomial time by applying the bounds

of Sections 2.2 and 2.3 to S{MKP) or to L(MKP , X), dominates Uu hence

piU) < m + I. Indeed, this value is also tight, as can be verified through

counterexamples obtained from that of Theorem 6.3 by adding a sufficiently large number
of items with pj

= k and Wj
= k + I.

Finally note that, obviously, p(U) < m + I also holds for those upper bounds
U which can be obtained, in non-polynomial time, by exactly solving S{MKP) or

L{MKP,J).

6.3 GREEDY ALGORITHMS

As in the case of the 0-1 single knapsack problem (Section 2.4),also for MKP the

continuous solution produces an immediate feasible solution, consisting (see F.26),
F.27))of the assignment of items 5,_ i -i-1,..., 5, - 1 to knapsack i {i = \\, ... ,m)
and having value

m Si \342\200\224\\

z' =
J2 Y. Pj- F.28)

Sincez' < z < Ui < z' +
Yl?=\\Ps,'>

where z = z{MKP), the absolute error of

z' is less than Y^=\\Psr The worst-case relative error, instead, is arbitrarily bad,

as shown by the series of instances with n = 2m ,Ci = k > m for / = 1, ... , m,

Pj
=

Wj
= I and pj+i =

Wj+\\
= k for j = 1,3,...,n \342\200\224

1, for which z' = m and

z = mk, so the ratio z'/z is arbitrarily close to 0 for k sufficiently large.
In this case too we can improve on the heuristic by also considering the solution

consisting of the best critical item alone, i.e.

6.4 Exact algorithms 167

z^ =max(z'.max,gM{Pi,}).

The worst-caseperformance ratio of z^ is l/(w + 1).Since,in fact, z'^ > z' and

^^ > Ps, for / = 1, ... ,m, we have, from z < ^' + X^^iP^,, that z <{m + l)z^. The
series of instances with n =2m +2,c\\ = 2k(k > m),Ci

= k for i = 2, ... ,m,pj =

Wj
= 1 and

pj+\\
=

Wj+\\
= k for j = 1, 3, ... ,n - 1proves the tightness, since

z^ = k + m + 1 and z =
(m + l)k, so the ratio z'^/z is arbitrarily close to

l/(m + 1) for k sufficiently large. Notice that the \"improved\" heuristic solution
z^ =

max(z',maxyg/v{py}) has the same worst-case performance.
For the heuristic solutions considered so far, value z' can be obtained, without

solving C(MKP), by an 0(n) greedy algorithm which starts by determining the

critical item s =
Sm through the procedure of Section 2.2.2, and re-indexing the

items so that) < s (resp.j > s) if pj/wj > Ps/wg (resp. Pj/wj < Ps/ws).Indices

/ and j are then initialized to 1 and the following steps are iteratively executed:

A) if
wy

< c, (c, the residual capacity of knapsack /), then assign) to / and set

j =7 + 1; B) otherwise, (a) reject the current item (by setting) =) + 1),(b) decide

that the current knapsack is full (by setting i = i + 1), and (c) waste (!) part of the

capacity of the next knapsack (by setting c, = c, \342\200\224
(wy_ i

\342\200\224
c,_ i)). Clearly, this is a

\"stupid\" algorithm, whose average performance can be immediately improved by

eliminating step (c). The worst-case performance ratio, however, is not improved,

since for the tightness counter-example above we still have z^ = k + m + 1.

Trying to further improve the algorithm, we could observe that, in case B), it

rejects an item which could fit into some other knapsack and \"closes\" a knapsack
which could contain some more items. However, if we restrict our attention to 0(n)

algorithms which only go forward, i.e. never decreasethe value of) or /, then by

performing, in case B), only step (a) or only step (b), the worst-case performance is

not improved. If just) is increased, then for the same tightness counter-example we

continue to have z^ = k+m+ l. If just / is increased, then for the series of instances
with n = m + 3,c\\

= 2k (k > I),Ci = k for i =2, ... ,m, p\\ =w\\ = p2=W2= k + l
and Pj

=
Wj

= k for j =3, ... ,n, -we have z = (m + l)k and z^ = k + \\.

Other heuristic algorithms which, for example, for each item) perform a search

among the knapsacks, are considered in Section 6.6.

6.4 EXACT ALGORITHMS

The optimal solution of MKP is usually obtained through branch-and-bound.

Dynamic programming is in fact impractical for problems of this kind, both as

regards computing times and storage requirements. (Note in addition that this

approach would, for a strongly NP-hard problem, produce a strictly exponential

time complexity.)
Algorithms for MKP are generally oriented either to the case of low values of the

ratio n/m or to the case of high values of this ratio. Algorithms for the first class

(which has applications, for example, when m liquids, which cannot be mixed.

168 6 0-1 Multiple knapsack problem

have to be loaded into n tanks) have been presented by Neebe and Dannenbring

A977) and by Christofides, Mingozzi and Toth A979). In the following we will

review algorithms for the second class, which has been more extensively studied.

6.4.1 Branch-and-boundalgorithms

Hung and Fisk A978) proposed a depth-first branch-and-bound algorithm in which
successive levels of the branch-decision tree are constructed by selecting an item

and assigning it to each knapsack in turn. When all the knapsacks have been

considered, the item is assigned to a dummy knapsack, m + l, implying its exclusion

from the current solution. Two implementations have been obtained by computing

the upper bound associated with each node as the solution of the Lagrangian

relaxation, or the surrogate relaxation of the current problem. The corresponding

multipliers, A and \302\245,have been determined as the optimal dual variables associated
with constraints F.3) and F.2), respectively, in the continuous relaxation of the

current problem (see Section 6.2.2). The choiceof the item to be selected at each

level of the decision-tree dependson the relaxation employed: in the Lagrangian

case, the algorithm selects the item which, in the solution of the relaxed problem,
has been inserted in the highest number of knapsacks; in the surrogate case, the
item of lowest index is selected from among those which are still unassigned (i.e.,
at each level j, item j is selected).The items are sorted according to F.9), the

knapsacks so that

Ci >C2> ...>Crr,.

Oncethe branching item has been selected, it is assigned to knapsacks according to
the increasing order of their indices. Figure 6.1 shows the decision nodes generated,
when m = 4, for branching item j.

Xs,j=l{X\\,j=X2.j=X3,j=X4.j=0)

Figure 6.1 Branching strategy for the algorithms of Hung and Fisk A978)

Martello and Toth A980a) proposed a depth-first branch-and-bound algorithm

using a different branching strategy based on the solution, at each decision node,
of the current problem with constraints F.3) droppedout. From F.18)-F.20) it is
clear that the resulting relaxed problem coincides with a Lagrangian relaxation with

6.4 Exact algorithms 169

Xj
= 0 fory = 1,... ,n.In the following, this is denoted by L(MKP.O). For the

instance of Example 6.1, we obtain: (xi j) = @, 1, 0, 0, 0, 1), zi
= 155, fey) = A,

0, 0, 1,0, 1),Z2 = 195, so_z(L(MKP,0))
= 350. In this case L(MKP,0) gives a

better result than L(MKP, A). It is not difficult, however, to construct examples
for which z(L(MKP,X)) < z(L(MKP.,0)), i.e. neither of the two choices for A

dominates the other. In general, one can expect that the choice A = A produces

tighter bounds. However, use of A = @,..., 0) in a branch-and-bound algorithm

gives two important advantages:

(a) if no item is assigned to more than one knapsack in the solution of L(MKP , 0),
a feasible and optimal solution of the current problem has been found,

and a backtracking can be immediately performed. If the same happens for
L{MKP,A), with A ^ @,..., 0), the solution is just feasible (it is also optimal

only when the corresponding value of the original objective function F.1)
equals z(L(M/i:F,A)));

(b) since {pj) does not change from one level to another, the computation of the

upper bounds associated with the decision nodes involves the solution of a

lesser number of different 0-1 single knapsack problems.

The strategy adopted in Martello and Toth A980a) is to select an item for

branching which, in solution (iy) to the current L(MKP,0), is inserted into
m > 1 knapsacks(namely, that having the maximum value of (Pj/wj)Yli^M^U

is selected), m nodes are then generated, by assigning the item in turn to m \342\200\2241

of such knapsacks and by excluding it from these. Suppose that, in the case of

Figure 6.1, we have, for the selected item j, xi j =
X2.j

=
X2j

= 1 and X4 j
= 0.

Figure 6.2 shows the decision nodes generated.

Xl,j=X2,j=0

Figure 6.2 Branching strategy for the Martello and Toth A980a) algorithm

In order to compute the upper bound associated with node ki it is sufficient

to solve two single knapsack problems: the former for knapsack 2 with condition

X2,j
= 0, the latter for knapsack 3 with condition X2.j

= 0 (the solutions for

knapsacks 1 and 4 are unchanged with respect to those corresponding to the father

node k). The upper bound associated with node k2 can now be computed by solving
only the single knapsack problem for knapsack 1 with condition xi j = 0, the

170 6 0-1 Multiple knapsack problem

solution of knapsack 3 with condition xj, j
= 0 having already been computed.

Obviously, no single knapsack need now be solved to compute the upper bound

associated with node k^. In general, it is clear that m \342\200\224l single knapsacks have to be
solvedfor the first node considered, then one for the second node and none for the

remaining m \342\200\2242 nodes. Hence, in the worst case (m = m), only m single knapsack

problems have to be solved in order to compute the upper bounds associated with

the nodes which each node generates.
In addition we can compute, without solving any further single knapsack

problem, the upper bound corresponding to the exclusion of the branching item

j from all the m knapsacks considered: if this bound is not greater than the best

solution so far, it is possible to associate a stronger condition with the branch

leading to the mth node by assigning the object to the mth knapsack without

changing the corresponding upper bound. In the example of Figure 6.2, condition

x\\.j
=

X2,j
= 0 would be replaced by X2,j = 1.

A further advantage of this strategy is that, since all the upper bounds associated
with the m generated nodes are easily computed, the nodes can be explored in

decreasing order of their upper bound values.

6.4.2 The \"bound-and-bound\" method

In Martello and Toth A981a), MKP has been solved by introducing a modification

of the branch-and-bound technique, based on the computation at each decision node
not only of an upper bound, but also of a lower bound for the current problem. The
method, which has been called bound-and-bound, canbe used, in principle, to solve

any integer linear program. In the next section we describe the resulting algorithm

for MKP. Here we introduce the method for the general 0-1 Linear Programming

Problem (ZOLP)

maximize YIpj^'j
J\302\243N

subject to 2_]^ij^j < bi, i eM,

Xj =0 or 1, j eN.

Let us suppose,for the sake of simplicity, that all coefficients are non-negative.
We define a partial solution 5 as a set, represented as a stack,containing the indices

of those variables whose value is fixed: an index in S is labelled if the value of
the corresponding variable is fixed to 0, unlabelledif it is fixed to 1. The current

problem induced by S, ZOLP(S), is ZOLP with the additional constraints Xj
= 0

(j e S,j labelled),Xj
= I (j e S,j unlabelled).

Let U(S) be any upper bound on z(ZOLP(S)). Let H be a heuristic procedure

which, when applied to ZOLP(S), has the following properties:

6.4 Exact algorithms 171

(i) a feasible solution (xj) is always found, if one exists;

(ii) this solution is maximal, in the sense that no Xj having value 0 can be set to

1 without violating the constraints.

The value of the solution produced by H, L(S) =
J2j^nPj^J' ^^ obviously a

lower bound on z(ZOLP(S)).
A bound-and-bound algorithm for the optimal solution of ZOLP works as

follows.

procedure BOUND. AND. BOUND:

inpux: N.M.(pj).{aij).(b,y,
output: z .(xj);
begin
1. [initialize]

S :=0;
z := \342\200\224oc;

2. [heuristic]

apply heuristic procedure H to ZOLP(Sy,
if ZOLP(S) has no feasible solution tlien go to 4;
if LE) > z then

begin
z :=LE);
for eacli j eN do Xj := Xj]
if z = GE) then go to 4

end;
3. [define a new current solution]

let) be the first index in A^\\5' such that xj
= I;

if no such j then go to 4 ;
push j (unlabelled) on S;
if UiS) > z then goto 3;

4. [backtrack]

while 5 5\302\253^0do

begin
let j be the index on top of S;
if j is labelled then pop j from S;

else

begin
label y;
\\i U(S) > z then go to 2 else goto 4

end

end

end.

The main conceptual differencebetween this approach and a standard depth-first

branch-and-bound one is that the branching phase is here performed by updating

the partial solution through the heuristic solution determining the current lower

bound. This gives two advantages:

172 6 0-1 Multiple knapsack problem

(a) For all S for which L(S) = U(S), (Xj) is obviously an optimal solution to

ZOLP(S), so it is possible to avoid exploration of the decision nodes descending
from the current one;

(b) For all S for which L{S) < U(S), S is updated through the heuristic

solution previously found by procedure H, so the resulting partial solution

can generally be expectedto be better than that which would be obtained by a

series of forward steps, each fixing a variable independently of the following
ones.

On the other hand, in case (b) it is possible that the computational effort spent

to obtain L(S) through H may be partially useless: this happens when, after few

iterations of Step 3, condition U(S) < z holds.

In general, the bound and bound approach is suitable for problems having the

following properties:

(i) a \"fast\" heuristic procedure producing \"good\" lower bounds can be found;

(ii) the relaxation technique utilized to obtain the upper bounds leads to solutions
whose feasibility for the current problem is difficult to check or is seldom
verified.

6.4.3 A bound-and-bound algorithm

Martello and Toth A981a) have derived from the previous framework an algorithm
for MKP which consists of an enumerative scheme where eachnode of the decision-

tree generates two branches either by assigning an item j to a knapsack / or by

excluding j from /. For the sake of clarity, we give a descriptioncloseto that of

the general algorithm of the previous section, although this is not the most suitable
for effectiveimplementation. Stack Sk (k = I, ... ,m) contains those items that are

currently assigned to knapsack k or excludedfrom it.

Let S = {Si,... ,Sm]. At each iteration, / denotes the current knapsack and

the algorithm inserts in / the next item j selected, for knapsack /, by the current

heuristic solution. Only when no further item can be inserted in / is knapsack / + 1
considered. Hence,at any iteration, knapsacks 1,...,/ \342\200\2241 are completely loaded,
knapsack / is partially loaded and knapsacks / + 1,..., m are empty.

Upper bounds U = U(S) are computed, through surrogate relaxation, by

procedure UPPER. Lower bounds L = L(S) and the corresponding heuristic

solutions X are computed by procedure LOWER, which finds an optimal solution
for the current knapsack, then excludes the items inserted in it and finds an optimal
solution for the next knapsack, and so on. For both procedures, on input / is
the current knapsack and (xkj) (k = 1,... ,/; j = 1, ... ,n) contains the current

solution.

6.4 Exact algorithms 173

procedure UPPER:
input: n.m.ipj). (wj). (c^). (xkj). (Sk).i;
output: U;

begin

^:=
(c, -

Ylj^s,^J^'J)+ Ilt,+\\ Ck\\

N := {;\342\226\240ijc^^ =OforA: = 1 /};
determine the optimal solution value F of the 0-1 single knapsack problem

defined by the items in A^ and by capacity c;

end.

procedure LOWER:

input: n.m.(pj).(Wj).(c^).{xkj).{Sk).i\\

output: L.(xkj);
begin

N' :={j -.Xkj =0\\ork = \\ /};

W \342\226\240=N'\\Sr,

C-=Ci-J2j^S.^J^'J'
k := i;
repeat

determine the optimal solution value I of the 0-1 single knapsackproblem

defined by the items in A^ and by capacity c, and store the solution

vector in row k oi x;
L :=L + Y;

N^:=N'\\{j:xkj
=

\\};

N :=N';

k :=k + l;
c :=Ck

untii k > m
end.

The bound-and-bound algorithm for MKP follows. Note that no current solution

is defined (hence no backtracking is performed) for knapsack m since, given Xkj for

^ = 1, ... ,m- 1,the solution produced by LOWER for knapsack m is optimal.

It follows that it is convenient to sort the knapsacks so that

C\\ <C2 < ... <Cm.

The items are assumed to be sorted accordingto F.9).

procedure MTM:

mpuW n.m. {pj).{wj),{c,)\\
output: z.(xy);
begin
1.[initialize]

for /: := 1 to m do Sk := 0;

174 6 0-1 Multiple knapsack problem

for ^ := 1 to m do for; := 1to n do Xkj := 0;
z := 0;
/ := 1;
callUPPER yielding U;

UB :=U;
2. [heuristic]

call LOWER yielding L and x;
If L > z then

begin
z :=L;
for k := I \\o m do for 7 := 1 to n do Xkj := Xkj',
for k := / to m do for j := 1 to n do

if Xkj
= 1 then Xkj

:= 1;

\\^ z = UB then return ;

If z = (/ then go to 4
end;

3. [define a new current solution]
repeat

/ :={I:x,i
=

l];
while/5\302\253^ 0 do

begin
let; =

min{/ : / G /};
/:=/\\{y};
push j on Si;

iy := 1;
call UPPER yielding U;
\\i U < z then go to 4

end;
/ :=/ + 1

until i = m;
i := m \342\200\224

I;

4. [backtrack]
repeat

while5;5\302\253^0do

begin

let j be the item on top of Si;
if Xij

= 0 then pop j from Si;

else

begin

Xij
= 0;

call UPPER yielding U;

if (/ > z then go to 2
end

end;
/ :=/ \342\200\2241

until / = 0
end.

6.4 Exact algorithms 175

The Fortran implementation of procedure MTM (also presented in Martello
and Toth A985b)) is included in the present volume. With respect to the above

description, it also includes a technique for the parametric computation of upper
bounds U. In procedures UPPER and LOWER, the 0-1 single knapsack problems
are solved through procedure MTl of Section 2.5.2. (At each execution, the items
are already sorted according to F.9), so there would be no advantage in using
procedure MT2 of Section 2.9.3.)

Example 6.2

Consider the instance of MKP defined by

n = 10;

m = 2;

(Pj) = G8,35,89,36,94, 75, 74, 79, 80, 16);

(Wj)
= A8, 9, 23, 20, 59, 61,70,75,76,30);

(q) =
A03, 156).

Applying procedure MTM, we obtain the branch decision-tree of Figure 6.3. At

the nodes, z gives the current solution value, (c,) the current residual capacities.

f,=103.C2=156.t/fl=t/=452
z=0

L=z=451
1 0 1 0 1 0 0 0 0 Os

ci=3
z=261

ci=53
z=202

U=45l<z z=UB

Figure 6.3 Decision-tree of procedure MTM for Example 6.2

176 6 0-1Multiple knapsack problem

The value of U is not given for the nodes for which the parametric computation
was able to ensure that its value was the same as for the father node. The optimal
solution is

/I 0 1 00 10000
y^ij)

-

1^0 001 100010

z = 452. D

A modified version of procedure MTM, in which dominance criteria among
nodes of the decision-tree are applied, has been proposedby Fischetti and Toth

A988). Its performance is experimentally better for low values of the ratio njm.

6.5 REDUCTION ALGORITHMS

The size of an instance of MKP can be reduced, as for the 0-1 knapsack

problem (Section 2.7), by determining two sets, /1 and JO, containing those items

which, respectively, must be and cannot be in an optimal solution. In this case,
however,only JO allows one to reduce the size of the problem by eliminating the

corresponding items, while /1 cannot specify in which knapsack the items must
be inserted,so it only gives information which can be imbedded in an implicit
enumeration algorithm.

Ingargiola and Korsh A975) presented a specific reduction procedure, based on

dominance between items. Let y'D/: indicate that item 7 dominates item k, in the

sense that, for any feasible solution that includes k but excludes/, there is a better
feasible solution that includes 7 and excludes k. Consequently,if we can determine,
for y

= 1, ... ,n, a set Dj of items dominated by 7, we can exclude all of them

from the solution as soon as item j is excluded.If the items are sorted according
to F.9), Dj obviously contains all items k > j such that Wk >

Wj and pk < Pj,
plus other items which can be determined as follows.

procedure IKRM:

\\npu\\:n.ipk).iwk).j;

output: Dj-,

begin

Dj := {k : k > j. Wk > Wj and pk < Pj]',
repeat

d :=
\\Dj\\;

for each k e {I :pi/wi < pj/wj}\\(Dju {j})do
'rt3ACDj:wj+ J2^^^Wa

< Wk and

Pj+Yla^APa >Pk

\\\\\\ex\\Dj \342\200\224DjU {k]
until \\Dj\\=d

end.

6.6 Approximate algorithms 177

The items added to Dj in the repeat-until loop are dominated by j since, for
any solution that includes k but excludes j and, hence, all a \302\243A, there is a better
solution that includes {j} UA and excludes k. Once sets Dj (j = 1,... ,n)have

been determined, if a feasible solution of value, say, F is known, a set of items
which must be in an optimal solution is

(keN\\({j}uDj) J

since the exclusion of any item j \302\243J \\, and hence of all items in Dj, would not

leave enough items to obtain a better solution. Observe now that, for any item k,
set

h = {j:jDk,j ^J\\]

contains items which must be included in any solution including k. Hence a set of

items which must be excluded from an optimal solution is

(jeh ieM jej\\ J

The time complexity of IKRM is 0{n^ip{n)), where (f{n) is the time required

for the search of a suitable subset A C Dj. Exactly performing this search,

however, requires exponential time, so a heuristic search should be used to obtain
a polynomial algorithm. In any case, the overall time complexity for determining

J 1 and 70 is 0(n^(f(n)), so the method can be useful only for low values of n or

for very difficult problems.

6.6 APPROXIMATE ALGORITHMS

6.6.1 On the existence of approximation schemes

Let P be a maximization problem whose solution values are all positive integers.

Let length(I) and max(I) denote, for any instance / G /*, the number of symbols
required for encoding/ and the magnitude of the largest number in /, respectively.
Let z (/) denotethe optimal solution value for /. Then

Theorem 6.4 (Garey and Johnson, 1978) IfP is NP-hard in the strong sense and
there exists a two-variable polynomial q such that, for any instance I \302\243P,

z(I) < q(length(I), max(I)).

then P cannot be solved by a fully polynomial time approximation scheme unless
V=MV.

178 6 0-1 Multiple knapsack problem

Proof. Suppose such a scheme exists. By prefixing X/e
= q(length(I), max(I)),

it would produce, in time polynomial in length(I) and \\/e (hence in pseudo-

polynomial time) a solution of value z^(/) satisfying (z(/)
- z^(I))/z^(I) < \302\243<

\\/z{I), i.e. z(/) - z^(/) < 1,hence optimal. But this is impossible, P being NP-

hard in the strong sense. Q (The analogous result for minimization problems also

holds.)

Theorem6.4 rules out the existence of a fully polynomial-time approximation

scheme for MKP, sincethe problem is NP-hard in the strong sense (see Section 1.3)
and its solution value satisfies z < n maxy{/?y }-i-l. Note that the same consideration
applies to MKP in minimization form (defined by minimize F.1), subject to:

F.2) with < replaced by >, F.3) and F.4)), since its solution value satisfies

z > m\\r\\j{pj}
- 1.

As for the existence of a polynomial-time approximation scheme, the following

general property can be used:

Theorem 6.5 (Garey and Johnson, .1979) Let P be a minimization

(resp. maximization) problem whose solution values are all positive integers and
supposethat, for some fixed positive integer k, the decision problem \"Given I \302\243P,

is z(I) < k (resp. z{I) > k) ?\" is NP-complete. Then, ifV ^ NV, no polynomial-
time algorithm for P can produce a solution of value z'^(I) satisfying

z'il) / , 1 / HI) ^ ,
1

--\342\200\224< 1 + - resp. -\342\200\224\342\200\224< 1 + -r
z(/) k \\

^
z^(/) k

and P cannotbe solved by a polynomial-time approximation scheme.

Proof. We prove the thesis for the minimization case. Suppose such an algorithm

exists. If z^(/) < k then, trivially, z(/) < k. Otherwise, z^(/) > k + I, so

z(/) > z'^{I)k/{k+1)> k.Hence a contradiction, since the algorithm would solve

an NP-complete problem in polynomial time. (The proof for the maximization case

is almost identical.) D

We can use Theorem 6.5 to exclude the existence of a polynomial-time

approximation scheme for MKP in minimization form. We use the value ^ = 1.
Given any instance (vvi w\342\200\236)of PARTITION (see Section 1.3), define an

instance of MKP in minimization form having p\\ = \\. p2 = ... =
Pn

= 0, an

additional item with /?\342\200\236+i
= 2 and w\342\200\236+i=

Xl/=i ^i' ^^i^ two knapsacks with

c\\ = C2 =
\\ Y^i=\\ ^i- Deciding whether the solution value is no greater than 1

is NP-complete, since the answer is yes if and only if the answer for the instance

of PARTITION is yes.
For MKP in maximization form, instead, no proof is known, to our knowledge,

for ruling out the existence of a polynomial-time approximation scheme, although
no such scheme is known.

6.6 Approximate algorithms 179

6.6.2 Polynomial-timeapproximation algorithms

In Section 6.3 we have examinedthe worst-case performance of an 0(n) greedy
algorithm for MKP. In Section 6.4.3 we have introduced an approximate algorithm

(LOWER) requiring exact solution of m single knapsack problems,hence, in the

worst case, a non-polynomial running time. A different non-polynomial heuristic

approach has been proposed by Fisk and Hung A979), based on the exact solution

of the surrogate relaxation, S(MKP), of the problem. Let Xs denote the subset of

items producing z(S(MKP)). The algorithm considers the items of Xs in decreasing

order of weight, and tries to insert each item in a randomly selected knapsack or, if

it does not fit, in any of the remaining knapsacks. When an item cannot be inserted
in any knapsack, for each pair of knapsacksit attempts exchanges between items

(one for one, then two for one, then one for two) until an exchange is found which

fully utilizes the available space in one of the knapsacks. If all the items of Xs are

inserted, an optimal solution is found; otherwise, the current (suboptimal) feasible

solution can be improved by inserting in the knapsacks, in a greedy way, as many

items of A^ \\Xs as possible.
Martello and Toth A981b) proposed a polynomial-time approximate algorithm

which works as follows. The items are sorted according to F.9), and the knapsacks

so that

ci <C2< ...<c^. F.29)

An initial feasible solution is determined by applying the greedy algorithm
(Section 2.4) to the first knapsack, then to the second one by using only the

remaining items, and so on. This is obtained by calling m times the following

procedure, giving the capacity c, = c, of the current knapsack and the current

solution, of value z, stored,for y
= 1, ... ,n, in

f 0 if item j is currently unassigned;

[index of the knapsack it is assigned to, otherwise.

procedure GREEDYS:

input: n. (pj). (Wj). z. (yj). i. c,-;

output: z.{yj);

begin
for j := 1 to \302\253do

if yj
= 0 and Wj

< c, tiien

begin
yj :=

/_;

Ci := Ci -
Wj;

z := z + Pj
end

end.

After GREEDYS has been called m times, the algorithm improves on the solution

180 6 0-1 Multiple knapsack problem

through local exchanges. First, it considers all pairs of items assignedto different

knapsacks and, if possible, interchanges them should the insertion of a new item
into the solution be allowed. When all pairs have been considered,the algorithm

tries to exclude in turn each item currently in the solution and to replace it with

one or more items not in the solution so that the total profit is increased.
Computational experiments (Martello and Toth, 1981b) indicated that the

exchanges tend to be much more effective when, in the current solution, each

knapsack contains items having dissimilar profit per unit weight. This, however,
is not the case for the initial solution determined with GREED YS. In fact, for

the first knapsacks, the best items are initially inserted and, after the critical item
has been encountered,generally other \"good\" items of smaller weight are selected.

It follows that, for the last knapsacks, we can expect that only \"bad\" items are
available. Hence, the exchange phases are preceded by a rearrangement of the
initial solution. This is obtained by removing from the knapsacks all the items

currently in the solution, and reconsidering them according to increasing profit

per unit weight, by trying to assign each item to the next knapsack, in a cyclic

manner. (In this way the items with small weight are considered when the residual

capacities are small.)
The resulting procedure follows. It is assumed that items and knapsacks are

sorted accordingto F.9) and F.29).

procedure MTHM:

input: \302\253.m.(/?;). (wy).(c/);

output: z .(yj);
begin
1. [initial solution]

z :=0;

fory := Ho n do yj := 0;
for / := 1 to m do

begin
C^' '.^ C''

call GREEDYS
end;

2. [rearrangement]

z :=0;

for / := 1 to m do c, := c,;
/ := 1;
fory \342\200\242=n\\o\\ step-1 do if yj > 0 then

begin
let / be the first index in {/ m} U {1 / - 1} such that

Wj <Ci\\
if no such / then yj := 0 else

begin

y;:=/_;
ci :=ci -

Wj;

z := z + pj]
if / < m then /:=/ + ! else/ := 1

6.6 Approximate algorithms 181

end
end;

for / := 1 to m do call GREEDYS;
3. [first improvement]

fory := Ho n do if yj > 0 then
for k :=] + 1 \\o n do \\iO < yk ?^ yj then

begin
h := arg maxJH'y.w^};
/ := arg min{w;.w^};
d :=Wh \342\200\224

wi;

\\i d <
Cyi and Cy^ + d > minlvv,, : _y\342\200\236

= 0} then

begin
t := arg max{/?\342\200\236: Jm = 0 and w^ < Cy,, +d};

CjH
\342\226\240.='Cy,+d -Wr]

Cyi
:= Cyi

\342\200\224
d;

yt \342\226\240=yh;

yh \342\226\240=yr,

yi \342\226\240=yt\\

1 := z + pt

end

end;
4. [second improvement]

fory := n to 1 step-1 do if yj > 0 then

begin
c:=Cy^+Wj;
Y := 0;
for ^ := 1 to \302\253do

\\i yk =0 and w/, <c then

begin
Y =Y U{k];
c := c \342\200\224

Wk

end;

'^^JlkerPk >Pj til\302\256\"

begin

for each ^ g 1^ do yk := yj;
Cy^

:= c;

yj--=0;
^

\342\200\242=^+J2keYPk -Pj
end

end
end.

No step of MTHM requires more than 0(n^) time. This is obvious for Steps
1 and 2 (since GREEDYS takes 0(n) time) and for Step 4. As for Step 3, it is

enough to observe that the updating of min{w\342\200\236: y^^
=

0} and the search for t (in

the inner loop) are executedonly when a new item enters the solution, hence 0(n)
times in total.

The Fortran implementation of MTHMis included in the present volume. With

182 6 0-1 Multiple knapsack problem

respect to the above description: (a) at Step 1 it includes the possibility of using, for

small-size problems, a more effective (and time consuming) way for determining

the initial solution; (b) Step 3 incorporates additional tests to avoid the examination
of hopelesspairs;(c)the execution of Step 4 is iterated until no further improvement
is found. (More details can be found in Martello and Toth A981b).)

Example 6.3

Considerthe instance of MKP defined by

n =9 ;

m = 2 ;

(Pj) = (80,20,60,40, 60, 60, 65, 25, 30);

(Wj)
= D0, 10, 40, 30, 50, 50, 55, 25, 40);

(c,) = A00, 150).

After Step 1 we have

(yj) =
A, 1, 1, 2, 2, 2, 0, 0, 0),

z = 320 .

Step 2 changes (yj) to

(yj)
= B, 1, 2, 1, 2, 1,0, 0, 0),with (c,) = A0, 20).

Step 3 interchanges items 1 and 4, and produces

(yj) =
A, 1, 2, 2, 2, 1, 0, 2, 0), with (c,) = @, 5),

z = 345 .

Step 4 excludes item 5, and produces

(yj)
= A, 1, 2, 2, 0, 1,2, 2, 0), with (c,) = @, 0),

z = 350,

which is the optimal solution. \342\226\241

6.7 COMPUTATIONAL EXPERIMENTS

Tables 6.1 and 6.2 compare the Fortran IV implementations of the exact algorithms

of the previous sections on randomly generated test problems, using uncorrelated
items with

6.7 Computational experiments 183

Table6.1 Uncorrelated items; dissimilar capacities. CDC-Cyber 730 in seconds. Average
times over 20 problems

m

2

3

4

Table 6.2

m

2

3

4

n

25

50

100
200

25
50

100
200

25

50

100
200

Uncorrelatec

n

25

50
100
200

25
50

100
200

25

50

100
200

HF

0.221

0.694

1.614
6.981

4.412
54.625

\342\200\224

\342\200\224

time limit
\342\200\224

\342\200\224

\342\200\224

items; similar

times (

HF

0.280

0.671

1.666
6.109

3.302
44.100

\342\200\224

\342\200\224

13.712

time limit
\342\200\224

\342\200\224

MT

0.143

0.278
1.351
7.182

9.363
17.141

\342\200\224

\342\200\224

time limit
\342\200\224

\342\200\224

\342\200\224

capacities. CDC-

3ver 20 problems

MT

0.141

0.473
0.810
4.991

1.206
2.362

6.101

39.809

6.341
26.100

\342\200\224

__

MTM

0.076
0.112
0.159
0.223

0.458

0.271

0.327

0.244

1.027
0.952
0.675
0.518

Cyber 730 in

MTM

0.191
0.329
0.152
0.313
1.222
0.561
0.428

0.585

3.690

12.508
3.936
9.313

IKRM + MTM

0.119
0.333
1.297
6.551

0.463

0.472

1.542

6.913

0.921
1.102
1.892
7.084

seconds. Average

IKRM + MTM

0.215
0.490
1.295

6.733

1.101

0.757

1.622
7.190

3.351
9.516
3.064

7.412

Pj and Wj uniformly random in [10, 100],

and two classes of capacities: dissimilar capacities,having

c, uniformly random in

and similar capacities,having

0, 0.5^w,-^Q
for / = 1, ... ,m \342\200\2241,

184 6 0-1 Multiple knapsack problem

Cj uniformly random in 0.4 ^wy/m, 0.6^wy/m for / = 1, ... , m \342\200\2241,

For both classes, the capacity of the mth knapsack was set to

Cm =0.5^Wy
-

^Q.

Whenever an instance did not satisfy conditions F.5)-F.8), a new instance
was generated.The entries in the tables give averagerunning times, expressed in

seconds, comprehensive of the sorting times.

For each value of m and n, 20 instances were generatedand solved on a CDC-

Cyber 730. Eachalgorithm had a time limit of 300 secondsto solve the 80 instances

generated for each value of m. When this limit was reached, we give the average

time only if the number of solved instances was significant.

Tables 6.1 and 6.2 compare, on small-size problems, the branch-and-bound

algorithms of Hung and Fisk A978) and Martello and Toth A980a) (Section 6.4.1)
and the bound-and-bound algorithm MTM (Section 6.4.3).Three implementations

of the Hung and Fisk A978) algorithm are possible, accordingto the relaxation

used (Lagrangian, surrogate, or a combination of the two). In addition, the algorithm

can be run with or without previous application of the Ingargiola and Korsh A975)

reduction procedure IKRM (Section6.5).Each entry in columns HF gives the

lowest of the six average times obtained.Similarly, columns MT give the lowest of
the four times obtained for the Martello and Toth A980a) algorithm (Lagrangian or

combination of Lagrangian and surrogate relaxation, with or without the application
of IKRM). The last two columns refer to algorithm MTM, without and with the

application of IKRM, respectively.For all the algorithms, the solution of the 0-1

single knapsack problemswas obtained using algorithm MTl of Section2.5.2.
The tables show that MTM is the fastest method, and that use of the reduction

procedure generally produces a considerable increase in the total computing
time (except for very difficult problems). MT is generally faster than HF. The

different capacity generations have little effect on HF and MT. For MTM,
instead, problems with dissimilar capacities are considerablyeasier.This can be

explained by observing that the algorithm generates no decision nodes for the last

knapsack, so it is at an advantage when one of the capacities is much greater
than the others. We used problems with dissimilar capacities to test MTM on
larger instances.

Table 6.3 compares the exact algorithm MTM with the approximate algorithm

MTHM. In addition, we analyse the behaviour of MTM when used to produce
approximate solutions, by halting execution after B backtrackings (with B = 10or
50).For each approximate algorithm we give, in brackets, the average percentage
error. The table shows that the time required to find the exact solution increases
much more steeplywith m than with n and tends to become impractical for m > 10.

6.7 Computational experiments 185

Table 6.3 Uncorrelated items; dissimilar capacities. CDC-Cyber 730 in seconds. Average
times (average percentage errors) over 20 problems

m n

50

100
2 200

500
1000

50

100

5 200
500

1000

50
100

10 200

500
1000

MTM exact
time

0.082

0.129

0.153
0.243
0.503

1.190
1.014
1.178
0.862

1.576

3.852

7.610
32.439
5.198
9.729

MTHM

time (% error)

0.013@.170)
0.031@.147)
0.057@.049)
0.132@.020)

0.266@.003)

0.018@.506)

0.040@.303)
0.074@.148)
0.186@.031)
0.391@.016)

0.035@.832)

0.057@.437)

0.106@.219)

0.535@.078)
0.870@.031)

MTM (B = 10)
time (% error)

0.049@.028)
0.089@.018)
0.143@.000)
0.242@.000)
0.502@.000)

0.157@.344)

0.268@.076)

0.327@.018)
0.659@.001)
1.231@.001)

0.162@.287)
0.324@.174)

0.659@.060)

1.760@.009)

3.846@.003)

MTM (B = 50)
time (% error)

0.070@.004)
0.127@.000)
0.152@.000)
0.242@.000)
0.502@.000)

0.434@.312)

0.601@.027)

0.687@.012)
0.705@.001)
1.576@.000)

0.477@.211)
0.950@.092)

1.385@.039)

3.836@.003)

7.623@.001)

When used as a heuristic, MTM gives solutions very close to the optimum; the

running times are reasonable and increase slowly with n and m. MTHMis faster

than MTM but its solutions are clearlyworse.
Tables 6.4 and 6.5 show the behaviour of approximate algorithms (MTM halted

after 10 backtrackings and MTHM) on very large-size instances. The Fisk and Hung

A979) algorithm is not considered, since extensive computational experiments
(Martello and Toth, 1981b) showed that it is generally dominated by MTHM. All

runs were executed on an HP 9000/840 with option \"-o\" for the Fortran compiler.
We used the same capacity generations as in the previous tables. For all data

generations, for n > 5000 the execution of MTHM was halted at the end of

Step 3, so as to avoid the most time consuming phase (this is possible through an

input parameter in the corresponding Fortran implementation).

Table 6.4 refers to uncorrelated items, obtainedby generating

Pj and Wj uniformly random in [1, 1000].

The percentage errors were computed with respect to the optimal solution value

for m < 5, with respect to the initial upper bound determined by MTM for larger
values. With few exceptions in the case of very large problems, both algorithms

require acceptable computing times. The approximation obtained is generally very

good. The times of MTM (B = 10)are one order of magnitude larger than those of

MTHM, but the errors produced are one order of magnitude smaller. Computational

experiments on weakly correlated items (wy uniformly random in [1, 1000], pj

uniformly random in [wy
- 100. wy

+ 100]) gave similar results, both for computing

times and percentage errors.

186 6 0-1 Multiple knapsack problem

Table 6.4 Uncorrelated items. HP 9000/840 in seconds. Average times (

m n

200

500
2 1000

2000
5 000

10000

200
500

5 1000
2000
5 000

10000

200
500

10 1000
2 000

5 000
10000

200
500

20 1000

2000

5 000
10000

200
500

40 1000

2 000
5 000

10000

errors) over 20 problems

Dissimilar

MTHM

0.266@.0694)
0.085@.0208)
0.177@.0048)

0.359@.0017)

0.806@.0009)

1.730@.0004)

0.418@.1796)
0.104@.0278)
0.214@.0105)
0.455@.0038)

0.968@.0010)

1.998@.0004)

0.064@.1826)
0.154@.0344)
0.300@.0143)
0.685@.0041)
1.273@.0009)

2.527@.0004)

0.100@.1994)

0.245@.0471)
0.426@.0136)
0.796@.0059)
1.676@.0015)
3.191@.0005)

0.188@.2865)

0.446@.0752)

0.910@.0255)

1.411@.0081)
3.085@.0022)
5.733@.0008)

capacities
MTM (B = 10)

0.131@.0049)
0.382@.0006)
0.877@.0001)
1.354@.0001)
3.716@.0000)

4.962@.0000)

0.283@.0235)
0.942@.0037)
2.009@.0014)
3.510@.0003)
7.348@.0000)
9.138@.0000)

0.500@.0582)

1.172@.0094)

2.517@.0022)
6.608@.0004)
8.502@.0000)

15.773@.0000)

0.706@.0865)

1.671@.0181)

4.285@.0051)

7.332@.0012)
17.980@.0002)
30.608@.0000)

1.218@.1923)
3.501@.0477)

7.575@.0137)

12.689@.0039)

27.718@.0009)
37.310@.0004)

Similar

MTHM

0.277@.0441)

0.086@.0197)
0.173@.0059)
0.392@.0023)
0.802@.0007)
1.691@.0003)

0.529@.2152)

0.109@.0408)

0.203@.0146)

0.409@.0048)
0.888@.0011)
1.843@.0005)

0.052@.3051)
0.132@.0762)

0.262@.0189)

0.531@.0079)

1.143@.0022)
2.294@.0007)

0.088@.9004)
0.198@.1393)
0.403@.0448)

0.754@.0113)

1.659@.0028)

3.466@.0010)

0.179B.4654)
0.378@.4732)
0.696@.1219)
1.289@.0364)

2.761@.0065)

5.364@.0020)

average percentage

capacities

MTM (B = 10)

0.157@.0081)
0.387@.0011)
0.728@.0002)

1.638@.0000)

3.346@.0000)

5.250@.0000)

0.328@.0275)
1.022@.0069)
1.976@.0012)
3.994@.0003)

9.849@.0000)

23.932@.0000)

0.046@.1024)
1.373@.0135)
2.561@.0032)
7.030@.0008)

14.127@.0001)
45.760@.0000)

0.614@.2619)

1.783@.0327)

4.065@.0075)
11.717@.0016)
27.829@.0002)
84.605@.0000)

0.995A.1246)

2.748@.0808)

6.049@.0173)

13.608@.0041)
44.538@.0004)

124.637@.0001)

Table6.5 shows the behaviour of MTHM on strongly correlated items, obtained

with

Wj uniformly random in [1, 1000],

Pj =
Wj

+ 100.

MTM was not run since it requires the exact solution of 0-1 single
knapsack problems,which is practically impossible for this data generation (see
Section 2.10.1). The percentage errors were computed with respect to an upper

6.7 Computational experiments 187

bound on the solution value of the surrogate relaxation of the problem (we used

upper bound U2 of Section 2.3.1). The computing times are slightly higher than

for uncorrelated items; the percentage errors are higher for large values of n.

Table 6.5

m

2

5

10

20

40

Algorithm MTHM. Strongly correlated items. HP 9000/840 in seconds. Average
times (average percentage errors) over 20 problems

n

200

500
1000
2 000
5000

10000

200

500

1000

2 000
5 000

10000

200

500

1000
2 000
5 000

10000

200

500

1000

2000
5 000

10000

200

500

1000

2000
5 000

10000

Dissimilar capacities

0.124@.0871)

0.829@.0422)
1.546@.0157)
5.333@.0069)
0.823@.0236)
1.618@.0144)

0.165@.1085)
0.683@.0364)

1.832@.0155)

3.500@.0072)

1.068@.0272)
2.173@.0142)

0.158@.1466)
0.636@.0383)
1.583@.0167)

9.943@.0090)

1.697@.0278)

3.246@.0134)

0.154@.6698)
0.491@.0624)
1.172@.0187)
7.293@.0091)
2.624@.0237)

5.307@.0096)

0.249D.2143)

0.807@.4680)
1.460@.0491)
6.481@.0137)
4.799@.0241)
9.695@.0141)

Similar capacities

0.114@.0803)

0.460@.0278)
1.078@.0138)
7.498@.0083)
0.805@.0191)
1.571@.0110)

0.130@.1061)
0.373@.0313)

1.214@.0133)

6.662@.0076)

0.917@.0245)
1.919@.0097)

0.091@.1498)
0.668@.0443)
1.217@.0132)
7.862@.0079)

1.214@.0255)

2.507@.0112)

0.194@.3539)
0.480@.0558)
1.833@.0195)
5.728@.0082)
1.802@.0285)

3.686@.0179)

0.446B.3671)

1.369@.1365)
3.477@.0302)
9.776@.0108)
2.986@.0432)
6.031@.0186)

Generalized assignment

problem

7.1 INTRODUCTION

The Generalized Assignment Problem (GAP) can be described,using the

terminology of knapsack problems, as follows. Given n items and m knapsacks,
with

Pij
= profit of item j if assignedto knapsack /,

Wy
= weight of item j if assignedto knapsack /,

c, = capacity of knapsack /,

assign each item to exactly oneknapsack so as to maximize the total profit assigned,
without assigning to any knapsack a total weight greater than its capacity, i.e.

m n

maximize ^=yjyjPy-^y G1)

n

subject to /_]^ij^'j ^ <^\" / G M = {1, ... ,m}, G.2)

2^^ = 1'

Xij
= 0 or 1,

1 if item j is

0 otherwise.

j eN = {i,...

i e M,j e N,

assigned to knapsack /;

,n}. G.3)

G.4)
where

The problem is frequently described in the literature as that of optimally assigning

n tasks to m processors (n jobs to m agents, and so on), given the profit pij and

the amount of resource Wy corresponding to the assignment of task j to processor
/, and the total resource c, available for each processor/.

189

190 7 Generalized assignment problem

The minimization version of the problem can also be encountered in the

literature: by defining Cy as the cost required to assign item j to knapsack /,
MINGAP is

m n

minimize
v=y^y^CyjCy G.5)

,=1 y=i

subject to G.2), G.3), G.4).

GAP and MINGAP are equivalent. Setting/?y = -Cy (orCy
=

-pij) for all / G M

and j \302\243N immediately transforms one version into the other. If the numerical data
are restrictedto positive integers (as frequently occurs), the transformation can be

obtained as follows. Given an instance of MINGAP, define any integer value t

such that

r > max/gM ye/v{cy} G.6)

and set

Pij=t-Cij fori eMJ eN. G.7)

From G.5) we then have

n m m n

where, from G.3), the first term is independent of (Xy). Hence the solution (Xy)

of GAP also solves MINGAP. The same method transforms any instance of GAP
into an equivalent instance of MINGAP (by setting Cy =t\342\200\224pij for / \302\243M, j \302\243N,

with i > maXi^M ;e/v{Ay})-

Because of constraints G.3), an instance of the generalized assignment problem
does not necessarily have a feasible solution. Moreover, even the feasibility

question is NP-complete. In fact, given an instance (wi,...,w\342\200\236) of PARTITION

(see Section 1.3), considerthe instance of GAP (or MINGAP) having m = 2, w\\ j
=

\"^i.j
= ^j and Pi j

= P2 j = ^ for j =
\\, ... ,n, and ci = C2 =

5 Zl/\"=i ^j- Deciding
whether a feasible solution (of value n) to such instance exists is an NP-complete

problem, since the answer is yes if and only if the answer to the instance of

PARTITION is yes.
The following version of the problem (LEGAP), instead, always admits a feasible

solution.

m n

maximize
^~y^y^A>-^y (^\342\200\242^)

subject to G.2), G.4) and

m

Y,Xij<\\, jeN. G.9)

7.1 Introduction 191

LEGAP too is equivalent to GAP. Given any instance of LEGAP, an equivalent
instance of GAP will have an additional knapsack of capacityc^+i = n, with

Pm+\\j
= 0 and Wm+i.j

= 1 for y \302\243N, while pij
= pij for / G M and y G A^.

(Knapsack m + \\ gives no extra profit and always allows a feasible solution, so
z = z.) Conversely, given any instance of GAP, we can define an integer constant

q such that

q > y^max/gMJA)},

and set

Pij
=

Pij +q for i e M,j e N.

With these profits, any set of n items has a higher value than any set of k < n items.

Hence, by solving LEGAP we obtain the solution for GAP (of value z = z \342\200\224
nq)

if G.3) is satisfied, or we know that the instance of GAP has no feasiblesolution

if Y17=\\ ^'j
~ ^ ^\302\260^some j.

LEGAP is a generalization of the 0-1 multiple knapsack problem (Chapter 6), in

which Pij
= Pj and

Wy
=

Wj for all / G M and j \302\243N (i.e. the profit and weight of

each item are independent of the knapsack it is assigned to). Lagrangian relaxations

for LEGAP have been studied by Chalmet and Gelders A977).
The best known special case of generalized assignment problem is the Linear

Min-Sum Assignment Problem (or Assignment Problem), which is a MINGAP
with n = m, Ci = I and Wy

= 1 for all / G M and j E N (so, becauseof G.3),

constraints G.2) can be replacedby XlLi-^y
= 1 for ' G ^)- The problem can

be solved in O(n^) time through the classical Hungarian algorithm (Kuhn A955),
LawlerA976);efficient Fortran codes can be found in Carpaneto, Martello and Toth

A988)). The assignment problem, however, is not used in general as a subproblem
in algorithms for the generalized case.

Another special case arises when Wy
=

Wj for all / G M and j \302\243N. Implicit

enumeration algorithms for this case have been presented by De Maio and Roveda

A971) and Srinivasan and Thompson A973).
Facets of the GAP polytope have been studied by Gottlieb and Rao A989a,

1989b).
We will suppose, as is usual, that the weights Wy

of any GAP instance are

positiveintegers. Hence, without loss of generality, we will also assume that

Pij and Ci are positive integers, G.10)

|{/ : Wy <q}| > 1 for j eN, G.11)

c, >
minyg/v{wy} for i \302\243M. G.12)

If assumption G.10) is violated, (a) fractions can be handled by multiplying

through by a proper factor; (b) knapsackswith c, < 0 can be eliminated; (c) for

each item j having mini^m{Pij] < 0. we can set pij
=

Pij + | min,g^/{/?y }| + 1

192 7 Generalized assignment problem

for / G M and subtract | min,\302\243^/{/?y }| + 1 from the resulting objective function

value. As is the case for the 0-1 multiple knapsack problem, there is no easy way of

transforming an instance so as to handle negative weights, but all our considerations

easily extend to this case too. If an item violates assumption G.11) then it cannot
be assigned,so the GAP instance is infeasible. Knapsacks violating assumption

G.12) can be eliminated from the instance.

In Section 7.2 we introduce various types of relaxations. Exact and approximate

algorithms are described in Sections 7.3 and 7.4, reduction procedures in Section

7.5. Section 7.6 presents the results of computational experiments.

7.2 RELAXATIONS AND UPPER BOUNDS

The continuous relaxation of GAP, C(GAP), given by G.1)-G.3) and

Xij>0. ieM,jeN, G.13)

is rarely used in the literature since it does not exploit the structure of the problem
and tends to give solutions a long way from feasibility.

7.2.1 Relaxation of the capacity constraints

Ross and Soland A975) have proposed the following upper bound for GAP. First,

constraints G.2) are relaxed to

WjjXij <Ci, i eM,j eN.

and the optimal solution x to the resulting problem is obtained by determining, for

each j \302\243N,

i(j) = arg max {p/j : i eM, Wy
< c,}

and setting Xj(j)j = 1 and x/j
= 0 for all / G M\\{i(j)]. The resulting upper bound,

of value
n

is then improved as follows. Let

Ni={j eN \342\226\240.x,j
= \\}, i eM,

dj =
2_] Wij

\342\200\224Ci, i e M,
jeN,

7.2 Relaxations and upper bounds 193

M' ={i eM -.di >0},

Given a set S of numbers, we denote with max2 S (resp. min2 S) the second

maximum (resp. minimum) value in S, and with arg max2 S (resp.arg min2 S) the

corresponding index. SinceM' is the set of those knapsacks for which the relaxed

constraint G.2) is violated,

^j =Pi(j)j -
max2{/?y

: / G M ,Wij < c,}, j eN'

gives the minimum penalty that will be incurred if an item j currently assigned to

a knapsack in M' is reassigned. Hence, for each / G M', a lower bound on the

loss of profit to be paid in order to satisfy constraint G.2) is given by the solution

to the 0-1 single knapsack problem in minimization form (see Section2.1),^P/
(/ G M'), defined by

minimize v, =
\\J Qjy/j

ye/v,

subject to 2_] ^ijyij ^ ^Z'

yij =0 or \\, jeNi,

where
y/j

= 1 if and only if item j is removedfrom knapsack /. The resulting Ross
and Soland A975) bound is thus

Ui = Uo- J2vi. G.15)

This bound can also be derived from the Lagrangian relaxation, L(GAP. A), of
the problem, obtained by dualizing constraints G.3) in much the same way as

described in Section 6.2.2 for the 0-1 multiple knapsack problem. In this case too

the relaxed problem,
m n n I m \\

maximize ^ ^^Ay-^y -^^i 51-^'>
~ ^

; = 1 y=l y=l \\ ;= 1 /

subject to G.2), G.4),

separatesinto m 0-1 single knapsack problems {KP^,i = 1,... ,m) of the form

n

maximize z, =
/^^pijXjj

y=i

194 7 Generalized assignment problem

n

subject to
V^ WyjCy

< Ci,

Xij
= 0 or 1, j e N,

where p/j
= pij

\342\200\224
Xj , and its solution value is

m n

z{L{GAP,X)) =
^Zi

+ ^Xj. G.16)

It is now easy to see that, by choosing for Xj the value

Xj
= max2{Pij : i e M. Wy

< c,}, j G N,

we have z(L(GAP, X)) = Ui.ln fact, by transforming each KP^ into an equivalent

maximization form (as describedin Section 2.1), and noting that, in each KP/^,

Pij
< 0 if y ^ A^, and Wy < c,, we have v,

=
Xl/e/v ^j

~ ^' (' ^ ^')- Hence, from

G.14) and G.15),

;e/v ye/v' ye/v /eM'

observing that, for / ^ M', by definition we have
Xl/e/v ^y \342\200\224*-\" hence

z, = J2jeN,P'J' th^ Lagrangian solution value G.16) can be written as

ieM' ieM\\M' ye/v, ye/v

=
I]^'+ I] A(y)y- Y. ^J

+
Y^J

ieM' ye/v\\/v' ye/v\\/v' ye/v

Example 7.1

Consider the instance of GAP defined by

n =1;

m = 2;

6 9 4 2 10 3 6
(/^y) 14 8 9 1 754;'

4 12 1 4 3
sy

/ll
9 9 8 1 3 8 7/' ^^''^\" I 22

7.2 Relaxations and upper bounds 195

The initial bound is Uq = 41. Then we have

A^i ={1,2,4,5,7}, N2 = {3,6], (J,) = G,-6);
M' = {1},A^' = {1, 2,4,5,7};

qi =2, q2 = l, <?4
= 1, <?5

= 3, q7=2.

Solving KPI we obtain

vi=2, C;i,) = @, 0, -, 0, 0, -, 1),

sothe resulting bound is

t/i =
t/o

- vi = 45 . D

7.2.2 Relaxation of the semi-assignment constraints

Martello and Toth A981c) have obtained an upper bound for GAP by removing

constraints G.3). It is immediate to see that the resulting relaxed problem coincides
with L(GAP. 0), hence it decomposes into a series of 0-1 single knapsack problems,
KP^ (i GM), of the form

maximize z, = \\J PijXjj

7 = 1

n

subject to 2_] ^ij^ij \342\200\224^i'

y=i

Xij
=0 or 1, j eN.

In this case too, the resulting upper bound, of value

Uo = J2zi, G.17)

can be improved by computing a lower bound on the penalty to be paid in order

to satisfy the violated constraints. Let

A^\" =

196 7 Generalized assignment problem

{ ieM J

be the sets of those items for which G.3) is violated, and define

M>U) = {i eM :
Xij

= 1} for all y G A^>;

we can compute, using any of the methods of Sections2.2-2.3,

M,y
= upper bound on z, if

Xy =0. j \302\243N^, i e M^(j),

ujj
= upper bound on z, if

Xy
= 1, j \302\243N^, i e M

and determine, for each item j \302\243N^ U N^, a lower bound Ij on the penalty to be

paid for satisfying G.3):

imin/gM

{z,
- min (z,. m^)} if y G N^;

T.ieM>(j)(^'
-min (Zi.ufj))

-max, eM > (j){zi
- min (z, .up} ifjeN>.

The improved upper bound is thus

t/2 =
t/o-maxyg;vou/v>{(/\342\226\240}\342\200\242 G.18)

Example 7.2

Consider the instance of GAP defined by

n = 5;

m = 2;

, , /7 3 3 8 7\\
^^^\342\200\242^

=(,5 3 8 4 ij'

K) = 8 2 8 9 1

2 2 6 4 4/'

(Q) =
(

^7

The solutions to KP^ and ^P| are

zi = 17, (xij) =
A, 1, 0, 0, 1);

Z2
= 9, (X2.j) = A, 0, 0, 1,0),

7.2 Relaxations and upper bounds 197

SOUo = 26 and

N^ = {3],N> = {1}, M>A) = {1.2}.
We compute ufj

and
ujj through the Dantzig bound (Section 2.2.1),but, for

M,y,

we skip those items k for which w,^ > c, \342\200\224
Wy. Hence

'i.i = 7 + 3 +
64

\"9\"

= 17;

/O, = 3 +
40
~6

= 9;

MI3 = 3 + G + 3 + [0J)= 13;

\022.3
- 8-

It follows that /i = 0 and It, = min {4. 1} = 1, so the resulting upper bound is

U2=TJo-h =25.

For this instance the Ross-Soland bound initially gives Uq = 33, and, after the

solution of KP}, U\\ =31. Hence Uq > U\\ > Uq > U2. On the other hand,

computing the Martello-Toth bound for Example 7.1 gives Uq = 54, I2
= 2,

/3 = 1, /g = 5, k = 1, h ^2, and U2 = 49, i.e. Ui < Uq < U2 < Vq. Thus while,

obviously, Uq > U\\ and t/o > ^2, no dominance existsbetween the other pairs of
these bounds.\342\226\241

7.2.3 The multiplier adjustment method

Fisher, Jaikumar and Van Wassenhove A986) have developedan upper bound,

based on the Lagrangian relaxation L{GAP .\\) and dominating the bound proposed

by Ross and Soland A975). Obviously, the continuous and integer solutions of a
knapsack problem may differ; this implies (see Fisher A981)) that, for the optimal
Lagrangian multiplier A*,

z{L{GAP.y))<z{C{GAP))\\

there is no analytical way, however, to determine A*. One possibility is the

classical subgradient optimization approach. The novelty of the Fisher-Jaikumar-

Van Wassenhove bound consists of a new technique {multiplier adjustment method)
for determining \"good\" multipliers. The method starts by setting

Xj
= max2 {pij lieM, Wy

< c,], j e N;

as shown in Section 7.2.1, the corresponding Lagrangian relaxation produces the

value U\\ of the Ross-Soland bound. Note, in addition, that, with this choice, we

198 7 Generalized assignment problem

have, for each j \302\243N, pij (= p/j
-

Xj) > 0 for at most one / G M, so there is an

optimal Lagrangian solution for this X which satisfies YlT^i^ij < 1 for ally G A^.

If some constraint G.3) is not satisfied, it is, under certain conditions, possibleto

select ay* for which Yl?=i^'j* ~ ^ ^^^ decrease Xj* by an amount which ensures

that in the new Lagrangian solution Yl7=i^ij*
- 1' while Yl?=i^ij \342\200\224^ continues to

hold for all other y. Thisphaseis iterated until either the solution becomes feasible
or the required conditions fail.

The following procedure, ADJUST, is an efficient implementation of the

multiplier adjustment method. After the initial solution has been determined, a
heuristic phase attempts to satisfy violated constraints G.3) through pairs (i.j)
such thai pij

\342\200\224
Xj

= 0. The adjustment phase then considers items y* violating G.3)

and computes, for i \302\243M, the least decrease Ay* required in
Xj*

for itemy* to be
included in the optimal solution to KPf^. If an item y

*
is found for which

(a) minz {Ai j*,... ,Amj*} > 0;

(b) decreasing Xj* by min2 {Ai y*,..., A^y* } the new Lagrangian solution

satisfies Yl7=i^ij ^ ^ ^^^ ^^^ J ^ ^'

then such updating is performed (decreasing the current upper bound value by

minjAi y*,..., A^y*}) and a new heuristic phase is attempted. If no such y*

exists, the process terminates.
The output variables define the upper bound value

m n

,=1 y=i

if opt =
\"yes\", this value is optimal and (x,y) gives the corresponding solution.

procedure ADJUST :
input: \302\253.m.(/?,y).(w,y).(c/);

output: (z,), (Ay), (xij), U3, opt;

begin

comment: initialization;
A^ := {1 n];
M := {1 m};
for / := 1 to m do fory := Ho n do jc,y := 0;

fory := \\ Xo n do
Ay

:= max2{/?y : i e M, w,y
< c,};

for / := 1 to m do
begin

Nr.= {j eN -.pij-XjyO];
set Xij (y G M) to the solution to

max Zi
=

J2jeNSPij
-

\\)xij
subject to

Xlye/v, ^y-^y < c, ,

Xij
=0 or 1. y G M ;

7.2 Relaxations and upper bounds 199

end;

opt := \"no\";

if
J2ieM ^ij

= 1 ^o\"\" ^\"V \342\202\254^ tlie\" op^ := \"yes\"

else

repeat
comment: heuristic phase;
IJ :={(i.j) :

Y.k^M ^kj
= 0. Pij

-
Xj

= 0};
for each (i.j) e IJ,\\norder of decreasing pij, do

'*
Y.k^M ^kj

= 0 and Wij
+

J2ieN ^>i^>i < <^' ^'^^'^ -^y \342\200\242=!>

comment: adjustment ;
if

J2ieM ^ij
~ 1 ^o\"\" ^\"-/ ^ ^ ^'^^'^ \302\260P^'\342\226\240=\"yes\"

else

begin
J \342\226\240={JeN \342\226\240.J:keM^kj=0}\342\226\240

found := \"no\";

repeat

lety* be any index in J;

J:=j\\{r};
Mj* := {i e M : Wy* < q};
for each / e Mj* do

begin

Ni := {j eN\\{j*] : ptj
-

Xj > 0.
Wy

< c,-
-

Wy-};
determine the solution to

(KPj) max z, =
Y^j^N^Pti

-
\\)yi

subject to
\302\243yg/v,̂ ijyj < Ci -

Wij*,

yj =0 or 1. j GM;
Ay* := Zi

- izi + {pij* -
Xj*))

end;

if min2{Ay* : / G Mj*} > 0 then

begin
/* := arg min {Ay* : / G Mj*];
let {yj). j G A^,*, be the solution found for KPi*;
for each j eN \\Ni* do yj := 0;

'f>'i + E,eM\\{,-}-^y< 1 for ally G A^ then

begin
found := \"yes\";

Xj* := Ay*
-

min2{Ay* : / G My*};

replace row /* of x with (yj);

Zi* \342\226\240.=Zi* +ipi*j*
- Xj*);

t/3 := U3 - Ai*j*
end

end
until y = 0 or found = \"yes\"

end
until opt = \"yes\" or found = \"no\"

end.

200 7 Generalized assignment problem

Example 7.2 (continued)

The initial solution is obtained by setting

(Ay)
= E, 3, 3, 4, 1) :

zi
= 10, (jci.y) = @, 0, 0, 1, 1);

Z2 = 5, {X2.j) = @, 0, 1, 0, 0);

t/3 =16 + A0 + 5) = 31= Ux.

The heuristic phase has no effect, henceJ = {12}.Fory*
= 1 we obtain

M, ={1,2};

A^i ={5}, zi= 6,^5 = 1, Ai.i =2;

N2 = 0, Z2
= 0, A2.1 =5,

hence /* = 1. Replacing {x\\ j) with A, 0, 0, 0, 1),condition
J2ieM ^'i \342\200\224^ continues

to hold for all j G A^, so we have

(Ay)
= @, 3, 3, 4, 1);

zi
= 13 , (xi j) =

A, 0, 0, 0, 1);

U3 =29.

The heuristic phase sets xi 2 = 1,hence J = {4}. Fory* = 4 we have

M4 = {1. 2};

A^i = {5}, zi=6,};5 = l, Ar.4
= 3;

A^2 = {1}, Z2=5, yi =1, A2.4=0,

so the execution terminates with t/3 = 29. For this instance we have U3 < U\\(=3\\),

but U3 > Vo (= 26) > U2 (= 25). On the other hand, applying procedure ADJUST

to the instance of Example 7.1, we initially have U3 = 45, then the first adjustment

improves it to 43 and the second to 42 (with two further adjustments producing no

improvement). Hence U3
= 42 < U2 (= 49) < T/q (= 54). D

Examples 7.1 and 7.2 prove that no dominance exists between the Fisher-

Jaikumar-Van Wassenhove bound (t/3) and the Martello-Toth bounds (U 0 and

7.2 Relaxations and upper bounds 201

U2), nor between the Ross-Soland {Uq and U\\) and the Martello-Toth bounds. As

already shown, the only dominances among these bounds are U3 < Ui < Uq and

U2 < TJq.

7.2.4 The variable splitting method

Jomsten and Nasberg A986) have introduced a new way of relaxing GAP in

a Lagrangian fashion. (A general discussionon this kind of relaxation can be
found in Guignard and Kim A987).) By introducing extra binary variables yij

(i \302\243M. j e N) and two positive parameters a and /3, the problem is formulated,

through variable splitting, as

maximize ^\"^Yl P'J^'J\"^ ^ 51 51 ^'J^'J ^^'^^^

n

subject to 'S^^WijXij < Ci, ieM, G.21)

m

Y.yij
= i, jeN, G.22)

Xij=yij, ieMJeN, G.23)

jcy=0orl, ieMJeN, G.24)

yij
=0 or \\, ieMJeN. G.25)

We denote problem G.20)-G.25) by XYGAP. It is immediate that XYGAP is

equivalent to GAP in the sense that the corresponding optimal solution values,

z(XYGAP) and z(GAP), satisfy

z (XYGAP) = (a + l3)z(GAP). G.26)

The new formulation appears less natural than the original one, but it allows a

relaxation of constraints G.23) through Lagrangian multipliers (/iy). The resulting

problem, L(XFGAP,/i),

m n m n m n

maximize a ^ ^PijXij + /^ ^ YPiiJii + 5Z 5Z ^'>^-^'>'
~

^'>^ ^^'^^^

subject to G.21), G.22), G.24),G.25),

202 7 Generalized assignment problem

keeps both sets of GAP constraints, and immediately separates into two problems,
one, XGAP(fi), in the x variables and one, YGAP(fi), in the _y variables. The

former.

maximize z(XGAP(fi))
=

V^ y^(a/?y + fiij)Xij

n

subject to 2_]^'j-'^'j \342\200\224^'' i & M,

Xij
=0 or 1, i e M,j e N,

has the same structure as L(GAP.X) (Section 7.2.1), hence separates into m 0-1

single knapsack problems (KPj^. / = 1,... ,m) of the form

n

maximize z, =\\^(apij +
fiij)Xij

n

subject to y^ ^ijXij
< Ci,

Xij
= 0 or 1, y G A^;

the latter
m n

maximize z {YGAP(/i)) = ^ ^WPij -
f^ij)yij

m

subject to y^ yij
= 1, j \302\243N,

yij =0 or 1, i e MJ eN,

has the same structure as the initial Ross-Soland relaxation (Section 7.2.1), hence
its optimal solution is

yij
= < for jeN.

K 0 Otherwise,

where

i(j) =
arg max {/3pij

- ^ij : i e M, Wy
< c,}.

By solving problems KP^^ (/ e M), we obtain the solution to L(XYGAP. /i), of
value

7.2 Relaxations and upper bounds 203

m n

ziUXYGAP,fi)) =
^z,- + J2(^Pi(J) J

-
/^'(i) i)' G.28)

hence the upper bound

U4 = [z(L(XYGAP,fi))/(a + /3)\\. G.29)

Jomsten and Nasberg A986) have provedthat, for a + 0 = 1 and for the optimal

Lagrangian multipliers A*. /i*,

z(L(XYGAP,n*)) < z{L{GAP,y)).

However,there is no analytical way to determine /i*, and the multiplier adjustment
method of Section 7.2.3 does not appear adaptable to XYGAP. Jomsten and

Nasberg have proposed using a subgradient optimization algorithm to determine a

\"good\" /i. At each iteration, the current /i is updated by setting /iy
=

/iy
+ r(_yy

-

Xij) (i \302\243M, j \302\243N), where t is an appropriate positive step.

Example 7.2 (continued)

Using a = C =
\\

and starting with /iy
= 0 for all / \302\243M. j \302\243N, we obtain

/I 1 0 0 1\\
^\342\226\240^'^^\021^1 0010;'

i.e., the same solution found for Uq (Section 7.2.2), and

110 11
^^'j^ ^ 0 0 1 0 oy

i.e., the same solution found for Uq. The initial upper bound value is thus

U4= L13+16.5J =29 (=U3).

Assuming that the initial step is r = 1, we then have

,,,000 1 0
1 0 1-1 or

A3357
222^2
2 2-^2

,,,11001
0 0 10 0/'

204 7 Generalized assignment problem

A3

3

2 2 2

2 2-^

. . /I 1 0
^^'J^

1^0 0 1 0 0

and the upper bound becomes

U4= [13.5+ 14.5J=28.

Further improvements could be obtained by iterating the procedure. \342\226\241

7.3 EXACT ALGORITHMS

The most commonly used methods in the literature for the exact solution of GAP
are depth-first branch-and-bound algorithms.

In the Ross and Soland A975) scheme, upper bound Ui (see Section 7.2.1)
is computed at each node of the branch-decision tree. The branching variable is

selected through the information determined for computing U\\. In fact, the variable
chosento separate, Xj*j*, is the one, among those with yij

= 0 (/ e M',j e N') in

the optimal solution to problems KP^ (i G M'), for which the quantity

is a maximum. This variable representsan itemy
*

which is \"well fit\" into knapsack
/ *, considering both the penalty for re-assigning the item and the residual capacity
of the knapsack. Two branches are then generated by imposing Xi*j*

= 1 and

Xi*j*
= 0.

In the Martello and Toth A981c) scheme,upper bound min (Ui. U2) (see Sections
7.2.1,7.2.2)is computed at each node of the branch-decision tree. In addition, at the

root node, a tighter upper bound on the global solution is determined by computing

min (U3, U2) (see Section7.2.3).The information computed for U2 determines the

branching as follows. The separation is performedon item

j* = arg max {Ij :j eN^UN>},

i.e.on the item whose re-assignment is likely to produce the maximum decrease

of the objective function. If y* G A^^, m nodes are generated by assigning

j* to each knapsack in turn (as shown in Figure 7.1(a)); if y* e N>, with

M^ij*) = {iiJi,- \342\200\242\342\226\240,ij^}, m \342\200\224\\ nodes are generated by assigning j
*

to knapsacks

/i,..., /^_ 1 in turn, and another node by excluding j
*

from knapsacks /i,..., im-1
(as shown in Figure 7.1(b)). With this branching strategy, m single knapsack

7.3 Exact algorithms 205

problems KPf must be solvedto compute the upper bound associated with the root

node, but only one new KPf for each other node of the tree. In fact if y* \302\243N^,

imposing Xkj*
= 1 requires only the solution of problem KP^, the solutions to

problems KPf^ (i i k) being unchanged with respect to the generating node; if

j* G A^'*, the strategy is the same as that used in the Martello and Toth A980a)
algorithm for the 0-1 multiple knapsack problem (see Section 6.4.1), for which

we have shown that the solution of m problems KPf producesthe upper bounds

corresponding to the m generated nodes.

Figure 7.1(a) Branching strategy when;'* ^N^

-\\'i
*=0

Figure 7.1(b) Branching strategy when ;* G A^''

The execution of the above scheme is preceded by a preprocessing which: (a)
determines an approximate solution through a procedure, MTHG, describedin the

next section; (b) reduces the size of the instance, through two procedures, MTRGl

and MTRG2, described in Section 7.5. (Example 7.3 of Section7.5 illustrates

the branching scheme.) At each decisionnode, a partial reduction is performed.

206 7 Generalized assignment problem

by searching for unassigned items which can currently be assigned to only one

knapsack. The Fortran implementation of the resulting algorithm (MTG) is included
in the present volume.

In the Fisher, Jakumar and Van Wassenhove A986) scheme, upper bound t/3

(Section 7.2.3) is computed at each node of the branch-decision tree.The branching

variable is an x,*y* corresponding to a
w,*y*

which is maximum over all variables
that have not been fixed to 0 or 1 at previous branches. Two nodes are then

generated by fixing Xj*j*
= 1 and Xj*j*

= 0.

No scheme has been proposedby Jomsten and Nasberg A986).

7.4 APPROXIMATE ALGORITHMS

As seen in Section 7.1, determining whether an instance of GAP (or MINGAP) has

a feasible solution is an NP-complete problem. It follows that, unless V = AfV,
these problemsadmit no polynomial-time approximate algorithm with fixed worst-

case performance ratio, hence also no polynomial-time approximation scheme.

The following polynomial-time algorithm (Martello and Toth, 1981c) provides

approximate solutions to GAP. Let/y be a measure of the \"desirability\" of assigning

itemy to knapsack /. We iteratively consider all the unassigned items, and determine

the item j* having the maximum difference between the largest and the second

largest/iy (/ G M);j* is then assigned to the knapsack for which/y* is a maximum.
In the second part of the algorithm the current solution is improved through local

exchanges. On output, \\i feas
= \"no\", no feasible solution has been determined;

otherwise the solution found, of value z ^, is storedin
_yy

= (knapsack to which item

j is assigned),j = I,... ,n.

procedure MTHG:

input: n.m.(pij).(Wy).(c,),(fij);

output: z^.(y;), feas;
begin

M \342\226\240=
{1 m};

U :={L...,\302\253};
comment: initial solution;

feas := \"yes\"

for / := 1 to m do c, :=c,;
z^ :=0;

wiiile U^ 0 and feas =
\"yes\" do

begin
d* := \342\200\224oc;

for eacli j e U do
begin

Fj :={/ eM :
Wij

< c,};
if Fj

= 0 tiien feas := \"no\"

else

7.4 Approximate algorithms 207

begin
/' := arg max {fij : i G Fj}\\
if F^.\\{/'}

= 0then J :=+oc
else d :=fi,j- maxzj /> : i e Fj];
\\i d > d* tiien

begin
d* :=d;

i* :=/';

J* \342\226\240=]

end

end

end;
if feas = \"yes\" tlien

begin
yj* \342\226\240=i*'

z_':=z^+pi.j.-

U:=U\\{r}
end

end;
comment: improvement;

if feas = \"yes\" tiien

fory := 1 to n do

begin

A:={pij :i eM\\{i']. Wij
< c,};

if A ?^ 0 tiien

begin
let/?,//; = max A;

\\i Pi>'j > Pi'j tiien

begin
yj-=i\"-,
zj :=z^ -Pi^j+Pi\"j\\

c,/ :=c// +w,/y;
C,\302\273:=C,// -W;nj

end

end
end

end.

Procedure MTHG can be implemented efficiently by initially sorting in

decreasing order, for each itemy, the values/y (/ \302\243M) such that Wy
< c, (= c,).

This requires0{nm log m) time, and makes immediately available, at each iteration

in the inner loop, the pointers to the maximum and the second maximum element
of {fij : i G Fj]. Hence the main while loop performs the 0{n) assignments
within a total of 0(n^) time. Whenever an item is assigned, the decrease in c,*
can make it necessary to update the pointers. Since, however, the above maxima

can only decrease during execution, a total of O(n^) operations is required by the

208 7 Generalized assignment problem

algorithm for these checks and updatings. By finally observing that the exchange

phase clearly takes 0(nm) time, we conclude that the overall time complexity of

MTHG is 0(nm\\ogm + n^).
Computational experiments have shown that good results can be obtained using

the following choices for/jy:

(a) fij
=

Pij (with this choice the improvement phase can be skipped);
(b)/)- =Pi}/^ij\\
(c)fij

=
-Wy-;

i^) fij
=

-^ij/ci-

Example 7.3

Consider the instance of GAP defined by

m = 3;

ip,j) =

(Wij)
=

A1
14

\\34

/2^
20

\\16

12
5

34

13

8

16

12
37
20

9
18
18

16
9
9
5

25

24

24

36
19

7
6

11

31
25
19
15
6

11

41
1
3

5

9

16

13
34
34
24
6

18
; (c,)=

Let us consider execution of MTHG with
f\\j

= \342\200\224
Wy. The first phase of the

algorithm gives

j* =4:d* = 19, ^4
= 1, ci =21

y* = 8 : J* = 12, yg
= 2,C2= 19

j* =3:d* = 9, ^3
= l,ci = 12

j* = I : d* = +OC, _yi
= 3, C3 = 18

j* =2:d* = 8, y2
= 2,C2= 11

j* = 6 : d* = 5, ^6 = 2, C2= 5:

j* =1 :d* = 11, ^7 = l,ci = 7

y* =5 : J* = 4, ^5 = 1,ci = 0

hence

z^ = 191,(y;) = C. 2. 1. 1. 1.2. 1.2), (c,) = @. 5. 18).

The secondphase performs the exchanges

7.5 Reduction algorithms 209

j =2:y2 = 3, C2 = 13, C3 = 2;

J = 5 : ^5 = 2, ci = 7, C2 = 7;

so the solution found is

z^ = 232, {jj) = C. 3. 1.1.2.2.1.2). Q

A Fortran implementation of MTHG, which determines the best solution
obtainable with choices (a)-(d) for fij, is included in the present volume. A more
complex approximate algorithm, involving a modified subgradient optimization

approach and branch-and-bound, can be found in Klastorin A979).
Mazzola A989) has derived from MTHG an approximate algorithm for the

generalization of GAP arising when the capacity constraints G.2) are non-linear.

7.5 REDUCTIONALGORITHMS

The following algorithms (Martello and Toth, 1981c) can be used to reduce the

size of an instance of GAP. Let (_yy) define a feasible solution (determined, for

example,by procedure MTHG of the previous section)of value z^ =
Ylj=iPyj j-

The first reduction algorithm receives in input the upper bound value Uq of

Section 7.2.1 and the corresponding values i(j) =
arg max {pij : i \302\243M, Wy < c,}

(j \302\243N). The algorithm fixes to 0 those variables Xjj which, if set to 1, would

decrease the bound to a value not greater than z^. (We obviously assume z^ < Uq-)

If, for some j, all
Xy

but one, say x,*y, are fixed to 0, then jc,*y is fixed to 1. We

assume that, on input, all entries of
(Xjj) are preset to a dummy value other than 0

or 1. On output, kj^ (j e N) has the value | {xy : i G M, jc,y
= 0}|, and c, gives

the residual capacity of knapsack / (/ G M); these values are used by the second

reduction algorithm. We also assume that, initially, c, = c, for all i e M. If, for

somey, all
jc,y

are fixed to 0, the feasible solution (_yy)
is optimal, hence the output

variable opt takes the value \"yes\".

procedure MTRG1:

input: n.m.(pij). (Wy).(c,).z^. Uo.(iU))-(xij);

output (Xij).(k^).(ci), opt;
begin

opt := \"no\";

y:=0;

wiiiley < n and opt= \"no\" do

begin

J:=j + U

kf
:= 0;

for / := 1 to m do

if z^ > Uo-pi(j) j +Pij or
Wij > c, tiien

210 7 Generalized assignment problem

begin

Xij := 0;

end
else /* := /;

if
k^

= m - \\ tiien

begin

Xi*j :=_1;
Ci* := Cj*

-
Wi*j

end
else if

kf
= m then opt := \"yes\"

end

end.

The time complexity of MTRGl is clearly 0(nm). When the execution fixes

some variable to 1, hence decreasing some capacity c,, further reductions can be
obtained by reapplying the procedure. Since n variables at most can be fixed to 1,
the resulting time complexity is 0(n^m).

Thesecondreduction algorithm receives in input (Xy), (kj^), (c,), the upper bound

value Uo of Section7.2.2and, for each problem KPf (i EM), the corresponding

solution (x, 1,..., Xjn) and optimal value z,. Computation of the upper bounds of

Section 7.2.2,

ufj
= current upper bound on the solution value of KPf if

Xjj
= 0;

M,y
= current upper bound on the solution value of KPf if

Xjj
= 1,

is then used to fix to Xjj
variables

Xjj which, if set to 1 \342\200\224
Xjj, would give an

upper bound not greater than z^. We assume that MTRGl is first iteratively run,

then Uq and the solutions to problems KPf are determined using the reductions
obtained. Consequently,the new algorithm cannot take decisions contradicting

those of MTRGl. It can, however, fix to 1 more than one variable in a column, or to
0 all the variables in a column. Such situations imply that the current approximate
solution is optimal, hence the output variable opt takes the value \"yes\".

procedure MTRG2: _
input: n.m.Xpij). (w,y). (c,).z^. Uq. (z,). (%). (Xy). {kf);

output: {xij), opt;
begin

opt := \"no\";

j \342\226\240\342\226\240=1;

repeat
if

^^^
< m - 1 then

begin

kl:=0;
for / := 1 to m do

if Xij ^ 0 then

7.5 Reduction algorithms 211

if Wy > c, then

begin
Xij := 0;

end
else _

if Xjj
= 0 and z^ > Uq -

Zj +
u^j

tiien

begin

Xij := 0;

kf := kf + 1
end

else
begin

if ^1 =Othen /* := i^
if Xij

= 1 and z^ > Uq -
Zi +

u^-
then

ilkl =Ot}nenkl := 1
else opt := \"yes\"

end;
if opt = \"no\" then

\\i
k^

= m - I or ^1 = 1 then

begin

for / := 1 to m do Xy := 0;
Xi*j :=_1;
Ci* \342\200\242.=Ci*

-
Wi*j;

kf := m - 1

end
else

if
k'^

= m then opt =
\"yes\"

end;

until j > n or opt =
\"yes\"

end.

If
ufj

and mJ are computed through any of the 0(n) methods of Sections2.2and

2.3, the time complexity of MTRG2is O(mn^).In this case too, when a variable

has been fixed to 1, a new execution can producefurther reductions.

Example 7.3 (continued)

Using the solution value z^ =232 found by MTHG and the upper bound value

Uo = 263, MTRGl gives

j = 7 : JC2.7
= 0, JC3 7

= 0, hence k^ = 2, so

Xi 7
= 1, ci = 21;

7=8: xi.8=0.

212 7 Generalized assignment problem

Solving KPf (i = 1,2,3)for the reduced problem, we get

/O 0 1 1 1 0 \302\256@)\\ /93\\ _
(jcy)= 0 0 0 0 1 1 @) 1 ,(z,)= 95 ,t/o = 256,

\\110000@H/ \\68/

where fixed
Xjj values are circled. Executing MTRG2 we have

7
= 1: xi 1 = 0, X2A

= 0, hence X3 i = 1, C3 = 18;

7=4: JC2.4
= 0\302\273-^3.4 = 0\302\273hence xi 4 = 1, ci = 16.

The execution of the Martello and Toth A981c) branch-and-bound algorithm
(see Section7.3)follows. Computation of U2 and t/3 for the root node gives

N^ = 0. N> ={5},M>E)
= {1,2};

Mfg
= 89, M?5

= 85; /5 =4,U2 = 252;

t/3 = 245.

The branching scheme is shown in Figure 7.2. Sincey* = 5, we generatenodes
1 and 2, and compute the corresponding bounds.

f/2=252

f/3=245

f/2=263

f/o=232=z
f/3=237

Uo=232=z U 0=229 <z' f/2=218<z'

Figure 7.2 Decision-treefor Example 7.3

Node 1 : (h j) = @, 0, 1, 0, 0, 0, 0, 1),Z2 = 71, Z/q = 232 = z\\

Node2 : (Jfj y)
= @, 0, 0, 1,0, 1, 1,0), zj = 88, Z/q = 251;

AfO = {3}, N> = {6}, M>F) = {1, 2};
ul 3

= 69, MJ 3
= 78, m' 3 = 54, h = 14;3.3

^Og =75, m0, = 96, /6 = 0;

7.6 Computational experiments 213

U2 = 237;

Uq =
U\\

= 263 (unchanged).

The highest penalty is Ij,
= 14, hencey* = 3 and nodes 3, 4, 5 are generated.

Node 3 : (xi j) = @, 0, 1, 1,0, 0, 1,0), zj = 69, Z7o = 232 = z\\

Node 4 : (h j) = @, 0, 1,0, 1,0,0,0), Z2
= 73, Z7o = 229< z\\

Node 5 : (h j) =A,0, 1,0,0,0,0,0), Z3 = 54, Z/q = 237;

N^ = {2},N> = {6}, M>F) = {1, 2};

ul 2
= 69, M2 2

= 95, M3 2
= \342\200\224

ex:, /2 = 0;

wffi =69, M?6
= 75, /6= 19;

t/2 =218 < z\\

The approximate solution (_yi)
= C, 3, 1, 1, 2, 2, 1,2),of value z^ = 232, is

thus optimal. Q

7.6 COMPUTATIONAL EXPERIMENTS

Tables7.1 to 7.4 compare the exact algorithms of Section 7.3 on four classes

of randomly generated problems. For the sake of uniformity with the literature

(Ross and Soland A975), Martello and Toth A981c), Fisher, Jaikumar and Van

Wassenhove A986)), all generated instances are minimization problems of the

form G.5), G.2), G.3), G.4). All the algorithms we consider except the Ross

and Soland A975) one, solve maximization problems, so the generated instances
are transformed through G.7), using for t the value

t =max,^M,jeN{cij} + 1.

The classes are

(a) Wjj uniformly random in [5, 25],
Cjj uniformly random in [1, 40],
c, = 9(n/m)+ 0.4 max,eM {Eye/v, ^y 1 for / = 1, ... ,m

(where A', is defined as in Section 7.2.1);

(b) Wjj and Cjj as for class (a),
c, =0.7(9(n/m) +0.4

max,^M{J2j^N, ^yD for \302\253= 1, \342\200\242\342\226\240\342\226\240,m;

(c) Wjj
and c,y as for class (a),

Cj
= 0.8

Xl/\"=i ^li/f^ for / = 1, ... ,m;

214 7 Generalized assignment problem

Oh

O

\342\226\240^(N (^
m m 00o \342\200\224CM

ON ^ ON
\342\200\224o ><o
o o o

r-- r-- 00
00 (^ O
(^ 00 \342\200\224

(N (N >>0
(N \342\200\242*00
o o o

00 O \342\200\224
\342\200\224o r--
o \342\200\224o
o o o

^ o o
r-- ON in
o \342\200\224\342\200\224

\342\200\224r<i ><0
ON

O (N oC
\342\200\224ON 00
o r-- o
d> --^ d

in r-- \342\200\242*
O CM CM
p ON \342\200\224;
o in o

><o ON r--
in ON \342\200\224
o r-- \342\200\224

d> ^ d>

^ 00 O
\342\200\224(^ >>0
o o o
o o o

><o \342\200\242*in
\342\200\224CM r--
o \342\200\224o

r-- 00 \342\226\240*
>>o in (N
O CM CM

(^ O 00
O CM \342\200\224
o o o

><o in in
o (^ \342\200\242*
o o o

r-- r-- \342\226\240*
\342\200\224in \342\200\242*
o o o

7.6 Computational experiments 215

o

e2

T3
C
O
O

c\342\200\242\342\226\240\"

O

00
\302\251\342\226\240
o
o
ON

Dh
K

O
H
s

\302\253
<u

T3
O
z

<u
s
H

><o \342\200\224
CM r<l

CM

\342\200\224(^ 00
\342\200\242*in o

00 \342\200\224

ON r--
r-^ in
O ON

^ o
\342\200\224(^

<N 00
-\342\200\224CM
IT) >>0
O ON

^ S

CM CM
\342\200\22400
d ^'

ON O
ON
ON ^

ON ><0
00 OO ON

CM ^ i^
\342\200\224(^ ON
(^ (N ON
\342\200\224'ON rj

(^ 00

\342\200\224ON r^-i
(^ 00 O^ o

ON o in(^ (^ m
in in r--
d fsi d

^ ON

in c c
CM \"S \"S
ON
d

CM CM
(^ \342\200\224

O
^ .t;

\342\226\240*CM \342\226\240*
in 00 CM

ON 00
in ><o

00 r^ r5^
CM 00 \342\200\242*
CM Tt 00
d cm' r^

in Tt CM
>>0 >>0 ON
\342\200\224CM CM

CM ><0
(^ in

r-- -^ inin o ON
\342\200\22400 >>0

\342\200\242*\342\200\242*(^
r-- \342\226\240*ON

ON ><0

(^ CM

ON r^-i r--(^ CM 00
r-; r-; in
cm' in d

r-- 00

(^ \342\200\224in(^ in CM
in ON

CM

in in iX
>>o in \342\200\224
in r-- ><o
d ^' d

CM 00

O (^ 00
\342\200\224Tt (^
\342\200\224o ^

\342\226\240*\342\200\224CM
On t^ t^
O 00 ON

^ \342\200\224o
ON \342\200\224in

(^ ON
CM in

\342\200\242*><o in
in (^ r--
Tt in pd ON 00

\342\200\224^

ON ^ Ttin ON in
CM \342\200\22400

ON (^

ON m

\342\200\224(^ 00
(^ o in
d r-^ ^'

\342\200\224r--

216 7 Generalized assignment problem

Oh

O

T3
O

O
\302\253
kH
<U

X)
s

fc
o

ooo
ON

X

e2

3: '^^ \342\200\224
^

r-^
>>o r--
in ><o
\342\200\224CM
\342\200\224'^'

^

in o
(N ><0

r--

r-^
r-- ^
o r--
in Tt
O 00^

CM (N
CM Tt

CM

\342\226\240*

in iK
r-- CM
in in
o

ÔN

O 00in 00
r--
^

\\c r--
r-- \342\200\224

\342\200\224;r-^
O 00

\342\200\224r--.
CM m
\342\200\224>\302\253o

(^
-\"

O 00
\342\200\224o
\342\200\224>\302\253o
d

r-;'

o o
\342\200\224CM

CM

in
00
ON

CM

o
00
in
^
00

m
in
00

^
CM
o
^
ON

S

<u
B

CM
^
(^
(^

r?
m^
IT)
IT)
00

o
CM
^
00
^

CM
^

oo'
ON

o
(^

ON

ON
in
ON
d

00
CM

^
r--
in
d

CM
ON

00

><q^

r<n
^

(^
ĈM
d

o
ĈM

in
^
CM

d

o

ĈM
00

00
><o
^
^_
^
(^

(̂^
in

00
ON
><o
r--
(^
(^

s

<u
B

^
o
^

S
iK

CM
oo'

r--
CM
r--
CM
(^

w
>S'
r--
^_
r-^
^

o
CM

m

O
(^
00

in
\342\200\2425^
r--
(^
r-^
^

in
ON

CM

ON
in
^_^
ON

;s

<u
B

^
CM
ON
^

P^
o'
CM
00_
r--'
^

CM

^
CM
in

o
r--
^
cm'
ON

o
(^

^
CM

00
00
^

o
r--

00
o
r-^
^

in
ON
\342\200\224

00
CM
o
^'

ĈM
CM

^
ON
r--
d

m
ON
(^

^
r--
^
d

o

ĈM
in

r-^
>S'
(^
^.
ON
in

^
in

CM
00
00
r-^
^

'b

<u
B

CM
(^
(^

00
ON
><q
in

00
CM
(^

m

w^
><q^
^

o
CM

in

1
<u
B

1
<u

.\302\243

B

<u

.\302\247

1

<u
B

1
<u

.e

o
ro

n

m

Table 7.4 Data set (d). HP 9000/840 in seconds. Average times/Average numbers of nodes over 10 problems

RS MTG FJV MTGFJV MTGJN

n Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

10
20

30

0.150 162
50.575 42321

time limit

0.168
14.344

79.582C)

30
2275
8230

0.254 30

86.809E) 3362
time limit

0.364

62.123G)

97.681A)

25
1405
1475

0.760
21.322
95.702A)

14

290

1076

10
20
30

0.541 575

time limit

time limit

0.350

16.890

97.000A)

48
1587
6267

0.966 80

time limit
time limit

0.870 41

95.024B) 876
time limit

2.244 38
91.181C) 801

time limit

5

10
20
30

0.810 697

time limit

time limit

0.498 73

21.203C) 7722
time limit

1.677 108
time limit

time limit

1.244 55
time limit

time limit

3.481 63
time limit

time limit

218 7 Generalized assignment problem

(d) Wij uniformly random in [1, 100],
Cij uniformly random in

[w/j-.w/j +20],

Ci = 0.8 Yl^i Wij/m for / = 1, ... ,m.

Problems of class (a) have been proposedby Ross and Soland A975) and generally

admit many feasible solutions. Problemsof classes (b), (c) and (d) have tighter

capacity constraints; in addition, in problems of class (d) a correlation between
profits and weights (often found in real-world applications) has been introduced.

The entries in the tables give average running times (expressed in seconds) and

average numbers of nodes generated in the branch-decision tree. A time limit of

100 seconds was imposed on the running time spent by each algorithm for the

solution of a single instance. For data sets for which the time limit occurred,

the corresponding entry gives, in brackets, the number of instancessolved within

100 seconds (the average values are computed by also considering the interrupted

instances). The cases where the time limit occurred for all the instances are denoted

as \"time limit\". The following algorithms have been codedin Fortran IV and run

on an HP 9000/840 computer, using option \"-o\" for the Fortran compiler:

RS =
Algorithm of Ross and Soland A975);

MTG=
Algorithm of Martello and Toth A981c) as describedin Section 7.3;

FJV =
Algorithm of Fisher, Jaikumar and Van Wassenhove A986);

MTGFJV =
Algorithm MTG with upper bound min A/2,1/3) (see Sections 7.2.2,
7.2.3) computed at each node of the branch-decision tree;

MTGJN = Algorithm MTG with upper bound min A/1,1/2,1/4) (see Sections

7.2.1, 7.2.2,7.2.4)computed at each node of the branch-decision tree.

For all the algorithms, the solution of the 0-1 single knapsack problemswas

obtained using algorithm MTl of Section2.5.2.
For the computation of U4, needed by MTGJN, the number of iterations in the

subgradient optimization procedure was limited to 50\342\200\224assuggested by the authors

(Jomsten and Nasberg, 1986)\342\200\224for the root node, and to 10 for the other nodes.

The Lagrangian multipliers were initially set to

. m n

f^ij=p
= \342\200\224

y^y^P'J^ ieMjeN
m n ^-^ ^-^

,=1 ;=i

(as suggested by the authors) for the root node, and to the corresponding values
obtained at the end of the previous computation for the other nodes. (Different
choices of the number of iterations and of the initial values of the multipliers

produced worse computational results.) The step used, at iteration k of the

subgradient optimization procedure, to modify the current /iy values was that

proposed by the authors, i.e.

7.6 Computational experiments 219

r =
k + l'

The tables show that the fastest algorithms are RS for the \"easy\" instances of

class (a), and MTG for the harder instances (b), (c),(d).Algorithms MTGFJV and

MTGJN generate fewer nodes than MTG, but the global running times are larger

(the computation of U3 and U4 being much heavier than that of Ui and U2), mainly

for problems of classes (b), (c) and (d).

Algorithm FJV is much worse than the other algorithms for all data sets,
contradicting, to a certain extent, the results presented for the same classes of

test problems in Fisher, Jaikumar and Van Wassenhove A986). This could be
explained by observing that such results were obtainedby comparing executions

on different computers and using different random instances. In addition, the current

implementation of MTG incorporates, for the root node, the computation of upper
bound t/3.

Table7.5gives the performance of the Fortran IV implementation of approximate
algorithm MTHG (Section 7.4) on large-size instances.The entries give average

running times (expressedin seconds) and, in brackets, upper bounds on the average

percentage errors. The percentage errorswere computed as 100 (U \342\200\224z^)/U, where

U = min (U 1,1/2,U3,U4).Only data sets (a), (b) and (c) are considered, since the

computation of U for data set (d) required excessiverunning times. Errors of value
0.000 indicate that all the solutions found were exact. The table shows that the

running times are quite small and, with few exceptions, practically independent

Table 7.5 Algorithm MTHG. HP 9000/840 in seconds. Average times (average percentage

errors) over 10 problems

m

5

10

20

50

n

50

100

200
500

50
100
200

500

50

100
200
500

50
100

200

500

Data set (a)

0.121@.184)
0.287@.063)

0.887@.029)

2.654@.012)

0.192@.016)
0.457@.019)
1.148@.004)
3.888@.006)

0.393@.062)

0.743@.002)

1.693@.008)

2.967@.000)

0.938@.000)
0.728@.005)
3.456@.002)
2.879@.000)

Data set (b)

0.140E.434)

0.325D.750)

0.869D.547)
3.860E.681)

0.225C.425)
0.521E.160)
1.271D.799)
5.139E.704)

0.399A.228)

0.866A.189)

2.011B.140)

7.442C.453)

0.832@.125)
1.792@.175)
3.849@.296)

12.613@.517)

Data set (c)

0.136F.822)
0.318E.731)
0.852F.150)
3.887F.145)

0.240F.243)
0.550E.908)
1.334E.190)
5.175E.553)

0.438F.479)

0.888E.187)

2.035D.544)

7.351D.367)

0.876B.024)
2.016D.041)
4.131C.248)

12.647C.198)

220 7 Generalized assignment problem

of the data set. For n = 500 and data set (a), the first execution of MTHG (with

fij
~

P'i) alrriost always produced an optimal solution of value z^ =
Uq, so the

computing times are considerablysmaller than for the other data sets. The quality

of the solutions found by MTHG is very good for data set (a) and clearly worse for

the other data sets, especiallyfor small values of m. However, it is not possible to
decide whether these high errors depend only on the approximate solution or also
on the upper bound values. Limited experimentsindicated that the error computed
with respect to the optimal solution value tends to be about half that computed
with respect to U.

8

Bin-packing problem

8.1 INTRODUCTION

The Bin-Packing Problem (BPP) can be described,using the terminology of

knapsack problems, as follows. Given n items and n knapsacks (or bins), with

Wj
= weight of item j,

c =
capacity of each bin,

assign each item to one bin so that the total weight of the items in each bin does
not exceed c and the number of bins usedis a minimum. A possible mathematical
formulation of the problem is

n

minimize ^ = /~>^' i^-^)
;= 1

n

subject to Z_]^j^ij ^ cyi, i E N = {I, ... ,n], (8.2)

n

Y,x,j
= 1, j e N, (8.3)

where

yi =

Xjj \342\200\224

ji =0 or 1, / G A^,

Xij
=0 or 1, / G N J G A^,

1 if bin / is used;

0 otherwise.

1 if item j is assigned to bin /;

0 otherwise.

(8.4)

(8.5)

We will suppose, as is usual, that the weights Wj
are positive integers. Hence,

without loss of generality, we will also assume that

221

222 8 Bin-packing problem

c is a positive integer, (8.6)

Wj
<c forjeN. (8.7)

If assumption (8.6) is violated,c can be replaced by [cj. If an item violates

assumption (8.7), then the instance is trivially infeasible. There is no easy way,

instead, of transforming an instance so as to handle negative weights.
For the sake of simplicity we will also assume that, in any feasible solution, the

lowest indexed bins are used, i.e.y, > _y,+i for / = !,...,\302\253
\342\200\2241.

Almost the totality of the literature on BPP is concerned with approximate

algorithms and their performance. A thorough analysis of such results would require

a separate book (the brilliant survey by Coffman, Garey and Johnson A984), to

which the reader is referred, includes a bibliography of more than one hundred

references, and new results continue to appear in the literature). In Section 8.2 we

briefly summarize the classical results on approximate algorithms. The remainder of

the chapter is devoted to lowerbounds (Section 8.3), reduction procedures (Section
8.4) and exact algorithms (Section 8.5), on which very little can be found in the

literature. Computational experiments are reported in Section 8.6.

8.2 A BRIEF OUTLINE OF APPROXIMATE ALGORITHMS

The simplest approximate approach to the bin packing problem is the Next-Fit (NF)

algorithm. The first item is assigned to bin 1. Items 2,... ,n are then considered by

increasing indices: each item is assigned to the current bin, if it fits; otherwise, it

is assigned to a new bin, which becomes the current one. The time complexity of

the algorithm is clearly O(n). It is easy to prove that, for any instance / of BPP,
the solution value NFA) provided by the algorithm satisfies the bound

NF(I)<2z(I), (8.8)

where z(/) denotesthe optimal solution value. Furthermore, there exist instancesfor

which the ratio NF(l)/z(I) is arbitrarily close to 2, i.e. the worst-case performance
ratio of NF is r(NF) = 2. Note that, for a minimization problem, the worst-case

performance ratio of an approximate algorithm A is defined as the smallest real

number r(A) such that

A(l)
< r(/i) for all instances /,

z(/)

where A(I) denotes the solution value provided by A.

A better algorithm, First-Fit (FF), considersthe items according to increasing
indices and assigns each item to the lowest indexed initialized bin into which it

fits; only when the current item cannot fit into any initialized bin, is a new bin

8.2 A brief outline of approximate algorithms 223

introduced. It has been proved in Johnson, Demers, Ullman, Garey and Graham

A974) that

^^(/)< Y^^@
+ 2 (8.9)

for all instances / of BPP, and that there exist instances /, with z (/) arbitrarily

large, for which

FF(/)>|^z(/)-8.
(8.10)

Because of the constant term in (8.9), as well as in analogous results for other

algorithms, the worst-case performance ratio cannot give completeinformation on

the worst-case behaviour. Instead, for the bin packing problem, the asymptotic
worst-case performanceratio is commonly used. For an approximate algorithm A,
this is defined as the minimum real number r'^{A) such that, for some positive

integer k,

Ail) < r^{A) for all instances / satisfying z(I) > k;
z(I)

it is then clear, from (8.9)-(8.10), that r\302\260^(FF)
=

|^.
The next algorithm, Best-Fit (BF), is obtained from FF by assigning the current

item to the feasible bin (if any) having the smallest residual capacity (breaking
ties in favour of the lowest indexed bin). Johnson, Demers,Ullman, Garey and

Graham A974) have proved that BF satisfies the same worst-case bounds as FF

(see (8.9)-(8.10)), hence r\302\260^(BF)
=

|^.
The time complexity of both FF and BF is 0(n\\ogn). This can be achieved by

using a 2-3 tree whose leaves store the current residual capacities of the initialized

bins. (A 2-3 tree is a tree in which: (a) every non-leaf node has 2 or 3 sons; (b)

every path from the root to a leaf has the same length /; (c) labels at the nodes

allow searching for a given leaf value, updating it, or inserting a new leaf in 0A)

time. We refer the reader to Aho, Hopcroft and Ullman A983) for details on this

data structure.) In this way each iteration of FF or BF requires 0(\\ogn) time, since
the number of leaves is bounded by n.

Assume now that the items are sorted so that

VVi > VV2 > . . . > W\342\200\236, (8.11)

and then NF or FF, or BF is applied. The resulting algorithms, of time complexity

0(n\\ogn), are called Next-Fit Decreasing (NFD),First-Fit Decreasing (FFD) and

Best-Fit Decreasing (BFD),respectively. The worst-case analysis of NFD has been
done by Baker and Coffman A981); that of FFD and BFD by Johnson, Demers,

Ullman, Garey and Graham A974), starting from an earlier result of Johnson A973)
who proved that

FFD(I)< \342\200\224
z(I) + 4 (8.12)

224 8 Bin-packing problem

Table 8.1 Asymptotic worst-case performance ratios of bin-packing algorithms

Algorithm

NF

FF

BF

NFD

FFD

BFD

Time complexity

0{n)

0(n\\ogn)

0(n\\ogn)

0(nlogn)

Oin\\ogn)

0(n\\ogn)

,.oc

2.000

1.700

1.700

1.691...

1.222...

1.222...

\342\200\236oc

^\\j2

2.000

1.500

1.500

1.424...

1.183...

1.183.,.

\342\200\236oc

'^1/3

1.500

1.333...

1.333...

1.302...

1.183...

1.183...

\342\200\236oc

'^1/4

1.333...

1.250

1.250

1.234...

1.150

1.150

for all instances /. The results are summarized in Table 8.1 (taken from Coffman,
Garey and Johnson A984)), in which the last three columns give, for a = ^, |, |,
the value r^ of the asymptotic worst-case performanceratio of the algorithms
when applied to instancessatisfying mini<y<\342\200\236{wy} < ac.

8.3 LOWER BOUNDS

Given a lower bounding procedure L for a minimization problem, let L(/) and z(/)
denote, respectively, the value produced by L and the optimal solution value for
instance /. The worst-caseperformance ratio of L is then defined as the largest
real number p{L) such that

L(/) > p(L) for all instances /.
z(/)

8.3.1 Relaxationsbasedlower bounds

For our model of BPP, the continuous relaxation C(BPP) of the problem, given

by (8.1)-(8.3) and

0 < J/ < 1, '\342\226\240e N,

0 <Xij < 1, / eNJ eN,

can be immediately solved by the values x\342\200\236
= 1, Xy =0 (j i i) and y,

= w,/c for
i \302\243N. Hence

n

z{C{BPP))=^Wi/c, (8.13)

8.3 Lower bounds 225

SO a lower bound for BPP is

L, = (8.14)

Lower bound Li dominates the bound provided by the surrogate relaxation

S(BPP, tt) given, for a positive vector (tt,) of multipliers, by

mmimize
-Ey>

subject to X]^' 'y^^J^'J \342\200\224^'
X]^'^\" (8.15)

(8.3). (8.4). (8.5).

First note that we do not allow any multiplier, say ttj, to take the value zero,
since this would immediately produce a useless solution xjj

= 1 for all j E N. We

then have the following

Theorem 8.1 For any instance of BPP the optimal vector of multipliers for

S(BPP, tt) is TT, = k (k any positive constant) for all i \302\243N.

Proof. Let 1 =
arg min {tt, : / G A^}. a = ttj, and suppose that (_y,*) and (x*j)

define

an optimal solution to S(BPP, tt). We can obtain a feasible solution of the same

value by setting, for eachy G A^, x-*,
= 1 and x,* = 0 for / ^ 1. Hence S(BPP. tt) is

equivalent to the problem

mmimize

; = 1

n n

subject to V^TT/y/ > \342\200\224
y^ wy,

;=1 j=i

yi = 0 or 1, / G N,

i.e., to a special case of the 0-1 knapsack problem in minimization form, for which

the optimal solution is trivially obtained by re-indexing the bins so that

TTi > 7r2 > ... > 7r\342\200\236(= a)

and setting y,
= 1 for / < 5 = min {I \302\243N : '}2r=i ^r > iot/c) Yll=\\ ^j}^ Ji - ^ for

i > s. Hence the choice ttj = a (= k, any positive constant) for all / G A^ produces

the maximum value of s, i.e. also of z(S(BPP. tt)). \342\226\241

226 S Bin-packing problem

Corollary 8.1 When tt^ = k > Ofor all i eN, z(S(BPP.7r))=z(C(BPP)).

ProofWith this choice of multipliers, S(BPP, tt) becomes

minimize

;\342\200\242= !;\342\200\242= !

n n

subject to 2_]^j ^ <^
Z_]yi'

yi = 0 or 1, i e N,

whose optimal solution value is ^\"^.i Wj /c. \342\226\241

Lower bound Li also dominates the bound provided by the Lagrangian relaxation

L(BPP, n) defined, for a positive vector(/i,) of multipliers, by

n n I n \\

minimize ^y, \"*\342\226\240
5Z^' ^^J^'i

~ ^y' ^^^^^
/=! ,=1

\\;=i /

subject to (8.3), (8.4),(8.5).

(Here again no multiplier of value zero can be accepted.)

Theorem 8.2 For any instance of BPP the optimal choice of multipliers for
L(BPP,fi) is Hi

= l/cfor all i eN.

Proof We first prove that, given any vector (/i,), we can obtain a better (higher)

objective function value by setting, for all / G A^, /i/ = /if, where 1=
arg min { //, :

/ \302\243N]. In fact, by writing (8.16) as

n n n

minimize
yj(l

\342\200\224
cfii)yi + _]^j Z_]l^i^ij^

;\342\200\242= ! y=l , = 1

we see that the two terms can be optimized separately. The optimal (xij) values are

clearly Xij
= 0 for / ^1 and xjj

= 1, for all j \302\243N. It follows that, setting //,
= fij for

all i \302\243N, the first term is maximized, while the value of the second is unchanged.
Henceassume //,

= k for all i \302\243N (k any positive constant) and let us determine

the optimal value for k. L(BPP.fi) becomes

minimize y^(l
-

ck)yi +k
V^vvy (8.17)

/=! j=l

subject to _y,
= 0 or 1, / G N,

8.3 Lower bounds 227

and its optimal solution is

(a) yi
= 0 for all i eN, hence z{L{BPP,^))= k

Y!j=^ wy, if yt < 1/c,

(b) yi = 1 for all i eN, hence z(L(BPP,fi)) = n - k(cn -
J2j=\\ ^j)^ if ^ >

Vein both cases the highest value of the objective function Yll^i ^i/^ i^ provided by
k = \\/c.U

Corollary 8.2 When fi,
= k =

\\/c for all i eN, z(L(BPP,fi)) = z(C(BPP)).

Proof. Immediate from (8.17) and (8.13). D

A lower bound dominating L\\ can be obtained by dualizing in a Lagrangian
fashion constraints (8.3). Given a vector

(Ay)
of multipliers, the resulting relaxation,

L(BPP. X), can be written as

n I n \\ \"

minimize
Y^

I y, + Y^AyXy
-

Y^Ay (8.18)

'\342\200\242=1
\\ i=i /)=i

subject to (8.2), (8.4),(8.5),

which immediately decomposes into n independent and identical problems (one
for each bin). By observing that for any /, _y, will take the value 1 if and only if

Xij
= 1 for at least one j, the optimal solution is obtained by defining

j< = {j eN -.Xj <o}

and solving the 0-1 single knapsack problem

maximize z(A)
=

y^ (\342\200\224Xj)qj

subject to y^ Wj-qj
< c,

qj =0 or I, j eJ\"^.

If z(A) > 1 then, for all / G A^, we have _y,
= 1 and x,y

=
qj (with qj = 0 if

j G A^ V^) fory G N, otherwise we have _y,
=

x,y
= 0 for all i J e N. Hence

n

z(L(BPP,X)) = mm @,\302\253A -z(A)))- ^Ay.

228 8 Bin-packing problem

It is now easy to see that, with the choice
Xj

=
\342\200\224wj/cfor ally G A^, the resulting

bound coincides with Li. The objective function of the knapsack problem is in fact

(Eje/< ^j^j)/c. with y< =
A^, so z(A) < 1 and z(L(BPP J)) =

X]J=i wj/c
=

z(C(BPP)).
Better multipliers can be obtained by using subgradient optimization techniques.

Computational experiments, however, gave results worse than those obtained with

the bounds described in the following sections.

8.3.2 A stronger lower bound

We first observe that the worst-case performance ratio of Li can easily be
establishedas r(Li) = 5. Note, in fact, that in any optimal solution (jCy)

of

value z, at most one bin (say the zth) can have
Yl%\\ ^j^zj ^ <^/2 since, if

two such bins existed, they could be replacedby a single bin. Hence ^\"=1wy >

E?=V E\"=i ^J^iJ > (^ - l)c/2, from which z <
\\2J2\"^^ Wj/c] and, from (8.14),

Li/z > ^. To see that the ratio is tight, it is enough to consider the series of

instances with Wy
= ^ + 1 for all j \302\243N and c = 2k, for which z = n and

Li =
\\n(k + I)/2k'], so the ratio Li/z can be arbitrarily close to ^ for k sufficiently

large.

Despite its simplicity, Li can be expectedto have good average behaviour for

problems where the weights are sufficiently small with respect to the capacity,
since in such cases the evaluation is not greatly affected by the relaxation of the

integrality constraints. For problems with larger weights, in which few items can
be allocated, on average, to each bin, Martello and Toth A990b) have proposed
the following better bound.

Theorem 8.3 Given any instance 1 ofBPP, and any integer a . 0 < a < c/2, let

J\\ = {j eN :
wj >c-a},

J2= {j e N : c - a>Wj > c/2],

J^ = {j eN : c/2 >
wj

> a};

then

L(a) =
I y 11 + I ^21 + max 0,

Ejeh'^j -(l-^2|c-E,e/,>^y) (8.19)

isa lower hound ofz(I).

8.3 Lower bounds 229

Proof. Each item in J\\ [JJ2 requires a separate bin, so 1/11 + 1/21 bins are needed

for them in any feasible solution. Let us relax the instance by replacing A^ with

{J\\ \\JJ2 U/s). Because of the capacity constraint, no item in ^3 can be assigned to
a bin containing an item of J\\. The total residual capacity of the [721 bins needed

for the items in ^2 is c = 172^\342\200\224
X],^/, vvy. In the best case c will be completely

filled by items in ^3, so the remaining total weight vv =
Y^j^j^ ^'j

\342\200\224c, if any, will

require [vv/c] additional bins. Q

Corollary 8.3 Given any instance I of BPP,

L2= max {L(a) : 0 < a < c/2, a integer] (8.20)

is a lower bound ofz(I).

Proof Obvious.\342\226\241

Lower bound L2 dominates Li. In fact, for any instance of BPP, using the value

Q = 0, we have, from (8.19),

L@)= 0+1/2!+max 0,
E,e/v^y-U2IC

= 1/21+ max (O.Li
- 1721),

hence L2 > L@)
= max (|721-^1)\342\200\242

Computing L2 through (8.20) would require a pseudo-polynomial time. The same
value, however, can be determined efficiently as follows.

Theorem 8.4 Let V be the set of all the distinct values Wj
< c/2. Then

(n if V =0;
L2=<

[max {L(a) : a \302\243V } othem'ise.

Proof. If V = 0 the thesis is obvious from (8.19). Assuming Vf^ 0, we prove that,

given a\\ < ^2, if ^i and Q2 produce the same set ^3, then L(a\\) < L(a2). In

fact: (a) the value |7i | + |72| is independent of a, (b) the value (|y2|c
~

II/e/2 ^J^
producedby ai is no less than the corresponding value produced by Q2, since set

J2 produced by Q2 is a subset of set J2 produced by ai. Hence the thesis, since
only distinct values Wj

< c/2 produce, when used as a, different sets ^3, and each
value Wj dominates the values Wj

\342\200\2241 vvy+i + 1 (by assuming that the weights

satisfy (8.11)). D

230 8 Bin-packing problem

Corollary 8.4 // the items are sorted according to decreasing weights, L2 can be

computed in 0(n) time.

Proof. Let

j* =min {j eN :
wj

< c/2};

from Theorem 8.4, L2 can be determined by computing L(Wj) for j = j*, j* +

I,... ,n, by considering only distinct Wy values. The computation of
L(wy*) clearly

requires 0(n) time. Since 1/11+1/2!is a constant, the computation of each new L(wj)
simply requires to update \\J2\\, H/g/^vvy

and J2iej ^J- Hence all the updatings

can be computed in 0(n) time since they correspond to a constant time for each

j =j* + l,...,n.\\J

The average efficiency of the above computation can be improved as follows.
At any iteration, let L^ be the largest L(wj) value computed so far. If jJi | + |y2|+

\\(Ylj=i* ^j
~

(\\J2\\c
-

IIye/2^;))/cl
< ^2' ^^^^ (s^^point (b) in the proof of

Theorem8.4)no further iteration could produce a better bound, so L2 = L^.

Example 8.1

Considerthe instance of BPP defined by

n =9,

(Wj)
= G0, 60, 50, 33, 33, 33, 11,7, 3),

c = 100.

An optimal solution requires 4 bins for item sets {1, 7, 8, 9},{2,4},{3,5} and

{6}, respectively.
From (8.14),

Li = [300/100]=3.

In order to determine L2 we compute,using (8.19) and Corollary 8.4,

LE0) = 2 +0 + max @, [E0
- 0)/100]) = 3;

LC3)= 1+ 1 +max @,[A49
- 40)/100]) = 4;

since at this point we have 1+ 1+ [A70
\342\200\224

40)/100]
= 4, the computation can be

terminated with L2 = 4. \342\226\241

The following procedure efficiently computes L2. It is assumed that, on input,

the items are sorted according to (8.11)and w\342\200\236< c/2. (If w\342\200\236> c/2 then, trivially,

L2 = n = z.) Figure 8.1 illustrates the meaning of the main variables of the

procedure.

8.3 Lower bounds 231

Wi

Wj > ^ w,<\302\247

SJ2 SJ3

SJ

Figure 8.1 Main variables in procedure L2

procedure L2:
input: n.(Wj).c;

output: L2;

begin
A^ := {1 n};
j* := min{y e N :

Wj
< c/2};

ify* =
lthenL2:=[^;^,w,/cl

else
begin

Cjn \342\226\240=]*
- 1 (comment :CJ 12= \\Ji\\ + \\J2\\y,

j' := min{y e N : j < j* and wj
< c -

wj* }(j' :=]* if no such wy);
CJ2 :=]* -j' (comment : CJ2= \\J2\\) ;

SJ2 := E/=;^' ^y (comment : 572 =
J2jeJ2 ^/)=

573 :=w
w\342\200\236+i:= 0;

while wy>'+i
=

wy>> do

232 8 Bin-packing problem

begin
J\":=j\"+U
SJ3 :=SJ3+ Wj>

end (comment : SJ3 = J2jeA ^i

L2 :=Cyi2;

repeat
L2 := max(L2.Cy 12+\\(SJ3 + SJ2)/c

- CJl]);
j\" :=j\"+ l;

\\ij\" < n then

begin
573 \342\226\240.=SJ3 + Wjn;
while wy>+1

=
Wjn do

begin

573 \342\226\240=SJ3+ Wjn
end;

whiley' > 1 and wy>_i
< c -

wy\302\273do

begin

y':=y'-i;
Cy2:=Cy2+l;
572 \342\226\240=SJ2+

Wj>

end

end

untily\" > \302\253or Cy 12 + \\{SJ* +SJ2)/c
- CJ2'] < L2

end
end.

The worst-case performance ratio of L2 is established by the following

Theorem 8.5 r(L2)=f.

Proof. Let / be any instance of BPP and z its optimal solution value. We prove

that L2 > L@) > |z. Hence,let a = 0, i.e. Jx = 0, J2 = {j e N : Wj > c/2}, J^ =

N\\J2. If ^3 = 0, then, from (8.19), L@) =\\J2\\= n =z. Hence assume^3 ^ 0. Let

I denote the instance we obtain by relaxing the integrality constraints on
Xij

for

all j G ^3 and / G A^. It is clear that L@) is the value of the optimal solution to T,
which can be obtained as follows. 172]bins are first initialized for the items in J2.

Then, for each item j G ^3, let /'* denote the lowest indexed bin not completely
filled (if no such bin, initialize a new one) and c(/*) < c its residual capacity. If

Wj
< c(i*) then item y is assigned to bin /'*; otherwise item y is replaced by two

items y'l .y2 with
wy,

= c(/*) and Wj^
=

Wj
\342\200\224

wy,, itemy'i is assigned to bin /'* and the

process is continued with item y2. In this solution L@)
\342\200\2241 items at most are split

(no splitting can occur in the L@)th bin). We can now obtain a feasible solution
of value z > z to / by removing the split items from the previous solution and

assigning them to new bins. By the definition of ^3, at most \\(L@)
\342\200\224

l)/2] new

bins are needed, so z < L@) + [L@)/2J, hence
\302\247L@) > z.

To prove that the ratio is tight, consider the series of instances with n even.

8.4 Reduction algorithms 233

Wj
= ^ + 1 (k > 2) for y

= l,...,n and c = 3^. We have z = n/2 and

L2 = L(k + 1)= \\n(k + l)/C^)], so ratio L2/Z can be arbitrarily close to | for k

sufficiently large. Q

It is worthy of note that lower bounds with better worst-case performance
can easily be obtained from approximate algorithms. We can use, for example,

algorithm BFD of Section 8.2 to produce, for any instance /, a solution of value

BFD(I). This solution (see Johnson, Demers, Ullman, Garey and Graham A974))

satisfies the same worst-casebound as FFD(I), so we trivially obtain a lower bound

(see (8.12))

LBFD(I)= \342\200\224(BFD(I)
- 4), (8.21)

whose worst-caseperformance is smaller than that of L2 for z (/) sufficiently large,

and asymptotically tends to fj. Since however BFD(I) is known to be, in general,

close to z (/), the average performance of LBFD is quite poor (as will be seen in

Section 8.6).

8.4 REDUCTION ALGORITHMS

The reduction techniques described in the present sectionare based on the following
dominance criterion (Martello and Toth, 1990b).

We define 2l feasible set as a subset F C N such that '}2ieF ^J \342\200\224*-\342\200\242Given two

feasible sets Fi and F2, we say that Fi dominates F2 if the value of the optimal
solution which can be obtained by imposing for a bin, say /*, the values Xi*j

= 1

if y G F\\ and Xj*j
= 0 if j ^ F\\, is no greater than the value that can be obtained

by forcing the values x/*y
= I if j \302\243F2 and Xi*j

= 0 if j ^ F2. A possible way to

check such situations is the following

Dominance Criterion Given two distinct feasible sets F\\ and F2, if a partition

of F2 into subsets P\\,... ,Pi and a subset {yi,... ,ji} of F\\ exist such that Wj^
>

J2kePh ^'^ f^^ ^ ~ 1'\342\200\242\342\200\242\342\200\242'^' ^^^^ ^1 dominates F2.

Proof Completing the solution through assignment of the items in A^\\Fi is
easier than through assignment of the items in N\\F2. In fact: (a) J2j^i^\\p-^ wy

<

J2ieN\\F2 ^p (^) ^^^^'^y feasible assignment of an itemy'/, G {yi, \342\200\242\342\200\242\342\200\242Ji} C Fi there
exists a feasibleassignment of the items in P/, C F2 (while the opposite does not

hold). D

If a feasible set F dominates all the others, then the items of F can be assigned
to a bin and removed from A^. Checking all such situations, however, is clearly
impractical. The following algorithm limits the search to sets of cardinality not

greater than 3 and avoids the enumeration of useless sets. It considers the items

according to decreasing weights and, for each itemy, it checks for the existence of a

234 8 Bin-packing problem

feasible set F such thaty G F, with 1 F | < 3, dominating all feasible sets containing

item j. Whenever such a set is found, the corresponding items are assigned to a
new bin and the search continues with the remaining items. It is assumed that, on

input, the items are sorted according to (8.11). On output, z' gives the number of

optimally filled bins, and, for each j \302\243N,

bj
=

0 if item j has not been assigned;

bin to which it has been assigned, otherwise.

procedure MTRP:

input: n.(wj).c;

output: z''.(bj);
begin

A^:={1 n};
W :=0;

z' :=0;

fory := I Xo n do
bj

:= 0;

repeat _
findy

= m\\n{h : h e N\\N};
let A^' = A^\\{y} =

{yi ji} with
w\342\200\236

> ... > wy,
F :=0;
find the largest k such that wy + I^^=/_^+i w;^

< c;

if yt =OthenF := {y}
else

begin
y* := min {h e N' : wj

+ w/, < c};
if ^ = 1 or

Wj + Wj*
= c then F := [j-j*]

else if ^ = 2 then

begin
i\\n6ja.jh G A^', with a < b, such that

Wj^ +
Wji^

= max {wy, + Wj,, :

jrjs G A^'. Wj
+

Wj, +
Wj^

< c};
if Wj. >

Wj^
+

Wj^ then F := {y.y*}
else if Wj*

=
Wj^ and (b - a <2

or Wy +Wy,_i +Wy,_2 > c)
thenF :={j.jajh}

end

end; _ _
if F =0thenAf := N U{y}
else

begin
z' :=z''+ l;

for each h e F do bh = z';

N \342\226\240=N\\F

end

until Af\\Af =0

end.

8.4 Reduction algorithms 235

At each iteration, k +1 gives the maximum cardinality of a feasible set containing

item j. Hence it immediately follows from the dominance criterion that F = {j]
when ^ = 0, and F = {j,j*} when ^ = 1 or

wy
+ Wj*

= c. When k = 2, (a) if

Wj* >
Wj^ +Wj^ then set {j*} dominates all pairs of items (and, by definition of y*,

all singletons) which can be packed together withy, so {j .j*} dominates all feasible
sets containing j; (b) if

Wj
* =

Wj^
and either b \342\200\224a < 2 or

wy
+ wy^ _ i + w^,, _ 2 > c then

set {jajh} dominates all pairs and all singletons which can be packed together
with j.

The time complexity of MTRPis 0{n^).In fact, the repeat-until loop is executed
O(n) times. At each iteration, the heaviest step is the determination of ja and jh,
which can easily be implemented so as to require 0(n) time, since the pointers r

and s (assuming r < s) must be moved only from left to right and from right to

left, respectively.
The reduction procedure abovecan also be used to determine a new lowerbound

L3. After execution of procedure MTRP for an instance / of BPP, let zf denote
the output value of z'^, and /(z[) the corresponding residual instance, defined by

item set {j \302\243N : bj
= 0}. It is obvious that a lower bound for / is given by

zj +L(I(z[)), where L(I(z'^)) denotes the value of any lower bound for /(z[).

(Note that zf +L(/(z[)) > L(/).) Suppose now that /(zf) is relaxed in some way

(see below) and MTRP is applied to the relaxed instance, producing the output

value Z2 and a residual relaxed instance/(z[.Z2). A lower bound for / is then

z[+Z2 +L(/(z[.Z2)). Iterating the process we obtain a series of lower bounds of

the form

L3=z[+Z2^ + ...+L(/(zCz^-,...)).

The following procedure computes the maximum of the above bounds, using L2
for L. At each iteration, the current residual instance is relaxed through removal

of the smallest item. It is assumed that on input the items are sorted according to

(8.11).

procedureL3:

input: n.(wj).c;

output: L3;
begin

L3 :=0;
z :=0;

Ti := n;

fory := I to n do Wj :=
wy;

while n > I do

begin _
call MTRP giving n. (vvy) and c, yielding z' and (bj);
z := z + z'';

k := 0;
for y := I XoTi do

if bj
= 0 then

236 8 Bin-packing problem

begin
k \342\226\240.=k + \\;

Wk := Wj

end;

It := k]
if \302\253= 0 then L2 := 0
else callL2 giving Ti. (Wj) and c, yielding L2;

L3 := max(L3.z +L2);
n \342\226\240=n\342\200\2241 (comment: removal of the smallest item)

end

end.

Since MTRP runs in 0(n^) time, the overall time complexity of L3 is 0(n^). It

is clear that L3 > L2.
Note that only the reduction determined in the first iteration of MTRP is valid

for the original instance, since the other reductions are obtained after one or more

relaxations. If however, after the execution of L3, all the removed items can be

assigned to the bins filled up by the executions of MTRP, then we obtain a feasible
solution of value L3, i.e. optimal.

Example 8.2

Considerthe instance of BPP defined by

n = 14,

(Wj) = (99, 94, 79, 64, 50, 46, 43, 37, 32, 19,18,7, 6, 3),

c = 100.

The first execution of MTRP gives

j =l:k =0,F = {1};
j =2:k =\\,j*

= \\3,F = {2. 13},

and F = 0 fory > 3. Hence

z =2; (bj)
= A,2,0,0, 0, 0, 0, 0, 0, 0, 0, 0,2,0);

executing L2 for the residual instance we get L2 = 4, so

^3=6.

Item 14 is now removed and MTRP is applied to item set {3, 4,..., 12},
producing (indices refer to the original instance)

8.5 Exact algorithms 237

j = 3:k = l,j* = lO,F=
{3, 10};

j = 4: k = 2,j*= 9,ja=
\\lJf,

= n,F = {4,9};

j = 5: k=2,j*= 6,ja= l,h = n,F=0-

j = 6: k=2,j*= 5Ja= 7,7,= 12,F = {6, 5};

7=7: k=2,j*= 8,7, = 8,7,= 11,F = {7, 8, 11};

7 =l2:k=0,F = {12};

numbering the new bins with 3, 4,..., 7 we thus obtain

z = 7; (bj) =
A, 2, 3, 4, 5, 5, 6, 6, 4, 3, 6, 7, 2, -);

hence L2 = 0 (since Tf = 0) and the execution terminates with L3 = 7.

Noting now that the eliminated item 14 can be assigned,for example to bin 4,
we conclude that all reductions are valid for the original instance. The solution
obtained (with ft 14 = 4) is also optimal, since all items are assigned. Q

8.5 EXACT ALGORITHMS

As already mentioned, very little can be found in the literature on the exact solution
of BPP.

Eilon and Christofides A971) have presented a simple depth-first enumerative

algorithm based on the following \"best-fit decreasing\" branching strategy. At any

decision node, assuming that b bins have been initialized, let (c,,,...,c,J denote

their current residual capacities sorted by increasing value, and c,,,^,
=

Cf,+ \\
= c the

capacity of the next (not yet initialized) bin: the branching phase assigns the free
item 7* of largest weight, in turn, to bins is,..., ih-ih+\\, where s = min {h : I <
h < b + \\, c,,, +

vvy*
< c}. Lower bound Li (see Section8.3.1)is used to fathom

decision nodes.
Hung and Brown A978) have presented a branch-and-bound algorithm for a

generalization of BPP to the case in which the bins are allowedto have different

capacities. Their branching strategy is based on a characterization of equivalent

assignments, which reduces the number of exploreddecisionnodes.The lower

bound employed is again Li.

We do not give further details on these algorithms, since the computational results

reported in Eilon and Christofides A971) and Hung and Brown A978) indicate that

they can solve only small-size instances.

Martello and Toth A989) have proposed an algorithm, MTP, based on a \"first-

fit decreasing\" branching strategy. The items are initially sorted according to

decreasing weights. The algorithm indexes the bins according to the order in

which they are initialized. At each decision node, the first (i.e. largest) free item is

238 8 Bin-packing problem

assigned, in turn, to the feasible initialized bins (by increasing index) and to a new

bin. At any forward step, (a) procedures L2 and then L3 are called to attempt to

fathom the node and reduce the current problem; (b) when no fathoming occurs,

approximate algorithms FFD, BFD (see Section 8.2) and WFD are applied to
the current problem, to try and improve the best solution so far. (A Worst-Fit

Decreasing (WFD) approximate algorithm for BPP sorts the items by decreasing

weights and assigns each item to the feasible initialized bin (if any) of largest

residual capacity.) A backtracking step implies the removal of the current itemy*

from its current bin / *, and its assignment to the next feasible bin (but backtracking

occurs if/* had been initialized byy'*, since initializing /*-i-l withy* would produce

an identical situation). If z is the value of the current optimal solution, whenever

backtracking must occur, it is performed on the last item assigned to a bin of index

not greater than z \342\200\2242 (since backtracking on any item assigned to bin z or z \342\200\2241

would produce solutions requiring at least z bins).
In addition, the following dominance criterion betweendecisionnodes is used.

When the current item j* is assigned to a bin /* whose residual capacity c,* is
less than Wj* + Wn, this assignment dominates all the assignments to /* of items

j > j* which do not allow the insertion of at least one further item. Hence such

assignment \"closes\" bin /*, in the sense that, after backtracking on j*, no item

j \302\243{k > j* : Wk +Wn > c/*} is assigned to /*; the bin is \"re-opened\" when the

first item j > j* for which wy + w\342\200\236< c,* is considered or, if no such item exists,

when the first backtracking on an item / < y* is performed.

Since at any decision node the current residual capacities c, of the bins are

different, the computation of lower bounds L2 and L3 must take into account this

situation. An easy way is to relax the current instance by adding one extra item of
weight c \342\200\224

c, to the free items for each initialized bin /, and by supposing that all

the bins have capacity c.

Example 8.3

Consider the instance of MTP defined by

n = 10;

(wy)
= D9, 41, 34, 33, 29, 26, 26, 22, 20, 19);

c = 100.

We define a feasible solution through vector (bj), with

bj = bin to which item y is assigned (y = 1, ... ,\302\253);

Figure 8.2 gives the decision-tree producedby algorithm MTP. Initially, all lower
bound computations give the value 3, while approximate algorithm FFD gives the

first feasible solution

2=L3=3
(^

dominated :=3 (optimal)
(hj)={l.2.3.2.l.23A33)

b6=3

610=4

z=4

(/7^)=A.1.2.2.2.3.3.3,3.4)

Figure 8.2 Decision-treefor Example 8.3

240 8 Bin-packing problem

z =4,

{hj) =
A, 1, 2, 2, 2, 3, 3, 3, 3, 4),

corresponding to decision-nodes 1-10. No second son is generatedby nodes 5-9,

since this would produce a solution of value 4 or more. Nodes 11 and 12 are
fathomed by lower bound Lj. The first son of node 2 initializes bin 2, so no further

son is generated. The first son of node 13 is dominated by node 2, since in both
situations no further item can be assigned to bin 1; for the same reason node 2

dominates the first son of node 15.Node 14 is fathomed by lower bound Lj. At

node 16, procedure MTRP(calledby L3) is applied to problem

rt = 9,

(vvy)
= G4, 49, 34, 29, 26, 26, 22, 20, 19),

c = 100,

and optimally assigns to bin 2 the first and fifth of these items (corresponding to

items 2, 4 and 6 of the original instance). Then, by executing the approximate

algorithm FFD for the reduced instance

(wj) = (-, -, -, -, 29,-, 26,22,20,19),
(Ci) =E1,0, 66, 100, 100, ...),

where r, denotes the residual capacity of bin /, we obtain

(hj) = (_ _ _ _ i,_ 3, 1,3, 3),

hence an overall solution of value 3, i.e. optimal. \342\226\241

The Fortran implementation of algorithm MTP is included in the present volume.

8.6 COMPUTATIONALEXPERIMENTS

In this section we examine the average computational performance of the lower

bounds (Sections 8.3-8.4) and of the exact algorithm MTP (Section 8.5).The

procedures have been coded in Fortran IV and run on an HP 9000/840 (using

option \"-o\" for the compiler) on three classes of randomly generated item sizes:

Class 1: Wj uniformly random in [1, 100];

Class2: Wj uniformly random in [20, 100];

Class3: Wj uniformly random in [50, 100].

8.6 Computational experiments 241

ex
o

ooo
ON

a.
X

u

^

^

^

^

u

o 00 r- NO in

O NO ON 00 O
o ON Tt r- NO
o \342\200\224\342\200\224o o
d d d d d

-^ NO CO CO -^
O O -^ CO ON
o o o o oo o d d d

r- -^ Tt (N r-

ON r- -^ Tt ON
-^ r- ON ON in
in 00 (N \342\200\224\342\200\224;
d d d d d

-^-^-^ CO r-
o o o o oo o o o o
c5 d d d d

CO ON ON r- r--^ ^ CO 00 (N
Tt in in Tt \342\200\224-

NO C<S (N (N \342\200\224

-^ -^ (N (N CO
o o o o oo p o o oddd dd

in o ^ in (N
r- CO CO r- in
p in On \342\200\224

^_
00 ^ d On 00
(N (N (N -^ -^

CO ON O -^ NO
O O (N NO CO
O O O O \342\200\224

d d d d d

o o o o o
in o o o o

\342\200\224(N in o

O O ON 00 NO
(N (N \342\200\224\342\200\224\342\200\224

O O ON (N (N
O O m CO CO
O O O O O
d d d> czi d

(N CO ON ON 00
o o o \342\200\224in
o o o o od d d d d

00 NO CO o in
00 NO (N ON 00
o o in 00 NO
CO CO CO -^ \342\200\224;
d d d d d

-^ (N -^ CO in
o o o o oo o o o o
d> d d d d

00 NO Tt 00 in
CO Tt 00 in o
ON 00 o in 00
r-^ NO NO in Tt

o o o o oo o o ooddddd

^^ c^ ^ ^
\342\200\224Tt ON O ^
00 NO \342\200\224;in ^
r-^ CO d On 00
(N (N (N \342\200\224-^

Tt -^ (N ON ON
o -^ <N in CO
o o o o \342\200\224

d> d d d d>

o o o o o
in o o o o-^ (N in o

o o o o o
(N (N (N (N (N

o o o o oo o o o ooooooddddd

-^ CO in NO 00
O O O \342\200\224c<^
o o o o od d d d d

ooooo
(N (N (N (N (N

o o o o oo o o o ooooooddddd

ooooooooooddddd

o^ (N c<^ ^ inO \342\200\224O ^ 00
CO O p O <N
C<S Tt Tt Tt Tt
(N (N (N (N (N

o o o o oo o o o oddd dd

-^ (N CO -^ CO
00 \342\200\22400 Tt in
(N NO ^_ 00 \342\200\224;
Tt \342\200\224On 00 00
(N (N \342\200\224\342\200\224\342\200\224

Tt O c<^ (N NO
O \342\200\224<N NO ^
o o o o \342\200\224

czi d d> czi d>

o o o o o
in o o o o-^ (N in o

CO

242 8 Bin-packing problem

o
ex

o

U

^

^

^

^

U

o

o'oo
o

\302\253n
oo
o

o
oooo

ooo

o
00
00

ro

Oo
o

CO
00
ON

O
O
o

o
\302\253n

\302\253n
CO

o

o
o

^

o

Ooo

o
o
ON
ON

o
o
o

\302\253n

00
o
o
o

oo

o
o'ooo

oo

r-

\302\253n

o

CO
o
O
O

CO

CO

o

oo
o

o'
00

(N

o
O
o

oo

00

o
o

CO

O

\302\253n

^

o

oo
o

CO

00
CO
\302\253n
o

oo
o

CO

ON

\302\253n
\302\253n
o
o

oo
\302\253n

00

o
o

CO
00
ON

o

r-

\302\253n
CO
o
o

00ooo

r-
\302\253n
o

o

oo
o

CO

\302\253n
00

O

ooo

00

oo'
o

o

CO
oo
o

in

ON

o

oo
o

o

ON
r-

oo
o

\302\253n
00

CO
o
O
O

O
\302\253n

ON

ON
o
o

\302\253n
o
o
o

in

00

o

oo
o

(N

ro

O
o
o

00
00
CO

ON
oo
o

oo

ON

\302\253n
o
o

ON
o
o
o

o
o
00
\302\253n
o

oo
o

o

CO
CO

o
o
O

O

ON

O
o

oo

ON^
\302\253n
o
o

CO

O
o

\342\200\224

O

o
o
o

o

o
CO

o
o
o

o
CO
ON

o
o
o

oo
\302\253n

CO

o'
00
o
o

o
o

00

ON
CO

o

oo
o

o
00
CO

CO
o
o
o

o
00

o

ooo

o
o'ooo

ooo

o
oooo

ooo

o
\302\253n

o
o
o

oo'
o

\302\253n

o
o
o

o
\302\253n

o

oo
o

ooo

o
oooo

ooo

o
CO

o
o
o

CO
o
\302\253n

(N

o
o
o

oo

o
o'ooo

ooo

00

CO

o
o

oo
o

o
\302\253n
\302\253n

o
o
o

\302\253n

ON

CO

O
O

oo

CO

o

oo
o

oo

ON

o
o

oo
o

o
\302\253n
CO
o

Oo
o

NO
00

NO
o
o

oo
\302\253n

o

o'oo
o

NO
CO
o
o

(N

NO
\302\253n
o
o

CO
o
O
O

O
\302\253n

(N

CO
o
O
o

CO

CO
00

o

ooo

8.6 Computational experiments 243

o
ex
o

U

^

^

^

^

S

U

ON O O O O-^ (N (N (N (N

o'o' o'o'o'
\302\253no o o o
<N O O O O
o o d d d

\342\200\224ON r- r- \342\200\224
-^ CO CO in -^
O O \342\200\22400 O
d d d> d ^

ON O O O O-^ (N (N (N (N

o o o o o
>n o o o o
(N O O O O
d d d d d

-^ CO (N ^ ON
o o o o oo o o o o
c5 d d d d

00 O O O O-^ (N (N (N (N

00 O O O O
00 O O O O^ o o o od d ddd

^ -^ -^ (N C<^
o o o o oo o o o odddd d

(N^ ^ ^ t-^ oT
CO CO 00 O 00
00 NO On p \342\200\224;
-J in -^ d On
CO (N (N (N -^

CO ON NO NO ON
o o -^ \302\253n-^
o o o o \342\200\224'

d> d> d d> d>

o o o o o
\302\253no o o o

\342\200\224(N \302\253no

ON Tt in o o
r- r- 00 CO Tt
\342\200\224(N r- \302\253n(N
(N r- ON -^ (N

d ci ci ^ ^

^- CO ON ON NO
-^ Tt NO CO O
O O \342\200\224'\342\200\224'00
czi czi d -^ as

ON Tt in o o
r- r- 00 c<^ ^
\342\200\224(N r\342\200\224in (N
(N r- ON -^ (N

d ci ci ~^ -^

\342\200\224\342\200\224Tt Tt ino o o o oo o o ooddddd

00 ^ O O O
r- r- 00 c<^ ^
\342\200\224(N r- in (N
NO r- ON -^ (N

d d> d> ^ -^

\342\200\224\342\200\224-^ (N C<^
o o o o oo o o q qddd d d

SS- S S- S-
00^ (N^ ^ r- NO
o in 00 CO -^
^_ NO On 00 Tt
-^ CO d On 00
CO (N (N -^ -^

Tt ON O ON 00
O O (N in (N
O O O O \342\200\224'

d d d d d

o o o o o
in o o o o-^ (N in o

o o o o o
(N (N (N (N (N

o'o' o'o' o'o o o o oo ooooddddd

(N c<^ r- ON NO
O O O \342\200\224c<^
o o o o od d d d d

r- CO ON -^ 00

ON in in ^ 00r- NO (N CO (N
in NO NO (N CO

d d> d d> d>

-^ (N (N c<^ in
o o o o oo o o o oddd dd

\342\200\224'^ O O O
\342\200\224(N NO o r-
in o in 00 00
00 C<^ 00 ^_ NO
00 Tt CO CO -^

o o o o oo o o q qd dd dd

S- S S- S S-i^r- -^ ON r-
^ ^ r- in (N
On (N NO ^, in
r-^ CO d On 00
(N (N (N -^ -^

CO ON -^ -^ (N
O O (N NO c<^
O O O O \342\200\224'

d d d d d

o o o o o
in o o o o

\342\200\224(N in o

CO

244 8 Bin-packing problem

For each class,three values of c have been considered:c = 100, c = 120,
c = 150. For each pair (class, value of c) and for different values of n (n =

50, 100,200,500,1000),20 instances have been generated.
In Tables 8.2-8.4 we examine the behaviour of lower bounds LBFD, LI, L2

and L3. The entries give, for each bound, the average computing time (expressed
in seconds and not comprehensive of the sorting time), the average percentage
error and, in brackets, the number of times the value of the lower bound coincided

with that of the optimal solution. LBFD requires times almost independent of
the data generation and, because of the good approximation produced by the
best-fit decreasing algorithm, gives high errors, tending to ^ when n grows. L\\

obviously requires very small times, practically independent of the data generation;
the tightness improves when the ratio c/minj{wj] grows, since the computation is

based on continuous relaxation of the problem. L2 requires slightly higher times,

but produces tighter values; for class 1 it improves when c grows, for classes 2 and

3 it get worse when c grows. The times required by L3 are in general comparatively
very high (because of the iterated execution of reduction procedure MTRP), and

clearly grow both with n and c, the approximation produced is generally very good,

with few exceptions.
Note that the problems generated can be considered\"hard\", since few items are

packed in each bin. Using the value c = 1000,L\\ requires the same times and

almost always produces the optimal solution value.

Table 8.5 gives the results obtained by the exact algorithm MTP for the instances
used for the previous tables. The entries give averagerunning time (expressed in

seconds and comprehensive of the sorting time) and average number of nodes

Table 8.5 Algorithm MTP. HP 9000/840 in seconds. Average times/Average numbers of
nodes over 20 problems

Class

1

2

3

n

50
100
200
500

1000

50

100
200
500

1000

50
100

200

500

1000

c = 100
Time

0.006

0.012

5.391
10.236
20.206A6)

0.005
0.012
0.047

0.127

15.524A7)

0.005
0.010
0.019
0.049
0.102

Nodes

0

1

1114

2805

2686

0
1

11

28

3896

0
0
0
0
0

c = 120

Time

0.005

15.022A7)
0.062

10.340
6.596

0.008

0.030

0.073

10.062

30.148A4)

0.005
0.010
0.020

0.050

0.104

Nodes

0
3561

6
887
244

1

9

18

1663
4774

0
0
0
0
0

c = 150

Time

0.096

0.156
0.140
2.124
8.958

0.183
26.599A5)

69.438(7)
\342\200\224

\342\200\224

0.005

0.010

0.018
0.051
0.105

Nodes

11
29

10

28

44

61
4275
8685
\342\200\224

\342\200\224

0

0

0
0
0

8.6 Computational experiments 245

explored in the branch-decision tree. A time limit of 100 seconds was assigned
to the algorithm for each problem instance.When the time limit occurred, the

corresponding entry gives, in brackets, the number of instances solved to optimality

(the average values are computed by also considering the interrupted instances).
When less than half of the 20 instances generated for an entry was completed,

larger values of n were not considered.

All the instances of Class 3 were solvedvery quickly, since procedure L3 always

produced the optimal solution. For Class 1 the results are very satisfactory, with

few exceptions. On Class 2, the behaviour of the algorithm was better than on

Class 1 for c = 100, about the same for c = 120, and clearly worse for c = 150.
Worth noting is that in only a few cases the optimal solution was found by the

approximate algorithms used.

Appendix: Computer codes

A.1 INTRODUCTION

The diskette included in the volume contains the Fortran implementations of the

most effective algorithms described in the various chapters. Table A.l gives,

for each code, the problem solved, the approximate number of lines (including

comments), the section where the corresponding procedure (which has the same

name as the code) is described,and the type of algorithm implemented. Mostof the

implementations are exact branch-and-bound algorithms which can also be used to

provide approximate solutions by limiting the number of backtrackings through an

input parameter (notation Exact/Approximate in the table).

Table A.l Fortran codes included in the volume

Code

MTl
MTIR
MT2

MTB2

MTU2

MTSL

MTC2

MTCB

MTM
MTHM

MTG
MTHG

MTP

Problem

0-1 Knapsack
0-1 Knapsack

0-1 Knapsack

Bounded Knapsack

Unbounded Knapsack

Subset-Sum

Change-Making

Bounded Change-Making

0-1 Multiple Knapsack
0-1 Multiple Knapsack

Generalized Assignment
Generalized Assignment

Bin Packing

Lines

280
300

1400

190

(+1400)*

1100

780

450

380

670
590

2300

500

1330

Section

2.5.2
2.5.2
2.9.3

3.4.2

3.6.3

4.2.3

5.6

5.8

6.4.3

6.6.2

7.3

7.4

8.5

Type of algorithm

Exact
Exact (real data)

Exact/Approximate

Exact/Approximate

Exact/Approximate

Exact/Approximate

Exact/Approximate

Exact/Approximate

Exact/Approximate

Approximate

Exact/Approximate
Approximate

Exact/Approximate

MTB2 must be linked with MT2.

247

248 Appendix: Computer codes

All programs solve problems defined by integer parameters, except MTIR which

solves the 0-1 single knapsack problem with real parameters.

All codes are written according to PFORT, a portable subset of 1966ANSI

Fortran, and are accepted by the PFORT verifier developed by Ryder and Hall

A981) at Bell Laboratories. The codes have been tested on a Digital VAX 11/780
and a Hewlett-Packard 9000/840.

With the only exception of MTB2 (which must be linked with MT2), the codes
are completely self-contained. Communication to the codes is achieved solely
through the parameter list of a \"main\" subroutine whose name is that of the code.

The following sections give, for each problem and for each code, the

corresponding comment and specification statements.

A.2 0-1 KNAPSACK PROBLEM

A.2.1 CodeMTl

SUBROUTINE MTl (N, P, W, C, Z, X, JDIM, JCK,

XX, MIN, PSIGN, WSIGN, ZSIGN)

This subroutine solves the 0-1 single knapsack problem

maximize Z = P(l) X(l) -h ... + P(N) X(N)

subject to W(l) X(l) -H ... -H W(N) X(N) < C,

X(J) = 0or 1 for J=l, ..., N

The program implements the branch-and-bound algorithm described in Section

2.5.2, and derives from an earlier code presented in S. Martello, P. Toth, \"Algorithm

for the solution of the 0-1 single knapsack problem\". Computing, 1978.

The input problem must satisfy the conditions

A) 2 < N < JDIM- 1;

B) P(J), W(J), C positive integers;

C) max (W(J)) < C;

D) W(l) + ... -hW(N) > C;

E) P(J)/W(J) > P(J + 1)/W(J -H 1) for J = 1,..., N - 1.

MTl calls 1 procedure:CHMTl.

The program is completely self-contained and communication to it is aqhieved
solely through the parameter list of MTl.
No machine-dependentconstant is used.

Appendix: Computer codes 249

MTl needs 8 arrays (P, W, X, XX, MIN, PSIGN, WSIGN and ZSIGN) of length

at least N + 1.

Meaning of the input parameters:

N = number of items;

P(J) =
profit of item J (J = 1,..., N);

W(J) = weight of item J (J = 1,..., N);

C = capacity of the knapsack;

JDIM = dimension of the 8 arrays;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the optimal solution if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

X(J) = 1 if item J is in the optimal solution,
= 0 otherwise.

Arrays XX, MIN, PSIGN, WSIGN and ZSIGN are dummy.

All the parameters are integer. On return of MTl all the input parameters are

unchanged.

INTEGER P(JDIM), W(JDIM), X(JDIM), C, Z

INTEGER XX(JDIM), MIN(JDIM)
INTEGER PSIGN(JDIM), WSIGN(JDIM), ZSIGN(JDIM)

A.2.2 Code MTIR

SUBROUTINEMTIR (N, P, W, C, EPS, Z, X, JDIM, JCK,
XX,MIN, PSIGN, WSIGN, ZSIGN, CRC, CRP)

This subroutine solves the 0-1 single knapsack problem with real parameters

maximize Z = P(l) X(l) + ... + P(N) X(N)

subject to W(l) X(l) + ... + W(N) X(N) < C,

X(J) = 0or 1 for J = 1,..., N.

The program implements the branch-and-bound algorithm described in Section

2.5.2, and is a modified version of subroutine MTl.

250 Appendix: Computer codes

The input problem must satisfy the conditions

A) 2 < N < JDIM- 1;

B) P(J),W(J), C positive reals;

C) max (W(J)) < C;

D) W(l) + ... + W(N) > C;

E) P(J)/W(J) > P(J + 1)/W(J + 1) for J = 1,..., N - 1.

MTIR calls 1 procedure:CHMTIR.

The program is completely self-contained and communication to it is achieved

solely through the parameter list of MTIR.
No machine-dependentconstant is used.

MTIR needs 10 arrays (P, W, X, XX, MIN, PSIGN,WSIGN, ZSIGN, CRC and

CRP) of length at least N -i- 1.

Meaning of the input parameters:

N = number of items;

P(J) =
profit of item J (J = 1,..., N);

W(J) = weight of item J (J = 1,..., N);

C = capacity of the knapsack;

EPS = tolerance (two positive values Q and R are considered equal
if ABS(Q

- R)/max (Q, R) < EPS);
JDIM = dimension of the 10 arrays;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the optimal solution if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

X(J) = 1 if item J is in the optimal solution,
= 0 otherwise.

Arrays XX, MIN, PSIGN, WSIGN, ZSIGN, CRC and CRP are dummy.

Parameters N, X, JDIM, JCK, XX and ZSIGN are integer. Parameters P, W, C, Z,

Appendix: Computer codes 251

MIN, PSIGN, WSIGN, CRC, CRP and EPS are real. On return of MTIR all the

input parameters are unchanged.

REAL P(JDIM), W(JDIM)

INTEGER X(JDIM)

INTEGER XX(JDIM), ZSIGN(JDIM)
REAL MIN(JDIM), PSIGN(JDIM), WSIGN(JDIM), CRC(JDIM), CRP(JDIM)

A.2.3 CodeMT2

SUBROUTINE MT2 (N, P, W, C, Z, X, JDIM, JFO, JFS, JCK, JUB,
lAl, IA2, IA3, IA4, RA)

This subroutine solves the 0-1 single knapsack problem

maximize Z = P(l) X(l) + ... + P(N) X(N)

subject to W(l) X(l) + ... + W(N) X(N) < C,

X(J) = 0or 1 for J= 1,..., N.

The program implements the enumerative algorithm described in Section 2.9.3.

The input problem must satisfy the conditions

A) 2 < N < JDIM-3;

B) P(J), W(J), C positive integers;

C) max (W(J)) < C;

D) W(l) + ... + W(N) > C;

and, if JFS = 1,

E) P(J)/W(J) > P(J + 1)/W(J + 1) for J = 1,..., N - 1.

MT2 calls 9 procedures:CHMT2, CORE, CORES, FMED, KPOIM, NEWB,
REDNS,REDS and SORTR.

The program is completely self-containedand communication to it is achieved

solely through the parameter list of MT2.
No machine-dependentconstant is used.

MT2 needs 8 arrays (P, W, X, lAl, IA2, IA3, IA4 and RA) of length at least

N-H 3.

252 Appendix: Computer codes

Meaning of the input parameters:

N = number of items;

P(J) =
profit of item J (J = 1,..., N);

W(J) = weight of item J (J = 1,..., N);

C = capacity of the knapsack;

JDIM = dimension of the 8 arrays;

JFO = 1 if optimal solution is required,
= 0 if approximate solution is required;

JFS = 1 if the items are already sorted accordingto

decreasing profit per unit weight,
= 0 otherwise;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

X(J) = 1 if item J is in the solution found,
= 0 otherwise;

JUB =
upper bound on the optimal solution value

(to evaluate Z when JFO = 0).

Arrays lAl, IA2, I A3, IA4 and RA are dummy.

All the parameters but RA are integer. On return of MT2 all the input parameters

are unchanged.

INTEGER P(JDIM), W(JDIM), X(JDIM),C, Z

DIMENSION lAl(JDIM), IA2(JDIM), IA3(JDIM), IA4(JDIM)
DIMENSIONRA(JDIM)

A.3 BOUNDED AND UNBOUNDED KNAPSACK PROBLEM

A.3.1 CodeMTB2

SUBROUTINE MTB2 (N, P, W, B, C, Z, X,

JDIMl, JDIM2, JFO, JFS, JCK,JUB,
IDl,ID2,ID3,ID4, IDS, ID6, ID7, RD8)

Appendix: Computer codes 253

This subroutine solves the bounded single knapsack problem

maximize Z = P(l) X(l) + ... + P(N) X(N)

subject to W(l) X(l) + ... + W(N) X(N) < C,

0 < X(J) < B(J) for J = 1,..., N,

X(J) integer for J = 1,..., N.

The program implements the transformation method described in Section 3.2.

The problem is transformed into an equivalent 0-1 knapsack problem and then

solved through subroutine MT2. The user must link MT2 and its subroutines to

this program.

The input problem must satisfy the conditions

A) 2 < N < JDIMl - 1;

B) P(J), W(J), B(J), C positive integers;

C) max (B(J)W(J)) < C;

D) BA)WA) -H ... -H B(N)W(N) > C;

E) 2 < N -H (L0G2(BA)) + ... + L0G2(B(N)))< JDIM2 - 3;

and, if JFS = 1,

F) P(J)/W(J) > P(J + 1)/W(J -H 1) for J = 1,..., N - 1.

MTB2 calls 4 procedures:CHMTB2, SOL, TRANS and MT2 (external).

Communication to the program is achieved solely through the parameter list of

MTB2.
No machine-dependentconstant is used.

MTB2 needs

4 arrays (P, W, B and X) of length at least JDIMl;

8 arrays (IDl, ID2,ID3,ID4, IDS, ID6, ID7 and RD8) of length at least JDIM2.

Meaning of the input parameters:

N = number of item types;

P(J) = profit of each item of type J (J = 1,..., N);

W(J) = weight of each item of type J (J = 1,..., N);

B(J) = number of items of type J available (J = 1,..., N);

254 Appendix: Computer codes

C = capacityof the knapsack;

JDIMl = dimension of arrays P, W, B, X;

JDIM2 = dimension of arrays IDl, ID2, ID3, ID4, IDS,ID6,
ID7,RD8;

JFO = 1 if optimal solution is required,
= 0 if approximate solution is required;

JFS = 1 if the items are already sorted accordingto decreasing profit per
unit weight (suggested for large B(J) values),

= 0 otherwise;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

X(J) = number of items of type J in the solution found;

JUB = upper bound on the optimal solution value

(to evaluate Z when JFO = 0).

Arrays IDl, ID2, ID3, ID4, IDS, ID6, ID7 and RD8 are dummy.

All the parameters but RD8 are integer. On return of MTB2 all the input parameters

are unchanged.

INTEGER P(JDIMl), W(JDIMl),B(JDIMl),X(JDIMl), C, Z

INTEGER ID1(JDIM2), ID2(JDIM2), ID3(JDIM2),ID4(JDIM2)
INTEGER IDS(JDIM2), ID6(JDIM2), ID7(JDIM2)
REAL RD8(JDIM2)

A.3.2 CodeMTU2

SUBROUTINE MTU2 (N, P, W, C, Z, X,

JDIM, JFO, JCK, JUB,
PO, WO, XO, RR, PP)

This subroutine solves the unbounded single knapsack problem

maximize Z = P(l) X(l) + ... + P(N) X(N)

subject to W(l) X(l) + ... + W(N) X(N) < C,

X(J) > 0 and integer for J = 1,..., N.

Appendix: Computer codes 255

The program implements the enumerative algorithm described in Section 3.6.3.

The input problem must satisfy the conditions

A) 2 < N < JDIM- 1;

B) P(J), W(J), C positive integers;

C) max (W(J)) < C.

MTU2 calls 5 procedures: CHMTU2,KSMALL, MTUl, REDU and SORTR.
KSMALL calls 8 procedures: BLD, BLDF, BLDSl, DETNSl, DETNS2,

FORWD, MPSORT and S0RT7.

The program is completelyself-contained and communication to it is achieved

solely through the parameter list of MTU2.
No machine-dependentconstant is used.

MTU2 needs 8 arrays (P, W, X, PO, WO, XO,RR and PP) of length at least JDIM.

Meaning of the input parameters:

N = number of item types;

P(J) =
profit of each item of type J (J = 1,..., N);

W(J)
= weight of each item of type J (J = 1,..., N);

C =
capacity of the knapsack;

JDIM = dimension of the 8 arrays;

JFO = 1 if optimal solution is required,
= 0 if approximate solution is required;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Z is violated;

X(J) = number of items of type J in the solution found;

JUB = upper bound on the optimal solution value

(to evaluate Z when JFO = 0).

Arrays PO, WO, XO, RR and PP are dummy.

All the parameters but XO and RR are integer. On return of MTU2 all the input

parameters are unchanged.

256 Appendix: Computer codes

INTEGER P(JDIM), W(JDIM), X(JDIM)
INTEGER PO(JDIM), WO(JDIM), PP(JDIM), C, Z
REAL RR(JDIM), XO(JDIM)

A.4 SUBSET-SUMPROBLEM

A.4.1 CodeMTSL

SUBROUTINE MTSL (N, W, C, Z, X, JDN, JDD, ITMM, JCK,
WO, IND,XX,WS, ZS, SUM,

TDl, TD2, TD3)

This subroutine solves the subset-sum problem

maximize Z = W(l) X(l) + ... + W(N) X(N)

subject to W(l) X(l) + ... + W(N) X(N) < C,
X(J) = Oor 1 for J= 1,..., N.

The program implements the mixed algorithm described in Section 4.2.3.

The input problem must satisfy the conditions

A) 2 < N < JDN- 1;

B) W(J), C positive integers;

C) max (W(J)) < C;

D) W(l) + ... + W(N) > C.

MTSLcalls 8 procedures: CHMTSL, DINSM, MTS, PRESP, SORTI, TAB,

UPSTAR and USEDIN.

If not present in the library of the host, the user must supply an integer function

JIAND(I1, 12) which sets HAND to the bit-by-bit logical AND of II and 12.

Communication to the program is achievedsolely through the parameter list of
MTSL.
No machine-dependentconstant is used.

MTSL needs

2 arrays (W and X) of length at least JDN;
6 arrays (WO, IND, XX, WS, ZS and SUM) of length at least ITMM;
3 arrays (TDl, TD2 and TD3) of length at least JDD x 2.

Appendix: Computer codes 257

Meaning of the input parameters:

N = number of items;

W(J)
= weight of item J (J = 1,..., N);

C = capacity;

JDN = dimension of arrays W and X;

JDD = maximum length of the dynamic programming lists

(suggested value JDD = 5000);

ITMM = (maximum number of items in the core problem) + 1; ITMM =
JDN in order to be sure that the optimal solution is found. ITMM <

JDN (suggested value ITMM = 91)produces an approximate solution

which is almost always optimal (to check optimality, see whether

Z = C);

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

X(J) = 1 if item J is in the solution found,
= 0 otherwise.

Meaning of the internal variables which could be altered by the user:

IT =
length of the initial core problem (suggestedvalue IT = 30);

ID = increment of the length of the core problem

(suggested value ID = 30);

M2 = number of items to be used for the second dynamic programming
Ust; it must be 2 < M2 < min C1, N - 4) (suggestedvalue M2 =

min B.5 ALOGIO (max (W(J))), 0.8 N)). Ml, the number of items

to be used for the first dynamic programming list, is automatically

determined;

PERS = value used to determine c according to the formula given in Section
4.2.2 (suggestedvalue PERS = 1.3).

Arrays WO, IND,XX,WS, ZS, SUM, TDl, TD2 and TD3 are dummy.

All the parameters are integer. On return of MTSL all the input parameters are

unchanged.

258 Appendix: Computer codes

INTEGER W(JDN), X(JDN), C, Z
INTEGER WO(ITMM), IND(ITMM), XX(ITMM)
INTEGER WS(ITMM), ZS(ITMM),SUM(ITMM)
INTEGER TD1(JDD,2), TD2(JDD,2), TD3(JDD,2)

A.5 BOUNDED AND UNBOUNDED CHANGE-MAKING
PROBLEM

A.5.1Code MTC2

SUBROUTINE MTC2 (N, W, C, Z, X, JDN,JDL,JFO, JCK,

XX, WR, PR, M, L)

This subroutine solves the unbounded change-making problem
minimize Z = X(l) + ... + X(N)

subject to W(l) X(l) + ... + W(N) X(N) = C,

X(J) > 0 and integer for J = 1,..., N.

The program implements the enumerative algorithm described in Section 5.6.

The input problem must satisfy the conditions

A) 2 < N < JDN- 1;

B) W(J), C positive integers;

C) max (W(J)) < C.

MTC2 calls 5 procedures: CHMTC2, COREC, MAXT, MTCl and SORTI.

The program is completelyself-contained and communication to it is achieved
solely through the parameter list of MTC2.
No machine-dependentconstant is used.

MTC2 needs

5 arrays (W, X, XX, WR and PR) of length at least JDN;
2 arrays (M and L) of length at least JDL.

Meaning of the input parameters:

N = number of item types;

W(J) = weight of each item of type J (J = 1,..., N);

C = capacity;

JDN = dimension of arrays W, X, XX, WR and PR;

JDL = dimension of arrays M and L (suggestedvalue JDL = max (W(J)) - 1;
if the core memory is not enough, JDL should be set to the largest

possible value);

Appendix:Computer codes 259

JFO = 1 if optimal solution is required,
= 0 if approximate solution is required

(at most 100000 backtrackings are performed);

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= no feasible solution exists if Z = 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

X(J) = number of items of type J in the solution found.

Arrays XX, M, L, WR and PR are dummy.

All the parameters are integer. On return of MTC2 all the input parameters are

unchanged.

INTEGER W(JDN), X(JDN), C, Z
INTEGER XX(JDN), WR(JDN), PR(JDN)
INTEGER M(JDL), L(JDL)

A.5.2 CodeMTCB

SUBROUTINE MTCB (N, W, B, C, Z, X, JDN,JDL,JFO, JCK,
XX,WR, BR, PR, M, L)

This subroutine solves the bounded change-making problem

minimize Z = X(l) + ... + X(N)

subject to W(l) X(l) + ... + W(N) X(N) = C,

0 < X(J) < B(J) for J = 1,..., N,

X(J) integer for J = 1,..., N.

The program implements the branch-and-bound algorithm described in Section 5.8.

The input problem must satisfy the conditions

A) 2 < N < JDN- 1;

B) W(J), B(J),C positive integers;

C) max (W(J)) < C;

260 Appendix: Computer codes

D) B(J) W(J) < C for J = 1,..., N;

E) B(l) W(l) + ... + B(N) W(N) > C.

MTCB calls 3 procedures: CHMTCB, CMPB and SORTI.

The program is completely self-contained and communication to it is achieved

solely through the parameter list of MTCB.
No machine-dependent constant is used.

MTCB needs

7 arrays (W, B, X, XX, WR, BR and PR) of length at least JDN;
2 arrays (M and L) of length at least JDL.

Meaning of the input parameters:

N = number of item types;

W(J) =
weight of each item of type J (J = 1,..., N);

B(J) = number of available items of type J (J = 1,..., N);

C =
capacity;

JDN = dimension of arrays W, B, X, XX, WR, BR and PR;

JDL = dimension of arrays M and L (suggested value JDL = max (W(J))
\342\200\2241;

if the core memory is not enough, JDL should be set to the largest

possible value);

JFO = 1 if optimal solution is required,
= 0 if approximate solution is required

(at most 100000 backtrackings are performed);

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= no feasible solution exists if Z = 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

X(J) = number of items of type J in the solution found.

Arrays XX, M, L, WR, BR and PR are dummy.

All the parameters are integer. On return of MTCB all the input parameters are

unchanged.

Appendix: Computer codes 261

INTEGER W(JDN), B(JDN),X(JDN),C, Z

INTEGER XX(JDN), WR(JDN), BR(JDN), PR(JDN)
INTEGERM(JDL),L(JDL)

A.6 0-1 MULTIPLE KNAPSACK PROBLEM

A.6.1 CodeMTM

SUBROUTINE MTM (N, M, P, W, C, Z, X, BACK, JCK, JUB)

This subroutine solves the 0-1 multiple knapsack problem

maximize Z = P(l) (Y(l, 1) + ... + Y(M, 1)) +
+

P(N) (Y(l, N) + ... + Y(M, N))

subject to W(l) Y(I, 1) + ... + W(N) Y(I, N) < C(I)
for 1= 1,...,M,

Y(l, J) + ... + Y(M, J) < 1 for J = 1,..., N,

Y(I, J) = 0 or 1 for I = 1,..., M, J = 1,..., N.

The program implements the enumerative algorithm described in Section 6.4.3, and

derives from an earlier code presented in S. Martello, P. Toth, \"Algorithm 632.

A program for the 0-1 multiple knapsack problem\", ACM Transactions on

Mathematical Software, 1985.

The input problem must satisfy the conditions

A) 2 < N < MAXN and 1 < M < MAXM, where MAXN and MAXM are
defined by the first two executable statements;

B) P(J), W(J) and C(I) positive integers;

C) min (C(I)) > min (W(J));

D) max (W(J)) < max (C(I));

E) max (C(I)) < W(l) + ... + W(N);

F) P(J)AV(J) > P(J + 1)AV(J +1) for J = 1,..., N - 1;

G) C(I) < C(I+ 1) for I = 1,..., M - 1.

MTM calls 5 procedures: CHMTM, PAR, PI, SIGMA and SKP.

The program is completely self-contained and communication to it is achieved

solely through the parameter list of MTM.
No machine-dependent constant is used.

262 Appendix: Computer codes

MTMneeds

5 arrays (C, F, PBL, Q and V) of length at least M;
8 arrays (P, W, X, UBB, BS, XS, LX and LXI) of length at least N;

3 arrays (B, PS and WS) of length at least N + 1;

3 arrays (BB, XC and XL) of length at least M x N;

1 array (BL) of length at least M x (N + 1);
5 arrays (D, MIN, PBAR, WBAR and ZBAR) of length at least N (for internal

use in subroutine SKP).

The arrays are currently dimensioned to allow problems for which M < 10 and
N < 1000. Changing such dimensions also requires changing the dimension of

BS, PS, WS, XS, LX and LXI in subroutine SIGMA, of BB, BL, XL, BS, PS,
WS and XS in subroutine PI, of BB,LX and LXI in subroutine PAR, of D, MIN,

PBAR, WBAR and ZBAR in subroutine SKP. In addition, the values of MAXN

and MAXM must be conveniently defined.

Meaning of the input parameters:

N = number of items;

M = number of knapsacks;

P(J) =
profit of item J (J = 1,..., N);

W(J) = weight of item J (J = 1,..., N);

C(I) = capacity of knapsack I (I = 1,..., M);

BACK = -1 if exact solution is required,
= maximum number of backtrackings to be performed,

if heuristic solution is required;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

X(J) = 0 if item J is not in the solution found (Y(I, J) = 0 for all I),
=

knapsack where item J is inserted, otherwise (Y(X(J), J) = 1);

JUB = upper bound on the optimal solution value

(to evaluate Z when BACK > 0 on input).

All the parameters are integer. On return of MTM all the input parameters are

unchanged except BACK (= number of backtrackings performed).

Appendix:Computer codes 263

INTEGER P(IOOO), W(IOOO),CA0), X(IOOO), Z, BACK

INTEGER BBA0,1000), BLA0,1001), XCA0,1000),XLA0,1000)
INTEGER B(lOOl), UBB(IOOO), FA0), PBL(IO), QA0), VA0)

INTEGER BS, PS, WS, XS
COMMON /SNGL/BS(IOOO), PS(lOOl), WS(lOOl), XS(IOOO)
COMMON /PUB/ LX(IOOO),LXI(IOOO), LR, LRI, LUBI

A.6.2 Code MTHM

SUBROUTINEMTHM (N, M, P, W, C, Z, X, JDN, JDM, LI, JCK,
CR, MIN,XX,XI, F)

This subroutine heuristically solves the 0-1 multiple knapsack problem

maximize Z = P(l) (Y(l, 1) + ... + Y(M, 1)) +

+

P(N) (Y(l, N) + ... + Y(M, N))

subject to W(l) Y(I, 1) + ... + W(N) Y(I, N) < C(I)
for 1= 1,...,M,

YA,J) + ... + Y(M,J) < 1 for J = 1,..., N,

Y(I,J) = 0 or 1 for I = 1,..., M, J = 1,..., N.

The program implements the polynomial-time algorithms described in Section

6.6.2, and derives from an earlier code presented in S. Martello, P. Toth, \"Heuristic

algorithms for the multiple knapsack problem\". Computing, 1981.

The input problem must satisfy the conditions

A) 2 < N < JDN - 1 and 1 < M < JDM - 1;
B) P(J), W(J) and C(I) positive integers;
C) min (C(I)) > min (W(J));

D) max (W(J)) < max (C(I));

E) max (C(I)) < W(l) + ... + W(N);

F) P(J)/W(J) > P(J+1)/W(J+1) for J = 1,..., N - 1;

G) C(I) < C(I+1) for 1= 1,...,M- 1.

MTHM can call 6 subroutines:

CHMTHM to check the input data;

MGRl or MGR2 to find an initial feasible solution;
REARR to re-arrange a feasible solution;
IMPRl and IMPR2 to improve on a feasible solution.

264 Appendix: Computer codes

The user selects the sequence of calls through input parameters.

The program is completely self-containedand communication to it is achieved

solely through the parameter list of MTHM.
The only machine-dependent constant is used to define INF (first executable

statement), which must be set to a large positive integer value.

MTHMneeds

6 arrays (P, W, X, MIN, XX and XI) of length at least JDN;

2 arrays (C and CR) of length at least JDM;
1 array (F) of length at least JDM x JDM.

In addition, subroutine MGR2 uses

7 arrays of length 5;
1 array of length 201;

1 array of length 5 x 200.

Subroutine MGR2 is called only when M < 5 and N < 200.

Meaning of the input parameters:

N = number of items;

M = number of knapsacks;

P(J) =
profit of item J (J = 1,..., N);

W(J) = weight of item J (J = 1,..., N);

C(I) = capacity of knapsack I (I = 1,..., M);

JDN = dimension of arrays P, W, X, MIN, XX and XI;

JDM = dimension of arrays C, CR and F;

LI = 0 to output the initial feasible solution,

= 1 to also perform subroutines REARR and IMPRl,
= 2 to also perform subroutines REARR, IMPRl and IMPR2;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

Appendix: Computer codes 265

X(J)
= 0 if item J is not in the solution found

(i.e. if Y(I, J) = 0 for all I),
= knapsack where item J is inserted,otherwise

(i.e. if Y(X(J), J) = 1).

Arrays CR, MIN, XX, XI and F are dummy.

All the parameters are integer. On return of MTHM all the input parameters are

unchanged.

INTEGER P(JDN), W(JDN), X(JDN), C(JDM), Z

INTEGER MIN(JDN), XX(JDN), Xl(JDN), CR(JDM)

INTEGER F(JDM, JDM)

A.7 GENERALIZED ASSIGNMENT PROBLEM

A.7.1 Code MTG

SUBROUTINE MTG (N, M, P, W, C, MINMAX,
Z, XSTAR, BACK, JCK,JB)

This subroutine solves the generalized assignment problem

optZ= P(l, 1)X(l, 1) + ... + P(l, N) X(l, N) +

+

P(M, 1)X(M,1) + ... + P(M, N) X(M, N)

(where opt = min if MINMAX = 1, opt = max if MINMAX = 2)

subject to W(I, 1) X(I, 1) + ... + W(I, N) X(I, N) < C(I)
for I = 1,..., M,

X(l, J) + ... + X(M, J) = 1 for J = 1,..., N,

X(I, J) = Oorl for I = 1,..., M, J=1,...,N.

The program implements the branch-and-bound algorithm described in Sections
7.3-7.5.

The input problem must satisfy the conditions

A) 2 < M < JDIMR;

B) 2 < N < JDIMC (JDIMR and JDIMC are defined by the first two executable
statements);

C) M < JDIMPC (JDIMPC, defined by the third executable statement, is used for

packing array Y, and cannot be greater than (number of bits of the host) \342\200\2242;if

266 Appendix: Computer codes

a higher value is desired, subroutines YDEF and YUSE must be re-structured

accordingly);

D) P(I, J), W(I, J) and C(I) positive integers;

E) W(I, J) < C(I) for at least one I, for J = 1,..., N;

F) C(I) > min (W(I, J)) for I = 1,..., M.

In addition, it is required that

G) (maximum level of the decision-tree) < JNLEV. (JNLEV is defined by the

fourth executable statement.)

MTG calls 24 procedures:CHMTG, DEFPCK, DMIND, PEAS, GHA, GHBCD,
GHX, GRl, GR2, HEUR, KPMAX, KPMIN, PENO,
PENl, PREPEN, SKP, SORTI, SORTR, TERMIN,

TRIN, UBFJV, UBRS, YDEF and YUSE.

If not present in the library of the host, the user must supply an integer function

JIAND(I1, 12) which sets HAND to the bit-by-bit logical AND of II and 12. Such

function is used in subroutines YDEF and YUSE.

Communication to the program is achieved solely through the parameter list of
MTG.
No machine-dependentconstant is used.

MTG needs

17 arrays (C, DD, UD, Q, PACKL, IP, IR, IL, IF, WOBBL, KQ, FLREP,
DMYRl, DMYR2, DMYR3, DMYR4 and DMYR5) of length at least

M;
25 arrays (XSTAR, XS, BS, B, KA, XXS, lOBBL, JOBBL, BEST, XJJUB, DS,

DMYCl,DMYC2, DMYC3, DMYC4, DMYC5, DMYC6, DMYC7,
DMYC8,DMYC9,DMYCIO,DMYCl1,DMYC12, DMYC13 and

DMYCRl) of length at least N;
4 arrays (PS, WS, DMYCCl and DMYCC2) of length at least N + 1;
6 arrays (E, CC, CS, TYPE, US and UBL) of length at least JNLEV;
7 arrays (P, W, A, X, PAK, KAP and MIND) of length at least M x N;

5 arrays (D, VS, V, LB and UB) of length at least JNLEV x M;
1 array (Y) of length at least JNLEV x N;

2 arrays (MASKl and ITWO) of length at least JDIMPC.

The arrays are currently dimensioned to allow problems for which

M < 10,
N < 100,
JNLEV < 150,

Appendix: Computer codes 267

on a 32-bit computer (so, in the calling program, arrays P and W must

be dimensioned at A0,100)). Changing such limits necessitates changing the

dimension of all the arrays in subroutine MTG and in COMMON /PACK/ (which is
included in subroutines MTG, YDEF and YUSE), as well as the four first executable
statements.

Meaning of the input parameters:

N = number of items;

M = number of knapsacks;

P(I, J) =
profit of item J if assigned to knapsack I
A= 1,...,M; J= 1,...,N);

W(I, J) = weight of item J if assigned to knapsack I
(I = 1,..., M; J= 1,..., N);

C(I) =
capacity of knapsack I (I = 1,..., M);

MINMAX = 1 if the objective function must be minimized,
= 2 if the objective function must be maximized;

BACK = -1 if exact solution is required,
= maximum number of backtrackings to be performed,

if heuristic solution is required;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= 0 if no feasible solution exists,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Z is violated;

XSTAR(J) = knapsack where item J is inserted in the solution found;

JB = lower bound (if MINMAX = 1) or upper bound (if

MINMAX = 2) on the optimal solution value

(to evaluate Z when BACK > 0 on input).

All the parameters are integer. On return of MTG all the input parameters

are unchanged, with the following two exceptions. BACK gives the number of

backtrackings performed; P(I, J) is set to 0 for all pairs (I, J) such that W(I, J) >

C(I).

INTEGER PA0,100),WA0,100), CA0), XSTAR(IOO), Z, BACK
INTEGER DD(IO),UD(IO),QA0), PAKL(IO), IP(IO), IR(IO)

268 Appendix: Computer codes

INTEGER IL(IO), IF(IO), WOBBL(IO),KQ(IO),FLREP(IO)

INTEGER XS(IOO), BS(IOO), B(IOO), KA(IOO),XXS(IOO)
INTEGER lOBBL(lOO), JOBBL(IOO), BEST(IOO), XJJUB(IOO)
REAL DS(IOO)
INTEGERPS(lOl),WS(lOl)

INTEGER EA50), CCA50), CSA50)
INTEGER TYPEA50),USA50),UBLA50)

INTEGER AA0,100), XA0,100)
INTEGER PAKA0,100), KAPA0,100),MINDA0,100)
INTEGER DA50,10), VSA50,10)

INTEGER VA50,10), LBA50,10), UBA50,10)
INTEGER Y

INTEGER DMYRl(lO), DMYR2A0), DMYR3A0)
INTEGERDMYR4A0), DMYR5A0)

INTEGER DMYCl(lOO), DMYC2A00), DMYC3A00)
INTEGERDMYC4A00),DMYC5A00),DMYC6A00)

INTEGER DMYC7A00), DMYC8A00), DMYC9A00)
INTEGER DMYCIO(IOO),DMYCl1A00),DMYC12A00)

INTEGER DMYCl3A00)

INTEGER DMYCC 1A01), DMYCC2A01)
REAL DMYCR 1A00)

COMMON /PACK/ MASK1C0), ITWOC0), MASK, Y(150,100)

A.7.2 Code MTHG

SUBROUTINEMTHG (N, M, P, W, C, MINMAX,

Z, XSTAR, JCK)

This subroutine heuristically solves the generalized assignment problem

optZ= P(l, 1)XA,1) + ... + P(l, N) X(l, N) +

+

P(M, 1) X(M, 1) + ... + P(M, N) X(M, N)

(where opt = min if MINMAX = 1, opt = max if MINMAX = 2)

subject to W(I, 1) X(I, 1) + ... + W(I, N) X(I, N) < C(I)
for I = 1,..., M,

X(l, J) + ... + X(M, J) = 1 for J = 1,..., N,

X(I, J) = 0 or 1 for I = 1,..., M, J = 1,..., N.

The program implements the polynomial-time algorithms described in Section 7.4.

The input problem must satisfy the conditions

Appendix: Computer codes 269

A) 2 < M < JDIMR;

B) 2 < N < JDIMC (JDIMR and JDIMC are defined by the first two executable
statements);

C) P(I, J), W(I, J) and C(I) positive integers;

D) W(I, J) < C(I)for at least one I, for J = 1,..., N;

E) C(I) > min (W(I, J)) for I = 1,..., M.

MTHG calls 6 procedures: CHMTHG, FEAS, GHA, GHBCD, GHX and TRIN.

Communication to the program is achieved solely through the parameter list of
MTHG.
No machine-dependentconstant is used.

MTHG needs

6 arrays (C, DMYRl, DMYR2, DMYR3, DMYR4 and DMYR5) of length at

least JDIMR;
7 arrays (XSTAR, BEST, DMYCl, DMYC2, DMYC3, DMYC4and DMYCRl)

of length at least-JDIMC;
3 arrays (P, W and A) of length at least JDMR x JDIMC.

The arrays are currently dimensioned to allow problems for which

M < 50,
N < 500

(so, in the calling program, arrays P and W must be dimensioned at E0,500)).

Changing such limits necessitates changing the dimension of all the arrays in

subroutine MTHG, as well as the first two executable statements.

Meaning of the input parameters:

N = number of items;

M = number of knapsacks;

P(I, J) =
profit of item J if assigned to knapsack I

(I = 1,...,M; J= 1,..., N);

W(I, J) = weight of item J if assigned to knapsack I
(I = 1,..., M; J= 1,..., N);

C(I) =
capacity of knapsack I (I = 1,..., M);

MINMAX = 1 if the objective function must be minimized,
= 2 if the objective function must be maximized;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

270 Appendix: Computer codes

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= 0 if no feasible solution is found,

= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

XSTAR(J) = knapsack where item J is inserted in the solution found.

All the parameters are integer. On return of MTHG all the input parameters are

unchanged, but P(I, J) is set to 0 for all pairs (I, J) such that W(I, J) > C(I).

INTEGER PE0,500),WE0,500),CE0),XSTARE00), Z

INTEGER BESTE00)
INTEGER AE0,500)
INTEGERDMYR1E0),DMYR2E0), DMYR3E0)

INTEGER DMYR4E0), DMYR5E0)
INTEGER DMYC1E00),DMYC2E00), DMYC3E00)

INTEGER DMYC4E00)
REAL DMYCR1E00)

A.8 BIN-PACKINGPROBLEM

A.8.1Code MTP

SUBROUTINE MTP (N, W, C, Z, XSTAR,

JDIM, BACK, JCK, LB,
WR, XSTARR, DUM, RES, REL, X, R, WA,

WB, KFIX, FIXIT, XRED, LS, LSB,XHEU)

This subroutine solves the bin packing problem

minimize Z = Y(l) + ... + Y(N)

subject to W(l) X(I, 1) + ... + W(N) X(I, N) < C Y(I)
for I = 1,..., N,

X(l, J) + ... + X(M, J) =1 for J = 1,...,N,

Y(I)= 0or 1 for I = 1,..., N,

X(I, J) = Oorl for I = 1,..., N, J=1,...,N

(i.e., minimize the number of bins of capacity C neededto allocate N items of size
W(l),..., W(N)).

The program implements the branch-and-bound algorithm described in Section 8.5.

Appendix: Computer codes 271

The input problem must satisfy the conditions

A) 2 < N < JDIM;

B) W(J) and C positive integers;

C) W(J) < C for J= 1,..., N;

D) W(J) > W(J + 1) for J = 1,..., N - 1.

In the output solution (see below) the Z lowest indexedbins are used.

MTP calls 14 procedures:CHMTP, ENUMER, FFDLS, FIXRED, HBFDS,
INSERT, LCL2, L2, L3, MWFDS, RESTOR,

SEARCH, S0RTI2 and UPDATE.

Communication to the program is achieved solely through the parameter list of
MTP.
No machine-dependentconstant is used.

MTP needs

17 arrays (W, XSTAR, WR, XSTARR, DUM, RES, REL, X, R, WA, WB,
KFIX, FIXIT, XRED, LS, LSBand XHEU) of length at least JDIM.

Meaning of the input parameters:

N = number of items;

W(J) =
weight of item J;

C = capacityof the bins;

JDIM = dimension of the 17 arrays;

BACK = -1 if exact solution is required,
= maximum number of backtrackings to be performed, if heuristic

solution is required;

JCK = 1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:

condition \342\200\224Zis violated;

XSTAR(J) = bin where item J is inserted in the solution found;

LB = lower bound on the optimal solution value

(to evaluate Z when BACK > 0 on input).

272 Appendix: Computer codes

All the arrays except W and XSTAR are dummy.

All the parameters are integer. On return of MTP all the input parameters are

unchanged except BACK, which gives the number of backtrackings performed.

INTEGER W(JDIM), XSTAR(JDIM), C, Z, BACK
INTEGERWR(JDIM), XSTARR(JDIM), DUM(JDIM)

INTEGER RES(JDIM), REL(JDIM), X(JDIM),R(JDIM)

INTEGER WA(JDIM), WB(JDIM), KFIX(JDIM)
INTEGER FIXIT(JDIM),XRED(JDIM),LS(JDIM)
INTEGER LSD(JDIM), XHEU(JDIM)

Glossary

0{f{n)) order of/(\302\253)

I S I cardinality of set S

r{A) worst-case performance ratio of algorithm A

\302\243(A) worst-case relative error of algorithm A

p{B) worst-case performance ratio of bound B

[a\\ largest integer not greater than a

[a] smallest integer not less than a

z{P) optimal solution value of problem P

C{P) continuous relaxation of problem P

L{P,X) Lagrangian relaxation of problem P through multiplier A

S{P, tt) surrogate relaxation of problem P through multiplier tt

/(mod;) i \342\200\224
[i/j\\j (/',7 positive integers)

arg max {i'l,..., .Vp} index k such that s/^ > s, for / = !,...,\302\253

max ji'i, . . . , i'^l \342\226\240^argmax-(.?! ... s\342\200\236}

arg max2 {5,,..., .v\342\200\236} arg max ({.v,,..., s,} / {s.^,^ ^.^^ {\342\200\236,\342\200\236)})

maXjj^i,..., .V,,} ^Vgmax2{s, ... s\342\200\236}

arg min, min, arg min2, min2 are immediate extensions of the above

273

Bibliography

A.V. Aho, J.E. Hopcroft, J.D. Ullman A983). Data Structures and Algorithms, Addison-

Wesley, Reading, MA.
J.H. Ahrens, G. Finke A975). Merging and sorting applied to the 0-1 knapsack problem.

Operations Research 23, 1099-1109.
L.Aittoniemi A982). Computational comparison of knapsack algorithms. Presented at Xlth

International Symposium on Mathematical Programming, Bonn, August 23-27.
L. Aittoniemi, K. Oehlandt A985). A note on the Martello-Toth algorithm for one-

dimensional knapsack problems. European Journal of Operational Research 20, 117.
R.D. Armstrong, D.S. Kung, P. Sinha, A.A. Zoltners A983). A computational study of

a multiple-choice knapsack algorithm. ACM Transactions on Mathematical Software 9,

184-198.

G. d'Atri A979).Analyse probabiliste du probleme du sac-a-dos. These,Universite de Paris

VI.
G. d'Atri, C. Puech A982). Probabilistic analysis of the subset-sum problem. Discrete

Applied Mathematics 4, 329-334.
D. Avis A980). Theorem 4. In V. Chvatal. Hard knapsack problems. Operations Research

28, 1410-1411.
L.G.Babat A975). Linear functions on the A^-dimensional unit cube. Doklady Akademiia

NaukSSSR 222, 761-762.
A. Bachem,M. Grotschel A982). New aspects of polyhedral theory. In B. Korte (ed.).

Modern Applied Mathematics, Optimization and Operations Research, North Holland,
Amsterdam, 51-106.

B.S.Baker, E.G. Coffman Jr. A981). A tight asymptotic bound for next-fit-decreasing bin

packing. SIAM Journal on Algebraic and Discrete Methods 2, 147-152.
E. BalasA967).Discreteprogramming by the filter method. Operations Research 15, 915-

957.
E. BalasA975).Facetsof the knapsack polytope. Mathematical Programming 8, 146-164.
E.Balas, R. Jeroslow A972). Canonical cuts on the unit hypercube. SIAM Journal of Applied

Mathematics 23, 61-69.
E.Balas, R. Nauss, E. Zemel A987). Comment on 'some computational results on real 0-1

knapsack problems'. Operations Research Letters 6, 139.

E. Balas, E. Zemel A978). Facets of the knapsack polytope from minimal covers. SIAM
Journal of Applied Mathematics 34, 119-148.

E. Balas,E. Zemel A980). An algorithm for large zero-one knapsack problems. Operations
Research 28, 1130-1154.

R.S.Barr, G.T. Ross A975). A linked list data structure for a binary knapsack algorithm.
Research Report CCS 232, Centre for Cybernetic Studies, University of Texas.

R. Bellman A954). Some applications of the theory of dynamic programming\342\200\224a review.

Operations Research 2, 275-288.
R. Bellman A957). Dynamic Programming, Princeton University Press, Princeton, NJ.
R. Bellman, S.E. Dreyfus A962). Applied Dynamic Programming, Princeton University

Press, Princeton, NJ.

R.L. Bulfin, R.G. Parker, CM. Shetty A979). Computational results with a branch and

275

276 Bibliography

bound algorithm for the general knapsack problem. Naval Research Logistics Quarterly

26, 41-46.

A.V. Cabot A970).An enumeration algorithm for knapsack problems. Operations Research

18, 306-311.
G. Carpaneto, S. Martello, P. Toth A988). Algorithms and codes for the assignment

problem.In B. Simeone, P. Toth, G. Gallo, F. Maffioli, S. Pallottino (eds), Fortran Codesfor
Network Optimization, Annals of Operations Research 13, 193-223.

L. Chalmet, L. Gelders A977). Lagrange relaxation for a generalized assignment-type
problem. In M. Roubens (ed.), Advances in Operations Research, North-Holland,
Amsterdam, 103-109.

S.K.Chang, A. Gill A970a). Algorithmic solution of the change-making problem. Journal

of ACM 17, 113-122.
S.K. Chang, A. Gill A970b). Algorithm 397. An integer programming problem.

Communications of ACM 13, 620-621.
L.Chang, J.F. Korsh A976). Canonical coin-changing and greedy solutions. Journal ofACM

23, 418-422.
N. Christofides, A. Mingozzi, P. Toth A979). Loading problems. In N. Christofides, A. Min-

gozzi, P. Toth, C. Sandi (eds). Combinatorial Optimization, Wiley, Chichester, 339-369.
V. Chvatal A980). Hard knapsack problems. Operations Research 28, 402-411.
E.G. Coffman Jr., M.R. Garey, D.S. Johnson A984). Approximation algorithms for bin-

packing\342\200\224an updated survey. In G. Ausiello, M. Lucertini, P. Serafini (eds). Algorithm

Design for Computer System Design, Springer, Vienna, 49-106.

J. Cord A964). A method for allocating funds to investment projects when returns are subject
to uncertainty. Management Science 10, 335-341.

H. Crowder, E.L. Johnson, M.W. Padberg A983). Solving large-scale zero-one linear

programming problems. Operations Research 31, 803-834.
G.B. Dantzig A957). Discrete variable extremum problems. Operations Research 5, 266-

277.
A. De Maio, C. Roveda A971).An all zero-one algorithm for a certain class of transportation

problems. Operations Research 19, 1406-1418.
R.S. Dembo,P.L.Hammer A980). A reduction algorithm for knapsack problems. Methods

of Operations Research 36, 49-60.
B.L.Dietrich, L.F. Escudero A989a). More coefficient reduction for knapsack-like

constraints in 0-1 programs with variable upper bounds. IBM T.J. Watson Research Center.
RC-14389,Yorktown Heights (NY).

B.L. Dietrich, L.F. Escudero A989b). New procedures for preprocessing 0-1 models with

knapsack-like constraints and conjunctive and/or disjunctive variable upper bounds. IBM

T.J. Watson Research Center.RC-14572,Yorktown Heights (NY).
K. Dudzinski, S. Walukiewicz A984a). Upper bounds for the 0-1 knapsack problem. Report

MPD-10-49/84,Systems Research Institute, Warsaw.
K. Dudzinski, S. Walukiewicz A984b). A fast algorithm for the linear multiple-choice

knapsack problem. Operations Research Letters 3, 205-209.
K. Dudzinski, S. Walukiewicz A987). Exact methods for the knapsack problem and its

generalizations. European Journal of Operational Research 28, 3-21.
M.E. Dyer A984). An 0(n) algorithm for the multiple-choice knapsack linear program.

Mathematical Programming 29, 57-63.
M.E. Dyer, N. Kayal, J. Walker A984). A branch and bound algorithm for solving the

multiple-choice knapsack problem. Journal of Computational and Applied Mathematics

11, 231-249.

S. Eilon, N. Christofides A971). The loading problem. Management Science 17, 259-267.
B. Faaland A973). Solution of the value-independent knapsack problem by partitioning.

Operations Research 21, 332-337.
D. Fayard, G. Plateau A975). Resolution of the 0-1 knapsack problem: comparison of

methods. Mathematical Programming 8, 272-307.

Bibliography 277

D. Fayard, G. Plateau A982). An algorithm for the solution of the 0-1 knapsack problem.

Computing 28, 269-287.
M. Fischetti A986). Worst-case analysis of an approximation scheme for the subset-sum

problem. Operations Research Letters 5, 283-284.
M. Fischetti A989). A new linear storage, polynomial time approximation schemefor the

subset-sum problem. Discrete Applied Mathematics (to appear).
M. Fischetti, S. Martello A988). A hybrid algorithm for finding the ki\\\\ smallest of n

elements in 0{n) time. In B. Simeone,P. Toth, G. Gallo, F. Maffioli, S. Pallottino (eds),
Fortran Codesfor Network Optimization, Annals of Operations Research 13,401-419.

M. Fischetti, P. Toth A988). A new dominance procedure for combinatorial optimization
problems. Operations Research Letters 7, 181-187.

M.L. Fisher A980). Worst-case analysis of heuristic algorithms. Management Science 26,
1-17.

M.L.Fisher A981). The Lagrangian relaxation method for solving integer programming
problems. Management Science 27, 1-18.

M.L. Fisher, R. Jaikumar, L.N. Van Wassenhove A986). A multiplier adjustment method
for the generalized assignment problem. Management Science 32, 1095-1103.

J.C.Fisk,M.S.Hung A979). A heuristic routine for solving large loading problems. Naval

Research Logistics Quarterly 26, 643-650.
A.M. Frieze A986). On the Lagarias-Odlyzko algorithm for the subset sum problem. SIAM

Journal on Computing 15, 536-539.
M.R.Garey, D.S. Johnson A975). Complexity results for multiprocessor scheduling under

resource constraints. SI AM Journal on Computing 4, 397-411.
M.R. Garey, D.S. Johnson A978). \"Strong\" NP-completeness results: motivation, examples

and implications. Journal of ACM 25, 499-508.
M.R. Garey, D.S. Johnson A979). Computers and Intractability: a Guide to the Theory of

NP-Completeness, Freeman, San Francisco.

R.S. Garfinkel, G.L. Nemhauser A972). Integer Programming, John Wiley and Sons, New
York.

G.V.Gens,E.V. Levner A978). Approximation algorithms for scheduling problems. Izvestija
Akademii Nauk SSSR, Engineering Cybernetics 6, 38-43.

G.V. Gens,E.V. Levner A979). Computational complexity of approximation algorithms
for combinatorial problems. In J. Becvaf (ed.). Mathematical Foundations of Computer
Science 1979, Lecture Notes in Computer Science 74, Springer, Berlin, 292-300.

G.V. Gens, E.V. Levner A980).Fast approximation algorithms for knapsack type problems.
In K. Iracki, K. Malinowski, S. Walukiewicz (eds). Optimization Techniques, Part 2,
Lecture Notes in Control and Information Sciences 23, Springer, Berlin, 185-194.

A. Geoffrion A969).An improved implicit enumeration approach for integer programming.
Operations Research 17,437-454.

P.C.Gilmore, R.E. Gomory A961). A linear programming approach to the cutting stock

problem I. Operations Research 9, 849-858.
P.C.Gilmore, R.E. Gomory A963). A linear programming approach to the cutting stock

problem II. Operations Research 11, 863-888.
P.C.Gilmore, R.E. Gomory A965). Multi-stage cutting stock problems of two and more

dimensions. Operations Research 13, 94-120.
P.C. Gilmore, R.E. Gomory A966). The theory and computation of knapsack functions.

Operations Research 14, 1045-1074.
F. Glover A965). A multiphase dual algorithm for the zero-one integer programming

problem. Operations Research 13, 879-919.
F. Glover, D. Klingman A979). A o{n log n) algorithm for LP knapsacks with GUB

constraints. Mathematical Programming 17, 345-361.
A.V. Goldberg, A. Marchetti-Spaccamela A984). On finding the exact solution to a zero-one

knapsack problem. Proc. 16th Annual ACM Symposium Theory of Computing, 359-368.

E.S. Gottlieb, M.R. Rao A988). Facets of the knapsack polytope derived from disjoint and

278 Bibliography

overlapping index configurations. Operations Research Letters 7, 95-100.
E.S. Gottlieb, M.R. Rao A989a).The generalized assignment problem: valid inequalities

and facets. Mathematical Programming (to appear).
E.S. Gottlieb, M.R.Rao A989b). A ,k)-configuration facets for the generalized assignment

problem. Mathematical Programming (to appear).
H. Greenberg A985). An algorithm for the periodic solutions in the knapsack problem.

Journal of Mathematical Analysis and Applications 111, 327-331.

H. Greenberg A986).On equivalent knapsack problems. Discrete Applied Mathematics 14,

263-268.

H. Greenberg, I. Feldman A980). A better-step-off algorithm for the knapsack problem.
Discrete Applied Mathematics 2, 21-25.

H. Greenberg, R.L. Hegerich A970). A branch search algorithm for the knapsack problem.
Management Science 16, 327-332.

M.M. Guignard, S. Kim A987). Lagrangean decomposition: A model yielding stronger
Lagrangean bounds. Mathematical Programming 39, 215-228.

M.M. Guignard, K. Spielberg A972). Mixed-integer algorithms for the @,1) knapsack
problem. IBM Journal of Research and Development 16,424-430.

P.L. Hammer, E.L. Johnson, U.N. Peled A975). Facets of regular 0-1 polytopes.
Mathematical Programming 8, 179-206.

D. Hartvigsen, E. Zemel A987). On the complexity of lifted inequalities for the knapsack
problem. Report 740, Department of Managerial Economics and Decision Sciences,
Northwestern University, Evanston, Illinois.

D.S. Hirschberg, C.K. Wong A976).A polynomial-time algorithm for the knapsack problem

with two variables. Journal of ACM 23, 147-154.
E. Horowitz, S. Sahni A974). Computing partitions with applications to the knapsack

problem. Journal of ACM 21, 277-292.
T.C. Hu A969). Integer Programming and Network Flows, Addison-Wesley, New York.
T.C. Hu, M.L. Lenard A976). Optimality of a heuristic solution for a class of knapsack

problems. Operations Research 24, 193-196.
P.D. Hudson A977). Improving the branch and bound algorithms for the knapsack problem.

Queen's University Research Report, Belfast.
M.S. Hung, J.R. Brown A978). An algorithm for a classof loading problems. Naval Research

Logistics Quarterly 25, 289-297.

M.S. Hung, J.C. Fisk A978). An algorithm for 0-1 multiple knapsack problems. Naval
Research Logistics Quarterly 24, 571-579.

O.H. Ibarra, C.E. Kim A975). Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of ACM 22, 463-468.

G.P.Ingargiola, J.F. Korsh A973). A reduction algorithm for zero-one single knapsack
problems. Management Science 20, 460-463.

G.P. Ingargiola, J.F. Korsh A975). An algorithm for the solution of 0-1 loading problems.
Operations Research 23, 1110-1119.

G.P. Ingargiola, J.F. Korsh A977). A general algorithm for one-dimensional knapsack
problems. Operations Research 25, 752-759.

D.S. Johnson A973). Near-optimal bin packing algorithms. Technical Report MAC TR-109,
Project MAC, Massachusetts Institute of Technology, Cambridge, MA.

D.S. Johnson A974). Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256-278.

D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, R.L. Graham A974). Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal on
Computing 3, 299-325.

S.C. Johnson, B.W.Kemighan A972). Remarks on algorithm 397. Communications of ACM

15, 469.
K. Jomsten, M. Nasberg A986). A new Lagrangian relaxation approach to the generalized

assignment problem. European Journal of Operational Research 27, 313-323.

Bibliography 279

R. Kannan A980). A polynomial algorithm for the two-variables integer programming

problem. Journal of ACM 27, 118-122.
S.Kaplan A966). Solution of the Lorie-Savage and similar integer programming problems

by the generalized Lagrange multiplier method. Operations Research 14, 1130-1136.
R.M. Karp A972). Reducibility among combinatorial problems. In R.E. Miller, J.W.

Thatcher (eds). Complexity of Computer Computations, Plenum Press, New York, 85-
103.

R.M. Karp, J.K. Lenstra, C.J.H. McDiarmid, A.H.G. Rinnooy Kan A985). Probabilistic

analysis. In M. O'hEigeartaigh, J.K. Lenstra, A.H.G.Rinnooy Kan (eds). Combinatorial

Optimization: Annotated Bibliographies, Wiley, Chichester, 52-88.
T.D. Klastorin A979). An effective subgradient algorithm for the generalized assignment

problem. Computers and Operations Research 6, 155-164.
D.E.Knuth A973). The Art of Computer Programming, Vol. 3, Sorting and Searching,

Addison-Wesley, Reading, MA.
P.J. KolesarA967).A branch and bound algorithm for the knapsack problem. Management

Science 13, 723-735.
N.W. Kuhn A955). The Hungarian method for the assignment problem. Naval Research

Logistics Quarterly 2, 83-97.
J.C.Lagarias, A.M. Odlyzko A983). Solving low-density subset sum problems. Proc. 24th

Annual IEEE Symposium Foundations of Computer Science, 1-10.
B.J. Lageweg, J.K. Lenstra A972). Algoritmend voor knapzack problemen. Report BN

14/72, Stichting Mathematisch Centrum, Amsterdam.

M. Lauriere A978). An algorithm for the 0-1 knapsack problem. Mathematical Programming
14, 1-10.

E.L.Lawler A976). Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &
Winston, New York.

E.L. Lawler A979). Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research 4, 339-356.

E.V. Levner, G.V. Gens A978). Discrete Optimization Problems and Approximation
Algorithms. Moscow,CEMI (Russian).

G.S. Lueker A975). Two NP-complete problems in nonnegative integer programming.

Report No. 178, Computer ScienceLaboratory, Princeton University, Princeton, NJ.
G.S. Lueker A982). On the average difference between the solutions to linear and integer

knapsack problems. In R.L. Disney, T.J. Ott (eds). Applied Probability\342\200\224Computer

Science: the Interface, Vol. I, Birkhauser, Basel, 489-504.
N. Maculan A983). Relaxation Lagrangienne: le probleme du knapsack 0-1. INFOR

(Canadian Journal of Operational Research and Information Processing) 21, 315-327.
M.J. Magazine, J.L. Nemhauser, L.E. Trotter Jr. A975).When the greedy solution solves a

classof knapsack problems. Operations Research 23, 207-217.
M.J. Magazine, O. Oguz A981). A fully polynomial approximate algorithm for the 0-1

knapsack problem. European Journal of Operational Research 8, 270-273.
A. Marchetti-Spaccamela, C. Vercellis A987). Efficient on-line algorithms for the knapsack

problem. In T. Ottman (ed.), Automata, Languages and Programming, Lecture Notes in

Computer Science 267, Springer, Berlin, 445-456.

S. Martello, P. Toth A977a). An upper bound for the zero-one knapsack problem and a

branch and bound algorithm. European Journal of Operational Research 1, 169-175.
S. Martello, P. Toth A977b). Computational experienceswith large-size unidimensional

knapsack problems. Presented at the TIMS/ORSA Joint National Meeting, San

Francisco.
S. Martello, P. Toth A977c). Solution of the bounded and unbounded change-making

problem. Presented at the TIMS/ORSA Joint National Meeting, San Francisco.
S. Martello, P. Toth A977d). Branch and bound algorithms for the solution of the general

unidimensional knapsack problem. In M. Roubens (ed.). Advances in Operations Research,

North-Holland, Amsterdam, 295-301.

280 Bibliography

S. Martello, P. Toth A978).Algorithm for the solution of the 0-1 single knapsack problem.
Computing 21, 81-86.

S. Martello, P. Toth A979). The 0-1 knapsack problem. In N. Christofides,
A. Mingozzi, P. Toth, C. Sandi (eds). Combinatorial Optimization, Wiley, Chichester,
237-279.

S. Martello, P. Toth A980a). Solution of the zero-one multiple knapsack problem. European

Journal of Operational Research 4, 276-283.
S.Martello, P. Toth A980b). Optimal and canonical solutions of the change-making problem.

European Journal of Operational Research 4, 322-329.
S. Martello, P. Toth A980c). A note on the Ingargiola-Korsh algorithm for one-dimensional

knapsack problems. Operations Research 28, 1226-1227.
S. Martello, P. Toth A981a). A bound and bound algorithm for the zero-one multiple

knapsack problem. Discrete Applied Mathematics 3, 275-288.

S. Martello, P. Toth A981b). Heuristic algorithms for the multiple knapsack problem.
Computing 27, 93-112.

S. Martello, P. Toth A981c). An algorithm for the generalized assignment problem. In
J.P. Brans (ed.), Operational Research '81, North-Holland, Amsterdam, 589-603.

S. Martello, P. Toth A984a). A mixture of dynamic programming and branch-and-bound
for the subset-sum problem. Management Science 30, 765-771.

S.Martello, P. Toth A984b). Worst-case analysis of greedy algorithms for the subset-sum

problem. Mathematical Programming 28, 198-205.
S.Martello, P. Toth A985a). Approximation schemesfor the subset-sum problem: survey

and experimental analysis. European Journal of Operational Research 22, 56-69.
S. Martello, P. Toth A985b). Algorithm 632. A program for the 0-1 multiple knapsack

problem. ACM Transactions on Mathematical Software 11, 135-140.
S. Martello, P. Toth A987). Algorithms for knapsack problems. In S. Martello, G. Laporte,

M. Minoux, C. Ribeiro (eds), Surveys in Combinatorial Optimization, Annals of Discrete
Mathematics 31, North-Holland, Amsterdam, 213-257.

S. Martello, P. Toth A988). A new algorithm for the 0-1 knapsack problem. Management
Science34,633-644.

S. Martello, P. Toth A989). An exact algorithm for the bin packing problem. Presented at

EURO X, Beograd.
S. Martello, P. Toth A990a). An exact algorithm for large unbounded knapsack problems.

Operations Research Letters (to appear).
S. Martello, P. Toth A990b). Lower bounds and reduction procedures for the bin packing

problem. Discrete Applied Mathematics (to appear).

J.B. Mazzola A989). Generalized assignment with nonlinear capacity interaction.
Management Science 35, 923-941.

M. Meanti, A.H.G. Rinnooy Kan, L. Stougie, C. Vercellis A989). A probabilistic analysis

of the multiknapsack value function. Mathematical Programming (to appear).
H. Miiller-Merbach A978). An improved upper bound for the zero-one knapsack problem:

a note on the paper by Martello and Toth. European Journal of Operational Research 2,
212-213.

R.A. Murphy A986). Some computational results on real 0-1 knapsack problems. Operations

Research Letters 5, 67-71.
R.M. Nauss A976). An efficient algorithm for the 0-1 knapsack problem. Management

Science23,27-31.
R.M. Nauss A978). The 0-1 knapsack problem with multiple choice constraints. European

Journal of Operational Research 2, 125-131.
A. Neebe, D. Dannenbring A977). Algorithms for a specialized segregated storage problem.

Technical Report 77-5, University of North Carolina.
G.L. Nemhauser, L.E. Trotter A974). Properties of vertex packing and independence system

polyhedra. Mathematical Programming 6, 48-61.

Bibliography 281

G.L. Nemhauser, Z. Ullmann A969). Discrete dynamic programming and capital allocation.

Management Science 15,494-505.
G.L.Nemhauser, L.A. Wolsey A988). Integer and Combinatorial Optimization, Wiley,

Chichester.
M.W.Padberg A975). A note on zero-oneprogramming. Operations Research 23, 833-837.
M.W. Padberg A979). Covering, packing and knapsack problems. Annals of Discrete

Mathematics 4, 265-287.
M.W. Padberg A980). (l,k)-configurations and facets for packing problems. Mathematical

Programming 18, 94-99.
C.H. Papadimitriou, K. Steiglitz A982). Combinatorial Optimization, Prentice-Hall,

Englewood Cliffs, NJ.
G. Plateau, M. Elkihel A985). A hybrid algorithm for the 0-1 knapsack problem. Methods

of Operations Research 49, 277-293.
W.R. Pulleyblank A983). Polyhedral combinatorics. In A. Bachem, M. Grotschel, B. Korte

(eds). Mathematical Programming: the State of the Art-Bonn 1982, Springer, Berlin, 312-
345.

A.H.G.Rinnooy Kan A987). Probabilistic analysis of algorithms. In S. Martello, G. Laporte,

M. Minoux, C. Ribeiro (eds),Surveys in Combinatorial Optimization, Annals of Discrete
Mathematics 31, North-Holland, Amsterdam, 365-384.

G.T. Ross, R.M. Soland A975). A branch and bound algorithm for the generalized
assignment problem. Mathematical Programming 8, 91-103.

B.F. Ryder, A.D. Hall A981). The PFORT verifier. Computer Science Report 2, Bell
Laboratories.

S. Sahni A975). Approximate algorithms for the 0-1 knapsack problem. Journal of ACM

11, 115-124.
S. Sahni, T. Gonzalez A976). P-complete approximation problems. Journal of ACM 23,

555-565.
H.M.Salkin A975). Integer Programming, Addison-Wesley, New York.

H.M. Salkin, C.A. de Kluyver A975). The knapsack problem: a survey. Naval Research

Logistics Quarterly 11, 127-144.

A. Schrijver A986). Theory of Linear and Integer Programming, Wiley, Chichester.
P. Sinha, A.A. Zoltners A979). The multiple-choice knapsack problem. Operations Research

11, 503-515.
V. Srinivasan, G.L. Thompson A973). An algorithm for assigning uses to sources in a

special class of transportation problems. Operations Research 21, 284-295.
U. Suhl A978). An algorithm and efficient data structures for the binary knapsack problem.

European Journal of Operational Research 1, 420-428.
M.M. Syslo, N. Deo, J.S. Kowalik A983). DiscreteOptimization Algorithms with Pascal

Programs, Prentice-Hall, Englewood Cliffs, NJ.
K. Szkatula, M. Libura A987). On probabilistic properties of greedy-like algorithms for the

binary knapsack problem. Report 154, Instytut Badan Systemowych, Polska Akademia
Nauk, Warsaw.

H.A. Taha A975). Integer Programming, Academic Press, New York.
B.N.Tien, T.C. Hu A977). Error bounds and the applicability of the greedy solution to the

coin-changing problem. Operations Research 25, 404-418.
G. Tinhofer, H. Schreck A986). The bounded subset sum problem is almost everywhere

randomly decidable in 0(n). Information Processing Letters 23, 11-17.
M.Todd A980). Theorem 3. In V. Chvatal. Hard knapsack problems, Operations Research

28, 1408-1409.
P. Toth A976). A new reduction algorithm for 0-1 knapsack problems. Presented at the

ORSA/TIMS Joint National Meeting, Miami.

P. Toth A980). Dynamic programming algorithms for the zero-one knapsack problem.

Computing 25, 29-45.

282 Bibliography

G.P. Veliev, K.Sh. Mamedov A981). A method of solving the knapsack problem. USSR

Computational Mathematics and Mathematical Physics 21, 75-81.
A. VerebriusovaA904).On the number of solutions of indefinite equations of the first degree

with many variables. Mathematicheskii Shornik 24, 662-688.
P.R.C. Villela, C.T. Bomstein A983). An improved bound for the 0-1 knapsack problem.

Report ES31-83, COPPE-Federal University of Rio de Janeiro.
H.M. Weingartner A963). Mathematical Programming and the Analysis of Capital Budgeting

Problems, Prentice-Hall, Englewood Cliffs, NJ.
H.M.Weingartner A968). Capital budgeting and interrelated projects: survey and synthesis.

Management Science 12,485-516.
H.M.Weingartner, D.N. Ness A967). Methods for the solution of the multi-dimensional 0-1

knapsack problem. Operations Research 15, 83-103.
L.A.Wolsey A975). Faces of linear inequalities in 0-1 variables. Mathematical Programming

8, 165-178.
J.W. Wright A975). The change-making problem. Journal of ACM 22, 125-128.
E. ZemelA978). Lifting the facets of zero-one polytopes. Mathematical Programming 15,

268-277.
E. ZemelA980).The linear multiple choice knapsack problem. Operations Research 28,

1412-1423.
E. ZemelA984).An 0{n) algorithm for the linear multiple choice knapsack problem and

related problems. Information Processing Letters 18, 123-128.

E. Zemel A988). Easily computable facets of the knapsack polytope. Report 713, Department
of Managerial Economics and Decision Sciences, Northwestern University, Evanston,
Illinois.

A.A. Zoltners A978). A direct descent binary knapsack algorithm. Journal of ACM 25,
304-311.

Author index

Note: listing in references section is indicated by bold page numbers.

Aho, A. v., 15, 18,223,275
Ahrens, J. H., 29, 39, 43, 107,129, 130,

275

Aittoniemi, L., 88, 275
Armstrong, R. D., 80, 275
d'Atri, G., 56, 126, 275
Avis, D., 128, 275

Babat, L. G., 56, 275

Bachem, A., 74, 275
Baker, B. S., 223, 275
Balas,E., 14,17,47, 57, 58, 59, 60, 62,

68,75, 76, 163, 275
Barr, R. S., 30,275

Bellman, R., 37, 275
Bomstein, C. T.,22, 282

Brown, J. R., 237,278
Bulfin, R. L., 88, 275

Cabot,A. v., 96, 276

Carpaneto, G., 191,276
Chalmet, L., 191,276

Chang, L., 145,276
Chang, S. K., 142, 143, 145,151,276

Christofides, N., 168, 237, 276
Chvatal, v., 128,276

Coffman, E. G., Jr., 222,223, 275, 276

Cord, J., 276
Crowder, H., 13, 276

Dannenbring, D., 168,280
Dantzig, G. B., 14, 16, 37, 162,276

DeMaio, A., 191, 276
Dembo,R. S.,47, 276

Demers, A., 10, 223,233,278

Deo, N., 5, 32, 281
Dietrich, B. L., 13, 106, 276
Dreyfus, S. E., 275
Dudzinski, K., 5, 23,24, 26, 80, 276

Dyer, M. E.,80, 276

Eilon, S., 237, 276
Elkihel, M., 36, 116, 281
Escudero, L. P., 13, 106,276

Faaland, B., 107, 276

Fayard, D., 22, 30, 47, 48, 60,68, 276,

277

Feldman, I., 96, 278
Finke, G., 29, 39, 43, 107,129,130, 275

Fischetti, M., 102, 122,124,176,277

Fisher, M. L., 9, 20, 197,206,213,218,
219,277

Fisk, J. C, 179, 185,277
Frieze, A. M., 128,277

Garey, M. R., 6, 8, 10,177, 178, 222,

223, 233, 276,277,278
Garfinkel, R. S., 5, 96, 277
Gelders,L., 191,276

Gens, G. V., 56, 125,126,131,277, 279

Geoffrion, A., 163, 277
Gill, A., 142, 143, 145, 151, 276
Gilmore, P. C, 14, 88, 95, 96, 146, 277

Glover, p., 80, 81, 158,277

Goldberg, A. V., 57, 59, 277

Gomory, R. E., 14, 88, 95,96, 146, 277

Gonzalez, T., 10,281
Gottlieb, E. S., 76, 191, 277,278
Graham, R. L., 10, 223, 233,278
Greenberg, H., 29, 88, 96, 278
Grotschel, M., 74, 275

Guignard, M. M., 30,201,278

Hall, A. D., 248, 281
Hammer, P. L., 47, 75, 276,278
Hartvigsen, D., 77, 278

Hegerich, R. L., 29,88, 278

Hirschberg, D. S., 92, 278
Hopcroft, J. E., 15, 18, 223,275
Horowitz, E., 29, 32, 39, 43, 68,278

283

284 Author index

Hudson, P. D.,22, 278

Hung, M. S., 163, 168, 179,184,185,

237, 277, 278
Hu, T. C, 5, 95, 96, 142, 144, 145,278,

281

Ibarra, O. H., 14, 53, 54, 56,95, 125, 278

Ingargiola, G. P., 14,45, 88, 91, 176,
184, 278

Jaikumar, R., 197, 206, 213, 218,219,
277

Jeroslow, R., 75, 275
Johnson, D. S., 6, 8, 10, 14,120, 131,

177, 178, 222, 223,233,276, 277,

278

Johnson, E. L., 13,75, 276, 278

Johnson, S. C, 145,278

Jomsten, K., 201, 203, 206,218,278

Kannan, R., 92, 279
Kaplan, S., 279

Karp, R. M., 6, 10,50, 279

Kayal, N., 80, 276
Kemighan, B. W., 145, 278
Kim, C. E., 14, 53, 54, 56,95, 125,

278

Kim, S., 201,278
Klastorin, T. D., 209, 279
Klingman, D., 80, 277
de Kluyver, C. A., 5, 281
Knuth, D. E., 107, 279
Kolesar, P. J., 14,29, 279

Korsh, J. P., 14,45,88, 91, 145, 176,
184,276,278

Kowalik, J. S., 5, 32, 281
Kuhn, N. W., 191,279
Kung, D. S.,80, 275

Lagarias, J. C, 126, 279
Lageweg,B.J.,30, 279

Lauriere, M., 30, 48, 279
Lawler, E. L., 56, 95, 125,126,131,191,

279

Lenard, M. L., 95, 144,278
Lenstra, J. K., 10, 30, 50, 279
Levner, E. V., 56, 125, 126,131,277,

279

Libura, M., 57, 281
Lueker, G. S., 56,92, 137,279

Maculan, N., 20, 279

Magazine, M. J., 56,95, 142, 143, 279
Mamedov, K. Sh., 30,282

Marchetti-Spaccamela, A., 57, 59, 277,
279

Martello, S., 5, 14, 20, 22, 24,32, 36, 48,

60, 61,68,85, 88, 91,93,96, 98,

100, 101, 102, 107, 109,116,118,
119,121,122, 131, 135, 139, 145,
146,149,154, 159, 162, 168, 169,
170,172,175,176,179,180,182,

184, 185, 191, 195, 204,206,209,

212, 213, 218, 228, 233,237,248,
261,263,276,277,279,280

Mazzola, J. B., 209, 280
McDiarmid, C. J. H., 10, 50, 279
Meanti, M., 57, 280

Mingozzi, A., 168,276
Muller-Merbach, H., 23, 280

Murphy, R. A., 47, 280

Nasberg, M., 201, 203, 206, 218,
278

Nauss, R., 47, 275
Nauss, R. M., 32,68, 80, 280

Neebe, A., 168,280
Nemhauser, G. L., 5, 74, 76, 88, 96,277,

280, 281

Nemhauser, J. L., 95, 142,143, 279

Ness, D. N., 282

Odlyzko, A. M., 126, 279
Oehlandt, K., 88, 275

Oguz, O., 56,279

Padberg, M. W., 13, 76, 276,281
Papadimitriou, C. H., 5, 281
Parker, R. G., 88, 275
Peled,U. N., 75, 278
Plateau, G., 22, 30, 36, 47, 48,60, 68,

116,276,277,281
Puech, C, 126,275
Pulleyblank, W. R., 74, 281

Rao, M. R., 76, 191,277,278
Rinnooy Kan, A. H. G., 10,50,57, 279,

280, 281
Ross, G. T.,30, 163, 192, 193, 197, 204,

213,218,275, 281

Roveda, C, 191, 276
Ryder, B. p., 248, 281

Sahni, S., 10, 29, 32, 39, 43, 50,

121,278,281

Salkin, H. M., 5, 281
Schreck,H., 128, 281

Schrijver, A., 5, 74, 281

^,71,

Author index

Shetty, C. M., 88, 275
Sinha, P., 80, 275, 281
Soland, R. M., 163, 192, 193,197,204,

213,218,281
Spielberg, K., 30, 278
Srinivasan, V., 191,281
Steiglitz, K., 5, 281

Stougie, L., 57, 280
Suhl, U., 32, 281

Syslo, M. M., 5, 32,281
Szkatuia, K., 57, 281

Taha, H. A., 5, 281
Thompson, G. L., 191, 281
Tien, B. N., 142, 145, 281
Tinhofer, G., 128, 281
Todd, M., 128,281
Toth, P., 5, 14, 20, 22, 24,32, 36, 38, 39,

44, 45,48, 60,61,68, 85, 88, 91,
93, 96, 98, 100, 101, 107, 109, 116,
118,119,121,122,131,135, 139,

145, 146, 149, 154,159,162,168,
169, 170, 172, 175, 179, 180,182,
184, 185, 191, 195, 204, 206,209,
212,213,218,228, 233, 237, 248,
261, 263,276,277, 279, 280, 281

285

Trotter, L. E., 76, 280
Trotter, L. E., Jr., 95, 142,143,279

Ullman, J. D., 10, 15, 18,223,233, 275,

278

Ullmann, Z., 88, 281

Van Wassenhove, L. N., 197, 206,213,
218,219,277

Veliev, G. P., 30, 282
Vercellis, C, 57, 279, 280
Verebriusova, A., 107, 282
Villela, P. R. C, 22, 282

Walker, J., 80, 276
Walukiewicz, S., 5, 23, 24, 26, 80,

276
Weingartner, H. M., 282

Wolsey, L. A., 5, 74, 75, 76, 281,282
Wong, C. K., 92, 278
Wright, J. W., 146, 151, 282

Zemel, E., 14, 17, 47, 57, 58,59, 60, 62,

68, 76, 77, 80,275, 278, 282

Zoltners, A. A., 32, 60,80, 275, 281,
282

Subject index

Note: abbreviations used in the text and in this index;

BCMP = Bounded Change-Making Problem
BKP = Bounded Knapsack Problem

BPP = Bin-Packing Problem

CMP = Change-Making Problem
GAP = Generalized Assignment Problem
KP = 0-1 Knapsack Problem
MCKP =

Multiple-Choice Knapsack Problem
MKP = 0-1 Multiple Knapsack Problem
SSP = Subset-Sum Problem

UEMKP = Unbounded Equality Constrained Min-Knapsack Problem
UKP = Unbounded Knapsack Problem

Additional constraints, bounds from,

20-23

ADJUST procedure, 198-200
example using, 200

Ahrens-Finke (dynamic programming)
algorithm, 107

computational experiments using, 129
Approximate algorithms

BKP solved using, 86-87
BPP solved using, 222-224

GAP solved using, 206-209

KP solved using, 50-57
computational experiments

involving, 71-74
MKP solved using, 177-182

SSP solved using, 117-128
computational experiments for,

130-136
UKP solved using, 93-95

Assignment problems see Generalized
Assignment Problem; LEGAP;

MINGAP; XYGAP

Asymptotic worst-case performance ratio,

223

AVIS problem, 129

Balas-Zemelalgorithm, 58-60

computational experiments using, 70

Best-Fit (BE) algorithm, 223, 224
Best-Fit Decreasing (BED)algorithm,

223-224, 238

Bibliography, 275
Binary knapsack problem see 0-1

Knapsack Problem (KP)

Binary tree, upper bound of KP, 26
Bin-Packing Problem (BPP), 5, 221-245

approximate algorithms used, 222-224

worst-case performance ratio of, 222,
223

continuous relaxation of, 224

definition of, 221
Fortran-coded algorithm used, 247,

270-272
Lagrangian relaxation of, 226-227
lower bounds for, 224-233

worst-case performance ratio for,

224, 228, 232
NP-hardness of, 9
reduction algorithms used, 233-237

relaxations-based lower bounds for,

224-228

computational experiments using,
241-244

relaxations of, 224-227

stronger lower bound for, 228-233

surrogate relaxation of, 225-226

287

288 Subject index

Bound-and-bound algorithm, 171
MKP solved using, 172-176

Bound-and-bound method, 170-172
Bounded Change-Making Problem

(BCMP), 153-156
branch-and-bound algorithm used, 155

computational experiments for solution

of, 156

continuous relaxation of, 153-154
definition of, 153

Fortran-coded algorithm used, 247,
259-261

greedy algorithm used, 155
lower bound for, 154

Bounded Knapsack Problem (BKP),3,
81-91

approximate algorithms used, 86-87
branch-and-bound algorithms used,

88-89

computational experiments for solution

of, 89-91
definition of, 81

dynamic programming used, 88

exact algorithms used, 87-89
Fortran-coded algorithm used, 247,

252-254
NP-hardness of, 6

recursive formulae for, 7
special caseof, 91-103
transformation into KP, 82-84

upper bounds of, 84-86

Branch-and-bound algorithms
BCMPsolved using, 155

BKP solved using, 88-89

CMP solved using, 146-149
compared with dynamic programming

algorithms, 70
GAP solved using, 204-206

Greenberg-Hegerich approach, 29, 30

Kolesar algorithm, 29
KP solved using, 14, 26-27, 29-36
MKP solved using, 168-170

Branch-and-bound tree, upper bound of

KP, 27
BZ algorithm, 60

BZC algorithm, 58-59

Canonical inequalities, 75

Canonical vectors, 142
CDC-Cyber730 computer

CMP experiments run on, 151

KP experiments run on, 68-71

MKP experiments run on, 183, 184,
185

SSP experiments run on, 129, 130,
132-134

Change-Making Problem (CMP), 4,
137-156

BCMPas generalization of, 153

branch-and-bound algorithms used,

146-149

computational experiments for solution

of, 151-153

definition of, 137
dynamic programming used, 145-146
exact algorithms used, 145-149

Fortran-coded algorithms used, 247,

258-259

greedy algorithms used, 140-142

large-size problems, 149-151
lower bounds for, 138-140
NP-hardness of, 7

recursive formulae for, 8
Combinatorial Optimization, 13

Computational experiments
BCMP-solvingalgorithm, 156

BKP-solution algorithms, 89-91
CMP-solution algorithms, 151-153

Fayard-Plateau algorithm used, 70
GAP-solving algorithms, 213-220

KP-solution algorithms, 67-74
MKP-solving algorithms, 182-187

SSP-solution algorithms, 128-136
UKP-solution algorithms, 102-103

Continuous Knapsack Problem, 16
solutions of, 17, 19

Continuous relaxations, 11

BCMP, 153-154
BPP, 224
GAP, 192

KP, 16-17
MKP, 160-162

COREalgorithm, 63-64, 72

Core problem
KP, 14,57
SSP,116
UKP, 98

Critical item

finding in nominated time, 17-19, 25
meaning of term, 16

CRITICAL. ITEM algorithm, 18

BCMP solved using, 155
Critical ratio, definition of, 17

Dantzig bound, 17, 24, 45, 59, 162, 197

Decision-trees
BPP lower bounds, 239

HS algorithm, 33

Subject index 289

MTl algorithm, 37
MTCl algorithm, 149

MTM algorithm, 175
MTRGl algorithm, 212

MTS algorithm, 115
MTUl algorithm, 99

MTU2 algorithm, 102
Depth-first algorithm, meaning of term,

29
Depth-first branch-and-bound algorithms,

168
GAP solved using, 204-206

Diophantine equation, SSP related to,

105

Dominance criteria, MCKP,78-80
Dominated states

elimination of, 39-42

meaning of term, 39
DPI algorithm, 39

compared with DP2, 44
example using, 42

DP2 algorithm, 41-42
compared with DPI, 44

example using, 42, 44

states of, 42, 44
DPS algorithm, 109

Dudzinski-Walukiewicz bound, 24
Dynamic programming

algorithms compared with branch-and-

bound algorithms, 70
BKP solved using, 88

CMP solved using, 145-149

combined with tree-search to solve

SSP, 109-116

knapsack problems first solved by, 14
KP solved using, 36-45

meaning of term, 37-38
SSP solved using, 106-109

Exact algorithms
BKP solved using, 87-89

CMP solved using, 145-149

GAP solved using, 204-206
KP solved using, 57-67

computational experiments

involving, 68-71

large-size CMP solved using, 149-151

large-size UKP solved using, 98,

100-102
MKP solved using, 167-176

SSP solved using, 106-117
computational experiments

involving, 129-130
UKP solved using, 95-98

Fayard-Plateau algorithm, 60-61
computational experiments using, 70

First-Fit Decreasing (FFD) algorithm,
223-224, 238,240

First-Fit (FF) algorithm, BBP solved
using, 222-223, 224

Fisher-Jaikumar-Van Wassenhove
algorithm, GAP solved using,
computational experiments for,

214-218

Fisher-Jaikumar-Van Wassenhove bound,

197, 200-201

FPDHR reduction algorithm, 47

FS(k) algorithm, 124
compared with MTSS(/:) algorithm,

125

Fully polynomial-time approximation
schemes, 10, 14

computational inferiority of, 72
KP solved using, 53-57

not possible for MKP, 178

SSP solved using, 125-126

GeneralizedAssignment Problem (GAP),
4, 189-220

approximate algorithms used, 206-209
branch-and-bound algorithms used,

204-206

computational experiments for solution

of, 213-220
definition of, 189

exact algorithms used, 204-206

Fortran-coded algorithms used, 247,
265-270

Lagrangian relaxation of, 193-194
minimization version of, 190
NP-hardness of, 8

reduction algorithms used, 209-213
relaxation of capacity constraints for,

192-195
relaxation of semi-assignment

constraints for, 195-197
relaxations of, 192-204

upper bounds of, 192-204

Gens-Levner algorithm see GL(c)
algorithm

GL(c) algorithm, 125-126

computational experiments using,
131-134

example using, 126,127
Glossary, 272

GREEDY algorithm, 28-29
Greedy algorithms, 28

BCMP solved using, 155

290 Subject index

Greedy algorithms (cont.)
classes of knapsack problems solved

by,142-145
CMP solved using, 140-142

computational experiments
involving, 151

KP solved using, 27-29
MKP solved using, 166-167
SSP solved using, 117-119

GREEDYB algorithm, 86-87
computational experiments using,

89-91
GREEDYS algorithm, 179

use in MTHM, 180,181
GREEDYU algorithm, 95

GREEDYUM algorithm, 141
BCMPsolved using, 155

example using, 141
GS algorithm, 118, 50

Heuristic procedures used
Balas-Zemelalgorithm for KP, 59
Martello-Toth algorithm for GAP,

206-208, 268-270
Martello-Toth algorithm for MKP,

180-182, 263-265
Horowitz-Sahni branch-and-bound

algorithm, 30-32

compared with Martello-Toth

algorithm, 32-34

computational experiments using,
69

notations used, 30
Horowitz-Sahni dynamic programming

algorithm, 43
example using, 43

states of, 43
HP 9000/840 computer

BKP experiments run on, 89-91
BPP experiments run on, 240-244
CMP experiments run on, 152, 156
GAP experiments run on, 214-220
KP experiments run on, 71-73
MKP experiments run on, 185, 186
SSPexperiments run on, 130
UKP experiments run on, 103

HS algorithm, 30-31

decision-tree of, 33

example using, 32
Hung-Fisk branch-and-bound algorithms

branching strategy for, 168
computational experiments using, 183,

184
MKP solved using, 168

Ibarra-Kim polynomial-time approximate

algorithm, 53
see also IK(c) algorithm

IBM-7094 computer, BKP solved on, 88

IK(c) algorithm, 53-54
example using, 55

KP solved using, 54-55
SSPsolved using, 125

IKR algorithm, 46
compared with Martello-Toth

algorithm, 48
example using, 46-47

time complexity of, 47
IKRM algorithm, 176

computational experiments using, 183,

184

time complexity of, 177

Ingargiola-Korsh algorithm
BKP solved using, 89-90

computational experiments using,
89-90

Ingargiola-Korsh reduction algorithms,
45-46, 176

see also IKR algorithm; IKRM

algorithm
Integer Linear Programming problem, 13

Investments, knapsack problem solution

for, 1

i(k) algorithm, 120, 122
compared with procedure MTSS(^),

122-123

computational experiments using,
131-135

example using, 121
Johnson algorithm see i(k) algorithm

Knapsack polytope, 74-77

0-1 Knapsack Problem (KP),2, 13-80
approximate algorithms used, 50-57
BKP as generalization of, 81
BKP transformed into, 82-84

bounds from additional constraints,
20-23

bounds from partial enumeration,
24-27

branch-and-bound algorithms used, 29
continuous relaxation of, 16-17

definition of, 13
dynamic programming used, 36-45
exact algorithms used, 57-67

Fortran-coded algorithms used, 247,

248-252

fractions handled for, 14

Subject index 291

with Generalized Upper Bound (GUB)
Constraints, 77

greedy algorithms used, 27-29

improved bounds of, 20-27

Lagrangian relaxation of, 19-20

bounds from, 23-24
linear programming relaxation of,

16-17
minimization version of, 15

solution of, 29
nonpositive values handled for, 14
NP-hardness of, 6

probabilistic result for, 56-57
reasonsfor study of, 13
recursive formulae for, 7

reduction algorithms used, 45-50

relaxations of, 16-20

SSP as special case of, 105

upper bounds of, 16-20
seealso Bounded Knapsack Problem;

Multiple Knapsack Problem;
Multiple-Choice Knapsack

Problem; Unbounded Knapsack
Problem

Knapsack problems
literature reviews on, 5

meaning of term, 1-2
terminology used, 2-5

LI lower bound (for BPP), 225-228

computational experiments using,
241-244

L2 algorithm, 231-232
example using, 236

main variables in, 231

worst-case performance ratio of,
232-233

L3 algorithm, 235-236

computational experiments using,
241-244

example using, 236, 240

Lagrangian relaxations, 11

bounds from, 23-24
BPP,226-227
GAP, 193-194

KP, 23-24
MKP, 162-165

Large-sizeCMP, algorithm for, 149-151

Large-size KP, algorithms for, 57-67

Large-size SSP, algorithm for, 116-117

Large-size UKP, algorithm for, 98,
100-102

Lawler (polynomial-time approximation)

scheme, 125, 126

computational experiments using,
131-134

LBFD algorithm

BPP lower bound using, 233
computational experiments using,

241-244
LEGAP, 190-191
Linear Min-Sum Assignment Problem,

191
0-1 Linear Programming Problem (ZOLP)

algorithm for solution of, 171

definition of, 170
lower bound on, 171

Linear programming relaxation, KP,
16-17

LISTS algorithm, 110-111

example using, 111
Lower bounds, 9

BCMP, 154
BPP, 224-233
CMP, 138-140
ZOLP, 171

LOWER procedure, 173

Martello-Toth algorithms
GAP solved using, 204-206,212

computational experiments for,
214-218

Martello-Toth bound, 195, 197

Martello-Toth branch-and-bound
algorithm, 32-36

branching strategy for, 169
compared with Horowitz-Sahni

algorithm, 32-34
computational experiments using, 183,

184
Fortran implementation of, 248
MKP solved using, 168-170

Martello-Toth exact algorithm, 61-67
Martello-Toth polynomial-time algorithm

Fortran implementation of, 263-265
MKP solved using, 179-182

Martello-Toth reduction algorithm, 48

compared with Ingargiola-Korsh

algorithm, 48
MINGAP, 190
Minimal covers, meaning of term, 75
MNT algorithm, 144-145

example using, 145
MTl algorithm, 34-36

computational experiments using, 69,
70

decision-treeof, 37

example using, 36

292 Subject index

MTl algorithm (cont.)
Fortran implementation of, 247,

248-249
MXr algorithm, 64

MTIR algorithm, 247, 249-251
MT2 algorithm, 66-67

computational experiments using, 70,
71

Fortran implementation of, 247,
251-252

heuristic version of, 72
MTB2 algorithm

computational experiments using,
89-91

Fortran implementation of, 247,
252-254

MTCl algorithm, 147-148

computational experiments using,
151-153

decision-treefor, 149

example using, 149
MTC2algorithm, 150

computational experiments using, 152
Fortran implementation of, 247,

258-259
MTCBalgorithm, 155

computational experiments using, 156
Fortran implementation of, 247,

259-261
MTG algorithm

computational experiments using,
214-217

development of, 205-206

Fortran implementation of, 247,
265-268

MTGS algorithm, 118, 121
MTGSM algorithm, 123-124

example using, 124
MTHG algorithm, 206-207

computational experiments using,
219-220

example using, 208

Fortran implementation of, 247,
268-270

MTHM algorithm, 180-181

computational experiments using,

185-187

example using, 182
Fortran implementation of, 247,

263-265
MTM algorithm, 173-174

computational experiments using,
183-186

decision-treefor, 175

example using, 175
Fortran implementation of, 247,

261-263
modified version of, 176

MTP algorithm, 237-238

computational experiments using,
244-245

decision-treeproduced by, 239

example using, 238-240
Fortran implementation of, 247,

270-272
MTR algorithm, 48-49

computational experiments using,

69

example using, 49
MTR' algorithm, 64-65

MTRGl algorithm, 209-210
decision-tree when used, 212

example using, 211-213
MTRP algorithm, 234

example using, 236,240
time complexity of, 237

MTS algorithm, 113-114

decision-tree for, 115

example using, 115
MTSLalgorithm, 116-117

computational experiments using,
129-130

Fortran implementation of, 129-130

MTSS(A:)algorithm, 121-122

compared with procedure i(k),
122-123

computational experiments using,
131-136

example using, 123

worst-case performance ratio of, 122

MTUl algorithm, 96-97
computational experiments using, 103
decision-tree for, 99

example using, 98
MTU2 algorithm, 100

computational experiments using, 103
decision-treefor, 102

example using, 101
Fortran implementation of, 247,

254-255
Miiller-Merbach bound, 23

Multiple-Choice Knapsack Problem

(MCKP), 3, 77-80
0-1 Multiple Knapsack Problem (MKP),

157-187
approximate algorithms used, 177-182
branch-and-bound algorithms used,

168-170

Subject index 293

computational experiments for solution

of, 182-187

continuous relaxation of, 160-162

definition of, 157

exact algorithms used, 167-176
Fortran-coded algorithms used, 247,

261-265
greedy algorithms used, 166-167

Lagrangian relaxation of, 162-165

LEGAP as generalization of, 191
NP-hardness of, 8

polynomial-time approximation
algorithms used, 179-182

reduction algorithms used, 176-177

relaxations of, 158-165

surrogate relaxation of, 158-162

upper bounds of
techniques to obtain, 158-165
worst-case performance of, 165-166

Multiple knapsack problems, see also
Bin-Packing Problem (BPP);
Generalized Assignment Problem
(GAP);0-1Multiple Knapsack
Problem (MKP)

Multiplier adjustment method, GAP upper
bound determined by, 197-201

Nauss exact algorithm, computational

experiment using, 69
Next-Fit Decreasing (NFD) algorithm,

223-224
Next-Fit (NF) algorithm, 222, 224
NP-hard problems, 6-9

(l,/:)-configuration, 76
One-point theorem, 144

Partial enumeration, KP bounds from, 24

Performance of algorithms, 9

Polynomial-time approximation schemes,
10, 14

KP solved using, 50-53

computational experiments, 71-74

MKP solved using, 179-182
SSPsolved using, 120-125

computational experiments, 131-136
Polytope, meaning of term, 74
Probabilistic analysis, 10

KP, 56-57
SSP, 126,128

Problems

AVIS, 129

computational experiments using,
129

EVEN/ODD, 128

computational experiments using,
129, 133

TODD,128
computational experiments using,

129, 134
Procedures

ADJUST, 198-200
example using, 200

BOUND AND BOUND, 171
BZ, 60

BZC, 58-59
CORE, 63-64, 72
CRITICAL.ITEM, 18

BCMP solved using, 155
DPI, 39

compared with DP2, 44
example using, 42

DP2, 41-42

compared with DPI, 44

example using, 42, 44
states of, 42

DPS, 109
example using, 83-84

GL(c), 125-126

computational experiments using,
131-134

example using, 126, 127
GREEDY, 28-29

SSP solved using, 117
GREEDYB, 86-87

computational experiments using,
89-91

GREEDYS, 179

use in MTHM, 180,181
GREEDYU, 95

GREEDYUM, 141
BCMP solved using, 155

example using, 141
GS, 50, 118
H, 59

HS, 30-31
decision-tree of, 33
example using, 32

IK(c), 53-54

dynamic programming phase of, 53,

55

example using, 55
greedy phase of, 54, 56
SSP solved using, 125

IKR, 46
example using, 46-47

IKRM, 176

computational experiments using,

183, 184

294 Subject index

IKRM (cont.)
time complexity of, 177

i(k), 120,122

compared with procedure MTTS
(K), 122-123

computational experiments using,
131-135

example using, 121

L2, 231-232

computational experiments using,

241-244

example using, 236
main variables in, 231
worst-case performance ratio of,

232-233
L3, 235-236

computational experiments using,
241-244

example using, 236, 240

LISTS, 110-111
example using, 111

LOWER, 173
MNT, 144-145

example using, 145
MT 1,34-36

computational experiments using, 69,
70

decision-tree of, 37

example using, 36
Fortran implementation of, 247,

248-249
MTl', 64
MTIR, 247, 249-251

MT2, 66-67
computational experiments using, 70,

71
Fortran implementation of, 247,

251-252
heuristic version of, 72

MTCl, 147-148
computational experiments using,

151-153
decision-tree for, 149

example using, 149
MTC2,150

computational experiments using,
152

Fortran implementation of, 247,
258-259

MTCB,155
computational experiments using,

156
Fortran implementation of, 247,

259-261

MTGS,118,121
MTGSM, 123-124

example using, 124
MTHG, 206-207

computational experiments using,
219-220

example using, 208

Fortran implementation of, 247,
268-270

MTHM, 180-181

computational experiments using,
185-187

example using, 182

Fortran implementation of, 247,
263-265

MTM, 173-174

computational experiments using,
183-186

decision-treefor, 175

example using, 175
Fortran implementation of, 247,

261-263
modified version of, 176

MTR, 48-49
computational experiments using, 69

example using, 49

MTR', 64-65
MTRGl, 209-210

decision-treewhen used, 212

example using, 211-213
MTRG2, 210-211

MTRP, 234

example using, 236, 240

time complexity of, 237
MTS, 113-114

decision-tree for, 115

example using, 115
MTSL,116-117

computational experiments using,
129-130

Fortran implementation of, 247,
256-257

MTSS(A:),121-122
compared with procedure i(k),

122-123
computational experiments using,

131-136

example using, 123

worst-case performance ratio of, 122

MTUl, 96-97

computational experiments using,
103

decision-tree for, 99
example using, 98

Subject index 295

MTU2, 100
computational experiments using,

103
decision-tree for, 102

example using, 101
Fortran implementation of, 247,

254-255
R, 59

RECl, 38-39
REC2, 40-41

dynamic programming algorithm
using, 41-42

example using, 44

RECS, 108

S(k),5\\
example using, 52

TBOl, 83
UPPER, 172-173

Pseudo-polynomial algorithm, 7

Pseudo-polynomial transformation, 8

RECl procedure, 38-39

REC2 procedure, 40-41
dynamic programming algorithm using,

41-42
example using, 44

Recognition problem, 6
RECSprocedure, 108

Reduction algorithms
BPP solution involving, 233-237
GAP solution involving, 209-213

KP solution involving, 45-50

MKP solution involving,

176-177

Reduction procedures
Balas-Zemel method use of, 59
first used, 14

References listed, 275
Relaxations, 11

BCMP, 153-154
BPP, 224-227
GAP, 192-204

KP, 16-20
MKP, 158-165
seealso Continuous relaxations;

Lagrangian relaxations; Surrogate

relaxations

Ross-Soland algorithm, GAP
computational experiments using,
214-218

Ross-Soland bound, 193, 197, 201

computational experiments using,
72-73

Sequential lifting procedure, 76

Simultaneous lifting procedure, 76

Single knapsack problems

see Bounded Change-Making Problem;
Bounded Knapsack Problem;

Change-Making Problem;
Multiple-Choice Knapsack

Problem; Subset-Sum Problem;
Unbounded Equality Constrained

Min-Knapsack Problem;
Unbounded Knapsack Problem

S(^) algorithm, 51
examples using, 52
see also Sahni polynomial-time

approximation scheme
States

meaning of term, 38

procedure DP2,42
Stickstacking Problem, 105

see also Subset-Sum Problem (SSP)
Subset-Sum Problem (SSP),3, 105-136

approximate algorithms used, 117-128

computational experiments for,

130-136

computational experiments for solution

of, 128-136
core problem of, 116

definition of, 105
dynamic programming used, 106-109
exact algorithms used, 106-117

computational experiments for,

129-130

Fortran-coded algorithm used, 247,
256-257

fully polynomial-time approximation
schemes used, 125-126

greedy algorithm used, 117-119

hybrid algorithm used, 109-116

large-size problems solved, 116-117

NP-hardness of, 6
polynomial-time approximation

schemes used, 120-125
computational experiments

involving, 131-136

probabilistic result for, 126, 128
recursive formulae for, 7

Surrogate relaxations, 11
BPP,225-226
MKP, 158-162

Sahni polynomial-time approximation
scheme,51,53, 56

TBOl algorithm, 83
example using, 83-84

296 Subject index

Terminology, 2-5

TODD problem, 128,129,133

Toth dynamic programming algorithm, 44
computational experiments using, 69

Tree-search, combined with dynamic

programming to solveSSP,109-116

Unbounded Change-Making Problem, 4
Fortran-coded algorithms used, 247,

258-259
see also Change-Making Problem

(CMP)
Unbounded Equality Constrained Min-

Knapsack Problem (UEMK),141
Unbounded Knapsack Problem (UKP), 3,

91-103
approximate algorithms Used, 93-95

computational experiments for solution

of, 102-103
core problem of, 98
definition of, 91-92
exact algorithms used, 95-98

Fortran-coded algorithm used, 247,
254-255

large-size problems, 98, 100-102
minimization form of, UEMK

containing, 141
upper bounds of, 92-94

Upper bounds, 11

BKP, 84-86
GAP, 192-204

KP, 16-20
MKP

techniques to obtain, 158-165
worst-case performance of, 165-166

UKP, 92-94
UPPER procedure, 172-173

Value Independent Knapsack Problem,

105

see also Subset-Sum Problem (SSP)
Variable splitting method, GAP relaxed

by, 201-204

Worst-case analysis, 9-10

Worst-case performance ratio
BPP algorithms, 222

BPP lower bounds, 224,228,232

definition of, 9
L2 algorithm, 232-233
MKP upper bounds, 165-166

MTSS(A:)algorithm, 122

Worst-case relative error, 10
Worst-Fit Decreasing (WFD) algorithm,

238
Wright algorithm, 146

computational experiments using,

151

XYGAP, 201

Zoltners algorithm, 60

