KNAPSACK
PROBLEMS

SILVANO MARTELLO- PAOLO TOTH

KNAPSACK PROBLEMS

Algorithms and Computer
Implementations

Silvano Martello

and

Paolo Toth

DEIS, University of Bologna

JOHN WILEY & SONS

Chichester - New York - Brisbane - Toronto - Singapore

Copyright () 1990 by John Wiley & Sons Ltd.
Baffins Lane, Chichester
West Sussex PO19 1UD, England

All rights reserved.

No part of this book may be reproduced by any means,
or transmitted, or translated into a machine language
without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, G.P.O. Box 859, Brisbane,
Queensland 4001, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale, Ontario MO9W 1L1, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin #05-04,
Block B, Union Industrial Building, Singapore 2057

Library of Congress Cataloging-in-Publication Data:
Martello, Silvano. .
Knapsack problems : algorithms and computer implementations
Silvano Martello, Paolo Toth.
p. cm. — (Wiley-Interscience series in discrete mathematics
and optimization)
Includes bibliographical references.
ISBN 0471 92420 2
1. Computational complexity. 2. Mathematical optimization.
3. Algorithms. 4. Linear programming. 5. Integer programming.
I. Toth, Paolo. II. Title. III. Series.
QA 267.7.M37 1990
5117.8—dc20 90-12279
CIP

British Library Cataloguing in Publication Data:
Martello, Silvano
Knapsack problems : algorithms and computer
implementations.
1. Linear programming. Computation
I. Title II. Toth, Paolo
519.72

ISBN 0 471 92420 2

Printed in Great Britain by Biddles Ltd, Guildford

Contents

Preface

1 Introduction
1.1 What are knapsack problems?
1.2 Terminology
1.3 Computational complexity
14 Lower and upper bounds

2 0-1 Knapsack problem
2.1 Introduction
2.2 Relaxations and upper bounds

2.2.1 Linear programming relaxation and Dantzig’s bound

2.2.2 Finding the critical item in O(n) time
2.2.3 Lagrangian relaxation

2.3 Improved bounds
2.3.1 Bounds from additional constraints
2.3.2 Bounds from Lagrangian relaxations
2.3.3 Bounds from partial enumeration

24 The greedy algorithm

2.5 Branch-and-bound algorithms
2.5.1 The Horowitz—Sahni algorithm
2.5.2 The Martello-Toth algorithm

2.6 Dynamic programming algorithms
2.6.1 Elimination of dominated states
2.6.2 The Horowitz—Sahni algorithm
2.6.3 The Toth algorithm

2.7 Reduction algorithms

2.8 Approximate algorithms

2.8.1 Polynomial-time approximation schemes
2.8.2 Fully polynomial-time approximation schemes

2.8.3 Probabilistic analysis
2.9 Exact algorithms for large-size problems
2.9.1 The Balas-Zemel algorithm
2.9.2 The Fayard—Plateau algorithm
2.9.3 The Martello-Toth algorithm
2.10 Computational experiments
2.10.1 Exact algorithms
2.10.2 Approximate algorithms
2.11 Facets of the knapsack polytope
2.12 The multiple-choice knapsack problem

vii

xi

O NN —

viii

3 Bounded knapsack problem

3.1
32
33

34

35

Introduction

Transformation into a 0-1 knapsack problem
Upper bounds and approximate algorithms
3.3.1 Upper bounds

3.3.2 Approximate algorithms

Exact algorithms

3.4.1 Dynamic programming

3.4.2 Branch-and-bound

Computational experiments

A special case: the unbounded knapsack problem
3.6.1 Upper bounds and approximate algorithms
3.6.2 Exact algorithms

3.6.3 An exact algorithm for large-size problems
3.64 Computational experiments

4 Subset-sum problem

4.1
42

43

44

Introduction

Exact algorithms

4.2.1 Dynamic programming

4.2.2 A hybrid algorithm

4.2.3 An algorithm for large-size problems
Approximate algorithms

4.3.1 Greedy algorithms

4.3.2 Polynomial-time approximation schemes
4.3.3 Fully polynomial-time approximation schemes
4.34 Probabilistic analysis

Computational experiments

4.4.1 Exact algorithms

4.4.2 Approximate algorithms

5 Change-making problem

5.1
52
53
5.4
55

5.6
5.7
5.8

Introduction
Lower bounds
Greedy algorithms

When the greedy algorithm solves classes of knapsack problems

Exact algorithms

5.5.1 Dynamic programming

5.5.2 Branch-and-bound

An exact algorithm for large-size problems
Computational experiments

The bounded change-making problem

6 0-1 Multiple knapsack problem

6.1
6.2

6.3
6.4

Introduction

Relaxations and upper bounds

6.2.1 Surrogate relaxation

6.2.2 Lagrangian relaxation

6.2.3 Worst-case performance of the upper bounds
Greedy algorithms

Exact algorithms

6.4.1 Branch-and-bound algorithms

6.4.2 The “bound-and-bound” method

Contents

105
105
106
106

116
117
117
120
125
126
128
129
130

137
137
138
140
142
145
145
146
149
151
153

157
157
158
158
162
165
166
167
168
170

Contents

6.5

6.7

6.4.3 A bound-and-bound algorithm

Reduction algorithms

Approximate algorithms

6.6.1 On the existence of approximation schemes
6.6.2 Polynomial-time approximation algorithms
Computational experiments

7 Generalized assignment problem

7.1
72

73
74
75
7.6

Introduction
Relaxations and upper bounds

7.2.1 Relaxation of the capacity constraints

7.2.2 Relaxation of the semi-assignment constraints
7.2.3 The multiplier adjustment method

7.2.4 The variable splitting method

Exact algorithms
Approximate algorithms
Reduction algorithms
Computational experiments

8 Bin-packing problem

8.1
8.2
8.3

8.4
8.5
8.6

Introduction
A brief outline of approximate algorithms
Lower bounds

8.3.1 Relaxations based lower bounds
8.3.2 A stronger lower bound

Reduction algorithms
Exact algorithms
Computational experiments

Appendix: Computer codes

Al
A2

A3

A4

AS

A6

A7

A8

Introduction

0-1 Knapsack problem

A.2.1 Code MT1

A.2.2 Code MTIR

A.2.3 Code MT2

Bounded and unbounded knapsack problem
A.3.1 Code MTB2

A.3.2 Code MTU2

Subset-sum problem

A.4.1 Code MTSL

Bounded and unbounded change-making problem
A.5.1 Code MTC2

A.5.2 Code MTCB

0-1 Multiple knapsack problem
A.6.1 Code MTM

A.6.2 Code MTHM

Generalized assignment problem
A7.1 Code MTG

A.7.2 Code MTHG

Bin-packing problem

A.8.1 Code MTP

172
176
177
177
179
182

189
189
192
192
195
197
201
204
206
209
213

221
221
222
224

224
228
233
237
240

247
247
248
248
249
251
252
252
254
256
256
258
258
259
261
261
263
265
265
268
270
270

X Contents

Glossary 273
Bibliography 278
Author index 283

Subject index 287

Preface

The development of computational complexity theory has led, in the last fifteen
years, to a fascinating insight into the inherent difficulty of combinatorial
optimization problems, but has also produced an undesirable side effect which
can be summarized by the “equation”

NP -hardness = intractability,

thereby diminishing attention to the study of exact algorithms for NP-hard
problems. However, recent results on the solution of very large instances of
integer linear programming problems with special structure on the one hand, and
forty years of successful use of the simplex algorithm on the other, indicate the
concrete possibility of solving problems exactly through worst-case exponential-
time algorithms.

This book presents a state-of-art on exact and approximate algorithms for a
number of important NP-hard problems in the field of integer linear programming,
which we group under the term knapsack. The choice of the problems reflects our
personal involvement in the field, through a series of investigations over the past
ten years. Hence the reader will find not only the “classical” knapsack problems
(binary, bounded, unbounded, binary multiple), but also less familiar problems
(subset-sum, change-making) or well-known problems which are not usually
classified in the knapsack area (generalized assignment, bin-packing). He will find
no mention, instead, of other knapsack problems (fractional, multidimensional,
non-linear), and only a limited treatment of the case of generalized upper bound
constraints.

The goal of the book is to fully develop an algorithmic approach without
losing mathematical rigour. For each problem, we start by giving a mathematical
model, discussing its relaxations and deriving procedures for the computation
of bounds. We then develop approximate algorithms, approximation schemes,
dynamic programming techniques and branch-and-bound algorithms. We analyse
the computational complexity and the worst-case performance of bounds and
approximate methods. The average performance of the computer implementations
of exact and approximate algorithms is finally examined through extensive
computational experiments. The Fortran codes implementing the most effective
methods are provided in the included diskette. The codes are portable on virtually
any computer, extensively commented and—hopefully—easy to use.

For these reasons, the book should be appreciated both by academic researchers

xi

xii Preface

and industrial practitioners. It should also be suitable for use as a supplementary
text in courses emphasizing the theory and practice of algorithms, at the graduate
or advanced undergraduate level. The exposition is in fact self-contained and is
designed to introduce the reader to a methodology for developing the link between
mathematical formulation and effective solution of a combinatorial optimization
problem. The simpler algorithms introduced in the first chapters are in general
extensively described, with numerous details on the techniques and data structures
used, while the more complex algorithms of the following chapters are presented
at a higher level, emphasizing the general philosophy of the different approaches.
Many numerical examples are used to clarify the methodologies introduced. For
the sake of clarity, all the algorithms are presented in the form of pseudo-Pascal
procedures. We adopted a structured exposition for the polynomial and pseudo-
polynomial procedures, but allowed a limited use of “go to” statements for the
branch-and-bound algorithms. (Although this could, of course, have been avoided,
the resulting exposition would, in our opinion, have been much less readable.)

We are indebted to many people who have helped us in preparing this book. Jan
Karel Lenstra suggested the subject, and provided guidance and encouragement
during the two years of preparation. Mauro Dell’Amico, Laureano Escudero
and Matteo Fischetti read earlier versions of the manuscript, providing valuable
suggestions and pointing out several errors. (We obviously retain the sole
responsibility for the surviving errors.) Constructive comments were also made by
Egon Balas, Martin Dyer, Ronald Graham, Peter Hammer, Ben Lageweg, Gilbert
Laporte, Manfred Padberg, David Shmoys, Carlo Vercellis and Laurence Wolsey.
The computational experiments and computer typesetting with the TgX system were
carried out by our students Andrea Bianchini, Giovanna Favero, Marco Girardini,
Stefano Gotra, Nicola Moretti, Paolo Pinetti and Mario Zacchei.

We acknowledge the financial support of the Ministero della Pubblica Istru-
zione and the Consiglio Nazionale delle Ricerche. Special thanks are due to the
Computing Centre of the Faculty of Engineering of the University of Bologna
and its Director, Roberto Guidorzi, for the facilities provided in the computational
testing of the codes.

Bologna, Italy SILVANO MARTELLO
July 1989 PAOLO TOTH

1

Introduction

1.1 WHAT ARE KNAPSACK PROBLEMS?

Suppose a hitch-hiker has to fill up his knapsack by selecting from among various
possible objects those which will give him maximum comfort. This knapsack
problem can be mathematically formulated by numbering the objects from 1 to n
and introducing a vector of binary variables x; (j = 1, ..., n) having the following
meaning:
{ 1 if object j is selected;
Xj =
0 otherwise.

Then, if p; is a measure of the comfort given by object j, wj its size and ¢ the
size of the knapsack, our problem will be to select, from among all binary vectors

x satisfying the constraint
n
ijxj <c,
j=1

the one which maximizes the objective function
n
ijxj-
j=1

If the reader of this book does not, or no longer practises hitch-hiking, he might
be more interested in the following problem. Suppose you want to invest—all or
in part—a capital of ¢ dollars and you are considering n possible investments. Let
p; be the profit you expect from investment j, and w; the amount of dollars it
requires. It is self-evident that the optimal solution of the knapsack problem above
will indicate the best possible choice of investments.

At this point you may be stimulated to solve the problem. A naive approach
would be to program a computer to examine all possible binary vectors x, selecting
the best of those which satisfy the constraint. Unfortunately, the number of such
vectors is 2", so even a hypothetical computer, capable of examining one billion
vectors per second, would require more than 30 years for n = 60, more than
60 years for n = 61, ten centuries for n = 65, and so on. However, specialized
algorithms can, in most cases, solve a problem with n = 100000 in a few seconds
on a mini-computer.

2 1 Introduction

The problem considered so far is representative of a variety of knapsack-type
problems in which a set of entities are given, each having an associated value and
size, and it is desired to select one or more disjoint subsets so that the sum of the
sizes in each subset does not exceed (or equals) a given bound and the sum of the
selected values is maximized.

Knapsack problems have been intensively studied, especially in the last decade,
attracting both theorists and practicians. The theoretical interest arises mainly
from their simple structure which, on the one hand allows exploitation of a
number of combinatorial properties and, on the other, more complex optimization
problems to be solved through a series of knapsack-type subproblems. From the
practical point of view, these problems can model many industrial situations:
capital budgeting, cargo loading, cutting stock, to mention the most classical
applications. In the following chapters we shall examine the most important
knapsack problems, analysing relaxations and upper bounds, describing exact
and approximate algorithms and evaluating their efficiency both theoretically and
through computational experiments. The Fortran codes of the principal algorithms
are provided in the floppy disk accompanying the book.

1.2 TERMINOLOGY

The objects considered in the previous section will generally be called items and
their number be indicated by n. The value and size associated with the jth item will
be called profit and weight, respectively, and denoted by p; and w; (j =1, ... ,n).

The problems considered in Chapters 2 to 5 are single knapsack problems, where
one container (or knapsack) must be filled with an optimal subset of items. The
capacity of such a container will be denoted by ¢. Chapters 6 to 8 deal with
multiple knapsack problems, in which more than one container is available.

It is always assumed, as is usual in the literature, that profits, weights and
capacities are positive integers. The results obtained, however, can easily be
extended to the case of real values and, in the majority of cases, to that of
nonpositive values.

The prototype problem of the previous section,

n
maximize E DjXj
j=1

n
subject to ijxj <c,
j=1

x;=0 or 1, j=1,...,n,

is known as the 0-1 Knapsack Problem and will be analysed in Chapter 2. In Section
2.12 we consider the generalization arising when the item set is partitioned into

1.2 Terminology 3

subsets and the additional constraint is imposed that at most one item per subset is
selected (Multiple-Choice Knapsack Problem).

The problem can be generalized by assuming that for each j (j = 1, ... ,n),
b; items of profit p; and weight w; are available (b; < c/w;): thus we obtain the
Bounded Knapsack Problem, defined by

n
maximize E DjXj
j=1

n
subject to ijxj <c,
j=1

OijSbj’ j=1,...,)’l,

X; integer, j=1,...,n.

The problem is considered in Chapter 3. The special case in which b; = +oc for
all j (Unbounded Knapsack Problem) is treated in Section 3.6.

In Chapter 4 we examine the particular case of the 0-1 knapsack problem arising
when p; =w; (j =1, ... ,n), as frequently occurs in practical applications. The
problem is to find a subset of weights whose sum is closest to, without exceeding,
the capacity, i.e.

n
maximize E wiX;
j=1

n
subject to ijxj <c,
j=1

xi =0 or 1, j=1...,n,

generally referred to as the Subset-Sum Problem.

In Chapter 5 a very particular bounded knapsack problem is considered, arising
when p; =1 (j = 1,...,n) and, in the capacity constraint, we impose equality
instead of inequality. This gives

n
maximize E X;
j=1

n
subject to E wix; =c,
j=1

0<x <b; j=1...,n,

X; integer j=1...,n,

4 1 Introduction

usually called the Change-Making Problem, since it recalls the situation of a cashier
having to assemble a given change ¢ using the maximum (or minimum) number of
coins. The same chapter deeply analyses the Unbounded Change-Making Problem,
in which b; = +oc for all j.

An important generalization of the 0-1 knapsack problem, discussed in Chapter
6, is the 0-1 Multiple Knapsack Problem, arising when m containers, of given
capacities ¢; (i = 1,...,m) are available. By introducing binary variables x;;,
taking value 1 if item j is selected for container i, O otherwise, we obtain the
formulation

m n
maximize E E DjXij

i=1 j=1

n
subject to E wix; < ¢, i=1,...,m,
j=1

m
Zx,-jgl, j=1,...,n,
i=1

xij=0 or 1, i=1,~--»m»j=1""7n‘

Now consider a 0-1 multiple knapsack problem in which the profit and weight of
each item vary according to the container for which they are selected. By defining
pij (resp. wy) as the profit (resp. the weight) of item j if inserted in container i,
we get

m n
maximize E E Dij Xij

i=1 j=1
h
subject to E wiixi; < ¢, i=1,...,m,
j=1
m
§ XUSL j=17~--;n,
i=1
x; =0 or I, i=1....,mj=1,...,n,

known as the Generalized Assignment Problem, which is dealt with in Chapter 7.
This is not, strictly speaking, a knapsack problem, but is included in this review
because knapsack subproblems play a central role in the algorithms for solving it.

1.2 Terminology 5

The problem is generally viewed as that of optimally assigning, all or in part, n
jobs to m machines (n tasks to m agents, and so on), given the profit, p;;, obtainable
if machine i is assigned job j, the corresponding resource, wj;, required, and the
amount, ¢;, of resource available to machine :.

In Chapter 8 we consider the well-known Bin-Packing Problem, which is not
usually included in the knapsack area, but can be interpreted as a multiple subset-
sum problem where all containers have the same capacity ¢, all items must be
selected and it is desired to minimize the number of containers used. Given any
upper bound m on the number of containers, and introducing m binary variables y;,
taking value O if container i is used, value 1 otherwise, we can state the problem
as:

m
maximize E Yi
i=1

n
subject to ijx,-j <c(l-y), i=1,...,m,

j=1

m

> xi=1, j=1,....n,

i=1

yi =0 or 1, i=1,...,m,

x;=0or 1, i=1,....m,j=1,...,n

In the last decades, an impressive amount of research on knapsack problems
has been published in the literature. Reviews have been presented in the following
surveys:

Salkin and De Kluyver (1975) present a number of industrial applications and
results in transforming integer linear programs to knapsack problems (an approach
which appeared very promising at that time);

Martello and Toth (1979) consider exact algorithms for the zero-one knapsack
problem and their average computational performance; the study is extended to
the other linear knapsack problems and to approximate algorithms in Martello and
Toth (1987);

Dudzinski and Walukiewicz (1987) analyse dual methods for solving Lagrangian
and linear programming relaxations.

In addition, almost all books on integer programming contain a section on
knapsack problems. Mention is made of those by Hu (1969), Garfinkel and
Nemhauser (1972), Salkin (1975), Taha (1975), Papadimitriou and Steiglitz (1982),
Syslo, Deo and Kowalik (1983), Schrijver (1986), Nemhauser and Wolsey (1988).

6 1 Introduction
1.3 COMPUTATIONAL COMPLEXITY
We have so far introduced the following problems:

0-1 KNAPSACK;

BOUNDED KNAPSACK;,
SUBSET-SUM;
CHANGE-MAKING;

0-1 MULTIPLE KNAPSACK;
GENERALIZED ASSIGNMENT;
BIN-PACKING.

We will now show that all these problems are NP-hard (we refer the reader
to Garey and Johnson (1979) for a thorough discussion on this concept). For each
problem P, we either prove that its recognition version R(P) is NP-complete or that
it is a generalization of a problem already proved to be NP-hard.

The following recognition problem:

PARTITION: given n positive integers wj,...,w,, is there a subset
S C N = {1,...,n} such that ZjeS w;j = ZjeN\S w;?

is a basic NP-complete problem, originally treated in Karp (1972).

(a) SUBSET-SUM is NP-hard.

Proof. Consider R(SSUBSET-SUM), i.e.: given n+2 positive integers wy, ... ,w,, ¢
and a, is there a subset S C N = {l..... n} such that Z].ES w; < ¢ and
Yjes Wi = a?

Any instance / of PARTITION can be polynomially transformed into an
equivalent instance /' of R(SUBSET-SUM) by setting ¢ =a =).y w;/2 (the

j
answer for / is “yes” if and only if the answer for I’ is “yes™). []

(b) 0-1 KNAPSACK is NP-hard.

Proof. SUBSET-SUM is the particular case of 0-1 KNAPSACK when p; = w; for
allj enN.[]

(c) BOUNDED KNAPSACK is NP-hard.

Proof. 0-1 KNAPSACK is the particular case of BOUNDED KNAPSACK when
bj=1foraljeN.[]

1.3 Computational complexity 7
(d) CHANGE-MAKING is NP-hard.

Proof. We prove NP-hardness of the special case in which b; = 1 for all j. Consider
R(CHANGE-MAKING), i.e.: given n + 2 positive integers wy, ... ,w,, ¢ and a,
is there a subset S C N = {1,...,n} such that 3~ cw; =c and |S| > a?
Any instance I of PARTITION can be polynomially transformed into an equivalent
instance /’ of RCCHANGE-MAKING) by setting ¢ = 3 .y w;/2 and a = 1. []

Consequently, these single knapsack problems cannot be solved in a time
bounded by a polynomial in n, unless P = AP. All of them, however, admit a
pseudo-polynomial algorithm, i.e. an algorithm whose time (and space) complexity
is bounded by a polynomial in n and c. In fact, it can easily be verified that
the following dynamic programming recursions solve the corresponding problems.
(More detailed descriptions can be found in the specific chapters.) Given any
instance of a single knapsack problem, consider the sub-instance defined by items
1,...,j and capacity u (j < n, u < ¢). Let fj(u) be the corresponding optimal
solution value (fj(u) = —oc if no feasible solution exists) and S;(u) the optimal
subset of items. The optimal solution value of the problem, f,(c), can then be
obtained by iteratively applying the following recursive formulae:

0-1 KNAPSACK:

0 foru=0,...,w—1;
fiw) =
p1 foru=wy, ..., c;

Siw) =max(fj_ (), fj—1(u—wj)+p;)forj=2,...,n
andu =0, ...,c

time complexity O (nc).

BOUNDED KNAPSACK:

Ipp forl=0,...,by—1landu=Iwy, ..., + 1w =1
fl(u)={

bipy foru=bywy, ...,c;

fiw)=max{ fj_1(u —Iwj)+lp;j: 0<I1<bj}forj=2,...,n
andu=0,...,¢

time complexity O(c ZJ'LI b;), that is, in the worst case, O (nc?).
SUBSET-SUM:

Same as 0-1 KNAPSACK, but with p; replaced by w;.

8 1 Introduction
CHANGE-MAKING:

/ foru =Iwy, with1 =0, ... ,by;
fi(u) =

—oc for all positive u < ¢ such that u(mod w;) #0 ;

fiwy=max{ fi_j(u—Iw)+1: 0<I<bh}forj=2...,n

and u =0, ... ,c;

time complexity O (c Z;=1 b;), that is, in the worst case, O (nc?).

For all the algorithms the computation of S;(u) is straightforward. Since, for
each j, we only need to store S;_(«) and S;(u) for all u, the space complexity is
always O (nc).

For the multiple problems (0-1 MULTIPLE KNAPSACK, GENERALIZED
ASSIGNMENT, BIN-PACKING) no pseudo-polynomial algorithm can exist,
unless P = AP, since the problems can be proved to be NP-hard in the strong
sense. Consider in fact the following recognition problem:

3-PARTITION: given n = 3m positive integers w..... w, satisfying Z,’;l wj/m =
B integer and B /4 < w; < B/2 for j = 1,...,n, is there a partition of N =
{1, ... ,n} into m subsets Sj, ...,S, such that Zjes, wj=Bfori=1,...,m?
(Notice that each S; must contain exactly three elements from N.)

This is the first problem discovered to be NP-complete in the strong sense (Garey
and Johnson, 1975).

(e) 0-1 MULTIPLE KNAPSACK is NP-hard in the strong sense.

Proof. Consider R(0-1 MULTIPLE KNAPSACK), i.e.: given 2n +m + 1 positive
integers: pi, ... ,pn; Wi, ... ,Wy; C1, ... ,Cp, and a, are there m disjoint subsets
S1,...,8, of N = {1,...,n} such that Zjes‘ wj < ¢ fori =1,...,m and
PR Zje s Pj > a? Any instance I of 3-PARTITION can be pseudo-polynomially
transformed into an equivalent instance /' of R(0-1 MULTIPLE KNAPSACK) by
setting c; =B fori =1,... ,m,pj=1forj=1,...,n and a = n (which implies
that | J., S; =N in any “yes” instance). []

(f) GENERALIZED ASSIGNMENT is NP-hard in the strong sense.

Proof. Immediate, since 0-1 MULTIPLE KNAPSACK is the particular case of
GENERALIZED ASSIGNMENT when p;; = p; and wi; =w; fori =1, ... ,m and
j=1...,n.[]

1.4 Lower and upper bounds 9
(g) BIN-PACKING is NP-hard in the strong sense.

Proof. Consider R(BIN-PACKING), i.e.: given n+2 positive integers wy,...,w,, ¢
and a, is there a partition of N = {1,...,n} into a subsets S,,...,S, such that
Zje s, Wi <cfori=1,...,a? Any instance I of 3-PARTITION can be pseudo-
polynomially transformed into an equivalent instance /' of R(BIN-PACKING) by

setting c =B and a =m. []

1.4 LOWER AND UPPER BOUNDS

In the previous section we have proved that none of our problems can be solved
in polynomial time, unless P = A”P. Hence in the following chapters we analyse:

(a) enumerative algorithms (having, in the worst case, running times which grow
exponentially with the input size) to determine optimal solutions;

(b) approximate algorithms (with running times bounded by a polynomial in the
input size) to determine feasible solutions whose value is a lower bound on the
optimal solution value.

The average running times of such algorithms are experimentally evaluated
through execution of the corresponding computer codes on different classes of
randomly-generated test problems. It will be seen that the average behaviour of the
enumerative algorithms is in many cases much better than the worst-case bound,
allowing optimal solution of large-size problems with acceptable running times.

The performance of an approximate algorithm for a specific instance is measured
through the ratio between the solution value found by the algorithm and the optimal
solution value (notice that, for a maximization problem, this ratio is no greater than
one). Besides the experimental evaluation, it is useful to provide, when possible, a
theoretical measure of performance through worst-case analysis (see Fisher (1980)
for a general introduction to this concept).

Let A be an approximate algorithm for a given maximization problem (all our
considerations extend easily to the minimization case). For any instance I of the
problem, let OPT (1) be the optimal solution value and A(/) the value found by A.
Then, the worst-case performance ratio of A is defined as the largest real number

r(A) such that
A(l
(()1) > r(A) for all instances I,

the closer r(A) is to one, the better the worst-case behaviour of A. The proof that
a given value r is the worst-case performance ratio of an algorithm A consists, in
general, of two phases:

(i) it is first proved that, for any instance / of the problem, inequality
A(I)/OPT(I) > r holds;

10 1 Introduction

(ii) in order to ensure that r is the largest value satisfying the inequality, i.e. that r
is tight, a specific instance I’ is produced for which A(/")/OPT (') = r holds
(or a series of instances for which the above ratio tends to be arbitrarily close
to r).

The performance of A can be equivalently expressed in terms of worst-case
relative error, i.e. the smallest real number ¢(A) such that

OPT(I)— A(I) .
L LA for al .
OPT(D) < ¢(A) or all instances /

(i.e. r(A) =1 —¢(A)).

An approximation scheme for a maximization problem is an algorithm A which,
given an instance / and an error bound ¢ > O, returns a solution of value A(/)
such that (OPT(I) — A(I))/OPT(I) < ¢. Let length (1) denote the input size,
i.e. the number of symbols required for coding /. If, for any fixed ¢, the running
time of A is bounded by a polynomial in length (I), then A is a polynomial-
time approximation scheme: any relative error can be obtained in a time which
is polynomial in length (I) (but can be exponential in 1/¢). If the running time
of A is polynomial both in length (1) and 1/¢, then A is a fully polynomial-time
approximation scheme.

In subsequent chapters we describe the most interesting polynomial-time and
fully polynomial-time approximation schemes for single knapsack problems. For
the remaining (multiple) problems, no fully polynomial-time approximation scheme
can exist, unless P = NP, since (see Garey and Johnson (1975)) this would
imply the existence of a pseudo-polynomial algorithm for their optimal solution
(which is impossible, these being NP-hard problems in the strong sense). For BIN-
PACKING, also the existence of a polynomial-time approximation scheme can
be ruled out, unless P = AP (Johnson, Demers, Ullman, Garey and Graham,
1974). The same holds for GENERALIZED ASSIGNMENT and 0-1 MULTIPLE
KNAPSACK in the minimization version (Sahni and Gonzalez, 1976). For the
maximization version of these two problems no polynomial-time approximation
scheme is known, although there is no proof that it cannot exist (the proof in Sahni
and Gonzalez (1976) does not extend to the maximization case).

Besides experimental and worst-case analysis, an approximate algorithm can
allow probabilistic analysis. Speaking informally this consists of specifying an
average problem instance in terms of a probability distribution over the class of
all instances and evaluating running time and solution value as random variables.
Examples of this approach which, however, is generally possible only for very
simple algorithms, are given in Sections 2.8.3 and 4.3.4 (see Karp, Lenstra,
McDiarmid and Rinnooy Kan (1985) and Rinnooy Kan (1987) for a general
introduction to probabilistic analysis).

For a maximization problem, the solution value determined by an approximate
algorithm limits the optimal solution value from below. It is always convenient to

1.4 Lower and upper bounds 11

have methods for limiting this value from above, too. Upper bounds are extremely
useful

(a) in enumerative algorithms, to exclude computations which cannot lead to the
optimal solution;

(b) in approximate algorithms, to “a-posteriori” evaluate the performance obtained.
Suppose algorithm A is applied to instance /, and let U (/) be any upper bound
on OPT(I): it is then clear that the relative error of the approximate solution
is no greater than (U (1) — A(1))/U (I).

The worst-case performance ratio of an upper bounding procedure U can be
defined similarly to that of an approximate algorithm, i.e. as the smallest real
number p(U) such that

U(l)
<
orPT(l) =

p(U) for all instances /.

The closer p(U) is to one, the better the worst-case behaviour of U.

Upper bounds are usually computed by solving relaxations of the given prob-
lems. Continuous, Lagrangian and surrogate relaxations are the most frequently
used. For a given problem P, the corresponding relaxed problem will be denoted
with C (P), L(P.m) and S (P .m), m being an appropriate vector of multipliers. The
optimal solution value of problem P will be denoted with z(P).

2
0-1 Knapsack problem

2.1 INTRODUCTION

The 0-1, or Binary, Knapsack Problem (KP) is: given a set of n items and a
knapsack, with

pj = profit of item j,
w; = weight of item j,
¢ = capacity of the knapsack,

select a subset of the items so as to

n

maximize z =ijxj 2.1
j=1
n

subject to ijxj <c, 2.2)
j=1

x;=0or 1, jEN={1,... ,n}, 2.3)

where - .
{ 1 ifitem j is selected;
Xj =

0 otherwise.

KP is the most important knapsack problem and one of the most intensively
studied discrete programming problems. The reason for such interest basically
derives from three facts: (a) it can be viewed as the simplest Integer Linear
Programming problem; (b) it appears as a subproblem in many more complex
problems; (c) it may represent a great many practical situations. Recently, it has
been used for generating minimal cover induced constraints (see, e.g., Crowder,
Johnson and Padberg, (1983)) and in several coefficient reduction procedures
for strengthening LP bounds in general integer programming (see, e.g., Dietrich
and Escudero, (1989a, 1989b)). During the last few decades, KP has been
studied through different approaches, according to the theoretical development of
Combinatorial Optimization.

13

14 2 0-1 Knapsack problem

In the fifties, Bellman’s dynamic programming theory produced the first
algorithms to exactly solve the 0-1 knapsack problem. In 1957 Dantzig gave an
elegant and efficient method to determine the solution to the continuous relaxation
of the problem, and hence an upper bound on z which was used in the following
twenty years in almost all studies on KP.

In the sixties, the dynamic programming approach to the KP and other knapsack-
type problems was deeply investigated by Gilmore and Gomory. In 1967 Kolesar
experimented with the first branch-and-bound algorithm for the problem.

In the seventies, the branch-and-bound approach was further developed, proving
to be the only method capable of solving problems with a high number of variables.
The most well-known algorithm of this period is due to Horowitz and Sahni. In
1973 Ingargiola and Korsh presented the first reduction procedure, a preprocessing
algorithm which significantly reduces the number of variables. In 1974 Johnson
gave the first polynomial-time approximation scheme for the subset-sum problem;
the result was extended by Sahni to the 0-1 knapsack problem. The first fully
polynomial-time approximation scheme was obtained by Ibarra and Kim in 1975.
In 1977 Martello and Toth proposed the first upper bound dominating the value of
the continuous relaxation.

The main results of the eighties concern the solution of large-size problems, for
which sorting of the variables (required by all the most effective algorithms) takes
a very high percentage of the running time. In 1980 Balas and Zemel presented a
new approach to solve the problem by sorting, in many cases, only a small subset
of the variables (the core problem).

In this chapter we describe the main results outlined above in logical (not
necessarily chronological) sequence. Upper bounds are described in Sections 2.2
and 2.3, approximate algorithms in Sections 2.4 and 2.8, exact algorithms in
Sections 2.5, 2.6 and 2.9, reduction procedures in Section 2.7. Computational
experiments are reported in Section 2.10, while Section 2.11 contains an
introduction to the facetial analysis of the problem. Section 2.12 deals with a
generalization of KP (the multiple-choice knapsack problem).

We will assume, without any loss of generality, that

pj,w;j and c¢ are positive integers, 2.4)
> wi>e, 2.5)
j=1

w; < c forj €N. (2.6)

If assumption (2.4) is violated, fractions can be handled by multiplying through
by a proper factor, while nonpositive values can be handled as follows (Glover,
1965):

1. foreachj e N®={j € N : p; <0, w; > 0} do x; :=0;
2. foreachj e N'={j €N :p; >0, w; <0} dox; :=1;

2.1 Introduction 15
3.letN~={j €N :p; <0,w; <0}, N* =N\W°UN'UN"), and

{yj=1—xj,ﬁj=—pj,wj=—wj forjeN"—,

Yj =X, D; =pj, Wj =W forj e N¥;
4. solve the residual problem

maximize z = Z Py + Z i

JEN-UN* JENIUN—
subject to 5 wiyj <c¢— E wj,
JEN—UN* JENIUN—

yy=0orl, jENTUN"

If the input data violate assumption (2.5) then, trivially, x; = 1 for all j € N; if
they violate assumption (2.6), then x; = 0 for each j such that w; > c.
Unless otherwise specified, we will always suppose that the items are ordered
according to decreasing values of the profit per unit weight, i.e. so that
Pry b2 5P 2.7
wi w2 Wn

If this is not the case, profits and weights can be re-indexed in O(rlogn) time
through any efficient sorting procedure (see, for instance, Aho, Hopcroft and
Ullman, (1983)).

Given any problem instance /, we denote the value of any optimal solution with
z(I), or, when no confusion arises, with z.

KP is always considered here in maximization form. The minimization version
of the problem,

n
minimize E Diy;
j=1

n
subject to ijyj >q,
j=1

yi=0or 1, JjEN

can easily be transformed into an equivalent maximization form by setting y; =
I — x; and solving (2.1), (2.2), (2.3) with ¢ = Z}'zl w; — q. Let zmax be the
solution value of such a problem: the minimization problem then has solution
value zmin = Zj'.’:l pj — zmax. (Intuitively, we maximize the total profit of the
items not inserted in the knapsack.)

16 2 0-1 Knapsack problem
2.2 RELAXATIONS AND UPPER BOUNDS

2.2.1 Linear programming relaxation and Dantzig’s bound

The most natural, and historically the first, relaxation of KP is the linear

programming relaxation, i.e. the continuous knapsack problem C (KP) obtained
from (2.1), (2.2), (2.3) by removing the integrality constraint on x;:

n
maximize E PiXj
j=1

n
subject to ijxj <cg,
J=1

0<x <1, j=1,...,n.
Suppose that the items, ordered according to (2.7), are consecutively inserted into

the knapsack until the first item, s, is found which does not fit. We call it the
critical item, i.e.

J
s = min {j :Zw,~ >c}, (2.8)
i=1)

and note that, because of assumptions (2.4)—(2.6), we have 1 < s < n. Then
C (KP) can be solved through a property established by Dantzig (1957), which can
be formally stated as follows.

Theorem 2.1 The optimal solution x of C (KP) is

X]'=1 forj=1,...,s—1,

xj=0 forj=s+1,....,n,
_ c
Xy =—,
W
where
s—1
T=c— > w. 2.9)
j=1

Proof. A graphical proof can be found in Dantzig (1957). More formally, observe
that any optimal solution x of C(KP) must be maximal, in the sense that
> wjx; = c. Assume, without loss of generality, that p;/w; > pj.i/wj. for
all j, and let x* be the optimal solution of C (KP). Suppose, by absurdity, that
x; <1 for some k < s, then we must have x; > X, for at least one item g > s.

2.2 Relaxations and upper bounds 17

Given a sufficiently small ¢ > 0, we could increase the value of x; by ¢ and
decrease that of x; by ewy /w,, thus augmenting the value of the objective function
of e(pr — pgwi /wy) (> 0, since py /wi > p, /w,), which is a contradiction. In the
same way we can prove that x; > 0 for k& > s is impossible. Hence X; = T/w;
from maximality. []

The optimal solution value of C (KP) follows:

s—1
2(C(KP)) = ij+5y’%‘

J=1 :

Because of the integrality of p; and x;, a valid upper bound on z(KP) is thus

s—1
Uy = |z(C(KP))| = ij + F%J, (2.10)

j=1

where |a| denotes the largest integer not greater than a.

The worst-case performance ratio of U, is p(U;) = 2. This can easily be proved
by observing that, from (2.10), U; < Z;;ll pj+ps. Both st.;l pj and p; are feasible
solution values for KP, hence no greater than the optimal solution value z, thus, for
any instance, U; /z < 2. To see that p(U,) is tight, consider the series of problems
with n =2. py =wy; =p, =wy; =k and ¢ = 2k — 1, for which U; =2k — 1 and
z =k, so Uy/z can be arbitrarily close to 2 for k£ sufficiently large.

The computation of z(C(KP)), hence that of the Dantzig bound Uj, clearly
requires O(n) time if the items are already sorted as assumed. If this is not the
case, the computation can still be performed in O(n) time by using the following
procedure to determine the critical item.

2.2.2 Finding the critical item in O (n) time

For each j € N, define r; = p;/w;. The critical ratio r; can then be identified by
determining a partition of N into J 1 UJC UJ0 such that

T > rg forjelJl,
rj = ry forj € JC,

rj <rg forj € JO,
and

jeJl jeJ1uic

The procedure, proposed by Balas and Zemel (1980), progressively determines J 1

18 2 0-1 Knapsack problem

and J 0 using, at each iteration, a tentative value A to partition the set of currently
“free” items N \(/ 1 UJ0). Once the final partition is known, the critical item s is
identified by filling the residual capacity ¢ — Zj cs1 W; Wwith items in JC, in any
order.

procedure CRITICAL. ITEM:
input: n.c.(p;). (wy);
output: s;
begin
J1:=0
JO :=0;
JC ={
C:=c;
partition := “no”;
while partition = “no” do
begin
determine the median A of the values in R = {p; /w; : j € JC };
={j €JC :p;/w; > \};

L ={/ €JC :pj/w; <AL
E:={jelJC tpj/wp = AL
¢ =ZJEGWI’

c"=c'+ icE Wit

if ¢/ < T < ¢" then partition = “yes”
else if ¢’ > T then (comment:) is too small)

begin
JO:=JOULUE;
JC =G
end
else (comment:) is too large)
begin
J1=J1UGUE;
JC =
c=c—c"
end
end;
J1:=J1UG;
JO:=JOUL,
JC :=E (={e1.e2.....¢e4});
Cc:=C— C
o =min {j: YL w, >T);
si=e,

end.

Finding the median of m elements requires O (m) time (see Aho, Hopcroft and
Ullman, (1983)), so each iteration of the “while” loop requires O (| JC |) time. Since
at least half the elements of JC are eliminated at each iteration, the overall time
complexity of the procedure is O (n).

2.2 Relaxations and upper bounds 19

The solution of C (KP) can then be determined as
xXj=1 forjeJ1lU{ei.ez, ... €51}
X; =0 forj € JOU {ess1, ..., €0};

Xs=|c— E wix; | [ws.

JEN\{s}

2.2.3 Lagrangian relaxation

An alternative way to relax KP is through the Lagrangian approach. Given a non-
negative multiplier A, the Lagrangian relaxation of KP (L(KP . })) is

n n
maximize Zp,-x,- +A)c- ijxj
j=1 j=1
subject to x; =0 or 1. j=1,...,n.
The objective function can be restated as

Z(LKKP. X)) = pix; +Ac, Q.11

J=1

where p; =p; — Aw; forj =1, ..., n, and the optimal solution of L(KP, }) is easily
determined, in O (n) time, as

1 ifp; >0,
g = (2.12)

X = B
0 ifp, <O.

(When p; = 0, the value of X; is immaterial.) Hence, by defining J(}) =
{J : p;/w; > A}. the solution value of L(KP A) is

Z(L(KP .,)\) = Z B+ Ac.
JEJ(X)

For any A > 0, this is an upper bound on z(KP) which, however, can never
be better than the Dantzig bound U,. In fact (2.12) also gives the solution of the
continuous relaxation of L(KP, A), so

z(L(KP. X)) = z(C(L(KP X)) > z(C(KP)).

20 2 0-1 Knapsack problem

The value of A producing the minimum value of z(L(KP . })) is A* = p; /w,. With
this value, in fact, we have p; > Oforj =1, ... ,s —landp; <Oforj=s, ... ,n,
soJ(A*) C {l,...,s — 1}. Hence %; =X, for j € N\{s} (where (¥;) is defined by
Theorem 2.1) and, from (2.11)—(2.12), z(L(KP . *)) = st.;l(pj —Xwj)+ e =
z(C (KP)). Also notice that, for A = A*. p; becomes

* Ds
P =pj —Wj—; 2.13)
J J]ws (-

| p/ | is the decrease which we obtain in z(L(KP.\")) by setting % = 1 — %,
and hence a lower bound on the corresponding decrease in the continuous solution
value (since the optimal A generally changes by imposing the above conditions).
The value of | p/ | will be very useful in the next sections.

Other properties of the Lagrangian relaxation for KP have been investigated
by Maculan (1983). See also Fisher (1981) for a general survey on Lagrangian
relaxations.

2.3 IMPROVED BOUNDS

In the present section we consider upper bounds dominating the Dantzig one,
useful to improve on the average efficiency of algorithms for KP. Because of this
dominance property, the worst-case performance ratio of these bounds is at most 2.
Indeed, it is exactly 2, as can easily be verified through series of examples similar
to that introduced for Uy, i.e. having p; = w; for all j (so that the bounds take the
trivial value ¢).

2.3.1 Bounds from additional constraints

Martello and Toth obtained the first upper bound dominating the Dantzig one, by
imposing the integrality of the critical variable x;.

Theorem 2.2 (Martello and Toth, 1977a) Let

s—1
_Ps+1
U= + | J (2.14
;P; Wit)
- p
U'=Y pi+ ps—(ws—awf“lJ, (2.15)
Ry

R

where s and T are the values defined by (2.8) and (2.9). Then

2.3 Improved bounds 21
(i) an upper bound on z(KP) is
U, =max (U°. U Y, (2.16)

(ii) for any instance of KP, we have U, < U, .

Proof. (1) Since x; cannot take a fractional value, the optimal solution of KP can
be obtained from the continuous solution ¥ of C (KP) either without inserting item
s (i.e. by imposing X = 0), or by inserting it (i.e. by imposing X; = 1) and hence
removing at least one of the first s — 1 items. In the former case, the solution value
cannot exceed U °, which corresponds to the case of filling the residual capacity ¢
with items having the best possible value of p; /w; (i.. ps.1/wsi1). In the latter it
cannot exceed U, where it is supposed that the item to be removed has exactly
the minimum necessary value of w; (i.e. w, —) and the worst possible value of
pifwj (i.e. ps_1/ws_1).

(i) U° < U, directly follows from (2.10), (2.14) and (2.7). To prove that
U! < U, also holds, notice that Ds/ws < ps—1/ws—1 (from (2.7)), and T < wy
(from (2.8), (2.9)). Hence

(T —wy) <p—f - p——x*) > 0.
w

s Ws_1

and, by algebraic manipulation,

A A e
Wy Ws1

from which one has the thesis. []

The time complexity for the computation of Us is trivially O (n), once the critical
item is known.

Example 2.1
Consider the instance of KP defined by

n =38,
(pj) = (15,100, 90, 60, 40, 15, 10, 1),
w)) = (2, 20,20, 30, 40, 30, 60, 10),
c =102

The optimal solution is x = (1, 1, 1, 1, 0, 1, 0, 0), of value z = 280. From (2.8)
we have s = 5. Hence

22 2 0-1 Knapsack problem

40
- | =29s.
Uy =265+ _30 40J 95

15
U% =265+ |30 — | =280;
" 30J

60
U'=265+[40 - 10 — | =285;
" 30J

U, =285.[]

The consideration on which the Martello and Toth bound is based can be
further exploited to compute more restrictive upper bounds than U,. This can
be achieved by replacing the values U° and U with tighter values, say U © and
U !, which take the exclusion and inclusion of item s more carefully into account.
Hudson (1977) has proposed computing U ! as the solution value of the continuous
relaxation of KP with the additional constraint x; = 1. Fayard and Plateau (1982)
and, independently, Villela and Bornstein (1983), proposed computing U © as the
solution value of C(KP) with the additional constraint x; = 0.

By defining ¢!(j) and ¢°(j) as the critical item when we impose, respectively,
xi=1(>s)and x; =0 (j <), that is

k
al(j)=min {k:Zw;>c—wI}‘ 2.17

i=1

k
o%(j)=min ¢k:Y wi>cy. (2.18)
i=1
i#j
we obtain
a’(s)-1 a%(s)~1
5 0
U= Y p+|le= 2w |22 2.19)
._ — WOO(S)
j=1 j=1
j#s j#s
o'(s)-1 ol(s)-1 »
T7r 1
Ul=pe+ > pi+|le—wi— Y w22 (2220)
j=1 j=1 Wol(s)

2.3 Improved bounds 23
It is self-evident that:

@T0<U%andTU' <U',s0Us < Uy,
(b) the time complexity for the computation of Usj is the same as for U; and U,,
ie. O(n).

Example 2.1 (continued)
From (2.17)-(2.20) we have

°5)=7. U%=280+ {0 0

1
— | =280;
60J 0

cl5)=4. U'=40+205+ {20 %J = 285;

Us =285.]

2.3.2 Bounds from Lagrangian relaxations

Other bounds computable in O(n) time can be described through the terminology
introduced in Section 2.2 for the Lagrangian relaxation of the problem. Remember
that z(C (KP)) = z(L(KP, A")) and | p; | (see 2.13) is a lower bound on the decrease
of z(C(KP)) corresponding to the change of the jth variable from %; to 1 — %;.
Miiller-Merbach (1978) noted that, in order to obtain an integer solution from the
continuous one, either (a) the fractional variable Xx; alone has to be reduced to
0 (without any changes of the other variables), or (b) at least one of the other
variables, say X;, has to change its value (from 1 to O or from 0 to 1). In case (a)
the value of z(C (KP)) decreases by Tp,/wj, in case (b) by at least | p; |. Hence
the Miiller-Merbach bound

s—1

Us=max | pj.max {|z(C(KP)— |p; || :j €N\{s}}|. (221)

J=1

It is immediately evident that U, < U;. No dominance exists, instead, between U,
and the other bounds. For the instance of example 2.1 we have Us = U, < U,
(see below), but it is not difficult to find examples (see Miiller-Merbach (1978))
for which Uy < U; < Us,.

The ideas behind bounds U;, U3 and Uy have been further exploited by Dudzinski
and Walukiewicz (1984a), who have obtained an upper bound dominating all
the above. Consider any feasible solution £ to KP that we can obtain from the
continuous one as follows:

1. for each k € N\{s} do % :=Xy;
2. % :=0;

24 2 0-1 Knapsack problem

3. for each k such that X, =0 do

if we <c— ZJ'.'=1 w;&; then & := 1,
and define N = {j € N\{s} : & = 0} (% is closely related to the greedy solution,
discussed in Section 2.4). Noting that an optimal integer solution can be obtained
(a) by setting x; = 1 or (b) by setting x; =0 and x; = 1 for at least one j € N, it
is immediate to obtain the Dudzinski and Walukiewicz (1984a) bound:

Us = max (min (U '.max {[z(CKP)) —p;|:j=1,...,s —1}),

min (U °, max {|z(C(KP))+p]| :j €N}),
> i) (2.22)
j=1

where U © and U ! are given by (2.19) and (2.20). The time complexity is O (n).

Example 2.1 (continued)
From (2.13), (p;*) = (13, 80, 70, 30, 0, —15, —50, —9). Hence:

U, = max (265, max {282, 215. 225. 265. 280. 245. 286}) = 286.
(-fj)=(1: 1: 1, L O', L, 0: 0);
Us =max (min (285, max {282. 215, 225. 265}).

min (280, max {245. 286}). 280) = 282.]

2.3.3 Bounds from partial enumeration

Bound U3 of Section 2.3.1 can also be seen as the result of the application of the
Dantzig bound at the two terminal nodes of a decision tree having the root node
corresponding to KP and two descendent nodes, say NO and N1, corresponding
to the exclusion and inclusion of item s. Clearly, the maximum among the upper
bounds corresponding to all the terminal nodes of a decision tree represents a valid
upper bound for the original problem corresponding to the root node. So, if U °
and U ! are the Dantzig bounds corresponding respectively to nodes NO and N1,
Us represents a valid upper bound for KP.

An improved bound, Ug, can be obtained by considering decision trees having
more than two terminal nodes, as proposed by Martello and Toth (1988).

In order to introduce this bound, suppose s has been determined, and let 7, ¢
be any two items such that 1 < » < s and s <t < n. We can obtain a feasible

2.3 Improved bounds 25

solution for KP by setting x; = 1 for j < r. x; = 0 for j > ¢ and finding
the optimal solution of subproblem KP(r.t) defined by items r.r + 1..... t with
reduced capacity c(r) =c — Z;:ll w;. Suppose now that KP(r. ¢) is solved through
an elementary binary decision-tree which, for j =r.r +1,... ¢, generates pairs of
decision nodes by setting, respectively, x; = 1 and x; = 0; each node k (obtained,
say, by fixing x;) generates a pair of descendent nodes (by fixing x;;) iff j < ¢ and
the solution corresponding to k is feasible. For each node k of the resulting tree,
let f(k) be the item from which k has been generated (by setting x¢), = 1 or 0)
and denote with xj" (j =r,...,f(k)) the sequence of values assigned to variables
Xpooun. X¢k) along the path in the tree from the root to k. The set of terminal nodes
(leaves) of the tree can then be partitioned into

£
Li=<1: ijxj’ > c(r) (infeasible leaves)®

j=r

£
Ly=<1:f(l)=t and ijle <c(r) (feasible leaves).

J=r

For each [€ L, U L, let u; be any upper bound on the problem defined by (2.1),
(2.2) and

{x]_ = ifje{r,....f(D}, (2.23)

x;=0or1 ifjeN\{r,...,.f(D}.

Since all the nonleaf nodes are completely explored by the tree, a valid upper
bound for KP is given by

Us=max {u : 1 € LyUL,}. 2.24)

A fast way to compute u, is the following. Let p/ = Z;;ll pj + Zfi’l) px}. and

d' =|c(r) - Zf(l,) wjx/ |; then

=r

{pl —d’E:iJ if [€Ly,
Wr_1

W = (2.25)
{p1+d’p’—+lJ if 1€ Ly,

Wi+l

which is clearly an upper bound on the continuous solution value for problem (2.1),
(2.2), (2.23).

The computation of Ug requires O(n) time to determine the critical item and
define KP(r.?), plus O(2'~") time to explore the binary tree. If t+ — r is bounded
by a constant, the overall time complexity is thus O (n).

26 2 0-1 Knapsack problem

Example 2.1 (continued)

Assume 7 = 4 and t = 6. The reduced capacity is c(r) = 60. The binary tree is
given in Figure 2.1. The leaf sets are L; = {2.8}, L, = {4,5.9, 11, 12}. It follows
that Ug = 280, which is the optimal solution value. []

us=280 us=270 ug=215 ug=248 u; =225 up=215

Figure 2.1 Binary tree for upper bound Us of Example 2.1

The upper bounds at the leaves can also be evaluated, of course, using any of
the bounds previously described, instead of (2.25). If U, (k =1, ...,5) is used,
then clearly Ug < Uy; if (2.25) is used, then no dominance exists between Ug and
the Dudzinsky and Walukiewicz (1984a) bound, so the best upper bound for KP is

U =min (U5, U6).
Us can be strengthened, with very small extra computational effort, by evaluating

Wy =min {w; : j > t}. It is not difficult to see that, when | € L, and d' < w,,, u
can be computed as

4 = max <p1, {pl + Wy, Pret _ W — d[)giJ) (2.26)

Wit Wr_1

Finally, we note that the computation of Ugs can be considerably accelerated
by using an appropriate branch-and-bound algorithm to solve KP(r.r). At any
iteration of such algorithm, let Z(r.¢) be the value of the best solution so far. For
any nonleaf node k of the decision-tree, let &; be an upper bound on the optimal
solution of the subproblem defined by items r,....n with reduced capacity c(r),

i.e., the subproblem obtained by setting x; = 1 for j =1, ... ,r — 1. u; can be
computed as an upper bound of the continuous solution value of the problem, i.e.

2.4 The greedy algorithm 27

f k) s(k)—1

ZPJX + Z pj

j=fk)+1
fk) s(k)~1 P
+ ey - Zw,x + 3w SN (2.27)
j=f 1 Wty
where s(k) = min (¢ + Lmin {i : Y55 wixk + 0w > e())). If we

have u; < z(r,t), the nodes descendlng from k need not be generated. In fact,
for any leaf / descending from k, it would result that u; < Z;;ll pj +ux <

i b +2(KP(r, 1) < Us.

Example 2.1 (continued)

Accelerating the computation through (2.27), we obtain the reduced branch-decision
tree of Figure 2.2.]

us=50

z(r,n)=75

Figure 2.2 Branch-and-bound tree for upper bound Us of Example 2.1

24 THE GREEDY ALGORITHM

The most immediate way to determine an approximate solution to KP exploits
the fact that solution X of the continuous relaxation of the problem has only one
fractional variable, X (see Theorem 2.1). Setting this variable to O gives a feasible

28 2 0-1 Knapsack problem

solution to KP of value

We can expect that z’ is, on average, quite close to the optimal solution value z.
In fact z’ <z < U; <z’ +p;y, i.e. the absolute error is bounded by p;. The worst-
case performance ratio, however, is arbitrarily bad. This is shown by the series of
problems with n =2, py =w; = 1. pp =wp = k and ¢ =k, for which z’ = 1 and
z =k, so the ratio z’/z is arbitrarily close to O for k sufficiently large.

Noting that the above pathology occurs when py is relatively large, we can obtain
an improved heuristic by also considering the feasible solution given by the critical
item alone and taking the best of the two solution values, i.e.

zh =max (z/,ps). (2.28)

The worst-case performance ratio of the new heuristic is % We have already noted,
in fact, that z < z’ + py, so, from (2.28), z < 2z". To see that % is tight, consider
the series of problems withn =3, py=w,; =1. pp =w, =p3 =w3 =k and ¢ = 2k:
we have z" =k + 1 and z = 2k, so z"/z is arbitrarily close to 1 for k sufficiently
large.

The computation of zh requires O(n) time, once the critical item is known. If
the items are sorted as in (2.7), a more effective algorithm is to consider them
according to increasing indices and insert each new item into the knapsack if it
fits. (Notice that items 1,....s — 1 are always inserted, so the solution value is
at least z’.) This is the most popular heuristic approach to KP, usually called the
Greedy Algorithm. Again, the worst-case performance can be as bad as 0 (take for
example the series of problems introduced for z’), but can be improved to % if
we also consider the solution given by the item of maximum profit alone, as in
the following implementation. We assume that the items are ordered according to

Q7).

procedure GREEDY:
input: n.c.(p;j). (w));
output: z8. (x;);

begin
C =c,
z8 :=0;
jr=1
forj :=1ton do
begin
if w; > ¢ then Xj = 0
else

begin

2.5 Branch-and-bound algorithms 29

C:=C—w
z8 :=z8 +p;
end;
if p; > p;- then j* :=j
end;
if pi+ > z% then
begin
z8 =pje;
forj :=1to n do x; :=0;
xje =1
end

end.

The worst-case performance ratio is 1 since: (a) pj» > ps, 50 z8 > z"; (b) the
series of problems introduced for z” proves the tightness. The time complexity is
O(n), plus O(nlogn) for the initial sorting.

For Example 2.1 we have z’ = z" = 265 and z¢ = 280, which is the optimal
solution value since Ug = 280.

When a 0-1 knapsack problem in minimization form (see Section 2.1) is
heuristically solved by applying GREEDY to its equivalent maximization instance,
we of course obtain a feasible solution, but the worst-case performance is not
preserved. Consider, in fact, the series of minimization problems with n =3. p; =
wy =k, pp =wp =1, p3 =ws =k and ¢ = 1, for which the optimal solution
value is 1. Applying GREEDY to the maximization version (with ¢ = 2k), we
get z8 = k + 1 and hence an arbitrarily bad heuristic solution of value k for the
minimization problem.

Other approximate algorithms for KP are considered in Section 2.8.

2.5 BRANCH-AND-BOUND ALGORITHMS

The first branch-and-bound approach to the exact solution of KP was presented by
Kolesar (1967). His algorithm consists of a highest-first binary branching scheme
which: (a) at each node, selects the not-yet-fixed item j having the maximum profit
per unit weight, and generates two descendent nodes by fixing x;, respectively, to
1 and O; (b) continues the search from the feasible node for which the value of
upper bound U, is a maximum.

The large computer memory and time requirements of the Kolesar algorithm
were greatly reduced by the Greenberg and Hegerich (1970) approach, differing
in two main respects: (a) at each node, the continuous relaxation of the induced
subproblem is solved and the corresponding critical item § is selected to generate
the two descendent nodes (by imposing x; = 0 and x; = 1); (b) the search continues
from the node associated with the exclusion of item § (condition x; = 0). When
the continuous relaxation has an all-integer solution, the search is resumed from
the last node generated by imposing x; = 1, i.e. the algorithm is of depth-first type.

Horowitz and Sahni (1974) (and, independently, Ahrens and Finke (1975))

30 2 0-1 Knapsack problem

derived from the previous scheme a depth-first algorithm in which: (a) selection of
the branching variable x; is the same as in Kolesar; (b) the search continues from
the node associated with the insertion of item j (condition x; = 1), i.e. following a
greedy strategy.

Other algorithms have been derived from the Greenberg—Hegerich approach
(Barr and Ross (1975), Lauriere (1978)) and from different techniques (Lageweg
and Lenstra (1972), Guignard and Spielberg (1972), Fayard and Plateau (1975),
Veliev and Mamedov (1981)). The Horowitz—Sahni one is, however, the most
effective, structured and easy to implement, and has constituted the basis for several
improvements.

2.5.1 The Horowitz—Sahni algorithm

Assume that the items are sorted as in (2.7). A forward move consists of
inserting the largest possible set of new consecutive items into the current
solution. A backtracking move consists of removing the last inserted item from
the current solution. Whenever a forward move is exhausted, the upper bound
U, corresponding to the current solution is computed and compared with the best
solution so far, in order to check whether further forward moves could lead to
a better one: if so, a new forward move is performed, otherwise a backtracking
follows. When the last item has been considered, the current solution is complete
and possible updating of the best solution so far occurs. The algorithm stops when
no further backtracking can be performed.
In the following description of the algorithm we use the notations

(%)

current solution;

n
Z = current solution value (: > pjfrj);
j=

n
¢ = current residual capacity (= c—> wjfcj) ;
j=1
(x;) = best solution so far;
n
z = value of the best solution so far | =3 p;x; |.
j=
procedure HS:

input: 7. c. (pj), W));
output: z. (x;);

begin
1. [initialize]
z :=0;

z:=0;

2.5 Branch-and-bound algorithms

¢ =c;

Pn+1 = O;
Wyl 1= +0C;
j=1

2. [compute upper bound U]
find r=min {i: 37, wi >¢};
wi= Y05 pe 1@ = s wope /we
if z > 7 +u then go to 5;
3. [perform a forward step]
while w; < ¢ do

begin
¢:=¢—wj,
=2 +pj;
X =1
ji=j+1

end;

if j < n then

begin
X :=0;
j=j+1

end;

if j < n then go to 2;
if j = n then go to 3;
4. [update the best solution so far]
if Z > z then
begin
z:=2Z;
fork :=1ton dox; =%
end;
j=n;
if £, = 1 then

end;
5. [backtrack]
find i =max {k <j: & =1};
if no such i then return ;

¢:=C+w;
Z:=Z—p;;
% =0
ji=i+1;
goto 2

end.

31

32

2 0-1 Knapsack problem

Example 2.2

Consider the instance of KP defined by

n =17,
(pj) =(70,20,39,37, 7, 5,10);
w;)) =(31,10,20,19, 4, 3, 6);
c =50.

Figure 2.3 gives the decision-tree produced by procedure HS. []

Several effective algorithms have been obtained by improving the Horowitz—
Sahni strategy. Mention is made in particular of those of Nauss (1976) (with Fortran
code available), Martello and Toth (1977a) (with Fortran code in Martello and Toth
(1978) and Pascal code in Syslo, Deo and Kowalik (1983)), Suhl (1978), Zoltners
(1978).

We describe the Martello-Toth algorithm, which is generally considered highly
effective.

2.5.2 The Martello-Toth algorithm

The method differs from that of Horowitz and Sahni (1974) in the following main
respects (we use the notations introduced in the previous section).

(@)
(ii)

(iii)

Upper bound U, is used instead of Uj.

The forward move associated with the selection of the jth item is split into two
phases: building of a new current solution and saving of the current solution.
In the first phase the largest set N; of consecutive items which can be inserted
into the current solution starting from the jth, is defined, and the upper bound
corresponding to the insertion of the jth item is computed. If this bound is
less than or equal to the value of the best solution so far, a backtracking move
immediately follows. If it is greater, the second phase, that is, insertion of the
items of set N; into the current solution, is performed only if the value of
such a new solution does not represent the maximum which can be obtained
by inserting the jth item. Otherwise, the best solution so far is changed, but
the current solution is not updated, so useless backtrackings on the items in
N; are avoided.

A particular forward procedure, based on dominance criteria, is performed
whenever, before a backtracking move on the ith item, the residual capacity ¢
does not allow insertion into the current solution of any item following the ith.
The procedure is based on the following consideration: the current solution
could be improved only if the ith item is replaced by an item having greater
profit and a weight small enough to allow its insertion, or by at least two items
having global weight not greater than w; + ¢. By this approach it is generally
possible to eliminate most of the useless nodes generated at the lowest levels
of the decision-tree.

2.5 Branch-and-bound algorithms 33

z=102 z=105 =107
x=(1.1,0.0.1.1.0) x=(1.1.0.0.0.1.1) x=(1,0,0.1.0.0,0)

Figure 2.3 Decision-tree of procedure HS for Example 2.2

(iv) The upper bounds associated with the nodes of the decision-tree are computed
through a parametric technique based on the storing of information related to
the current solution. Suppose, in fact, that the current solution has been built
by inserting all the items from the jth to the rth: then, when performing a
backtracking on one of these items (say the ith, j < i < r), if no insertion
occurred for the items preceding the jth, it is possible to insert at least items
i+1..... r into the new current solution. To this end, we store in 7;, p; and

34 2 0-1 Knapsack problem

w; the quantities r + 1, Z;:i pi and Zzzi wy, respectively, for i =, ...,r,
and in 7 the value r — 1 (used for subsequent updatings).

Detailed description of the algorithm follows (it is assumed that the items are
sorted as in (2.7)).

procedure MT1:
input: . c.(p;). (W));
output: z. (x;);

begin

1. [initialize]
z:=0;
z2:=0
¢ =c;
Pn+l == 0;

Wyl 1= +0C;

fork :=1tondox; :=0;

compute the upper bound U = U, on the optimal solution value;
wi:=0;

7 =0,
7

for k =ntol step —1 do compute my; = min {w; : i > k};
ji=1;
2. [build a new current solution]
while w; > ¢ do
ifz>72+ Lép,+1/w,+lj thengoto 5 elsej :=j +1;
find r =min {i : W, +Zk F Wk > ¢}
p' = p;+ Z;:,-J Pk;
w =W+ Z;;% Wi
if < n then u := max ([(& — W)p,+1 /Wre1],
- (Wr - (é - W/))pr—l/wr—lj)
else u :=0;
ifz>%+p' +uthengoto5;
if u = 0 then go to 4;
3. [save the current solution]

=0 —w';
=% +p’
fork:=jtor—1ldo % :=1;
W}' I=W/;
pj=p';
r =r;
fork =j+1tor —1do
begin
Wi =Wk — W15

Di =Dik-1 — Pk-1,
Ty:=r

2.5 Branch-and-bound algorithms

end;
fork :==r to7 do
begin
Wk —0
Py =0
rk =k
end;
Fi=r—1;
ji=r+1;

if ¢ > m;_; then go to 2;
fz>zthengot05

p' =0
4, [update the best solution so far]
z:=%+p’;

fork :=1toj — 1 do x; := X;
fork:=jtor —1dox =1;
fork :=rtondox :=0;
if z = U then return ;

5. [backtrack]
find i =max {k <j: %=1}
if no such i then return;

¢:=C+w;
Z:=2—p;;
% =0
j=i+1;
if ¢ —w; > m; then go to 2;
J —l
h =1,
6. [try to replace item [with item A]
h==h+1;

ifz> 2+ [Cpn/wi] then go to 5;
if w, =w; then go to 6;
if w, > w; then

begin
ifw, >¢ or z > Z +p, then go to 6;
z =2 +py;
fork :=1ton do x; := &;
Xy =1;
if z = U then return;
i:=h;
go to 6

end

else

begin
if ¢ — wy, < my, then go to 6;
C:=C—wy;
Z:=2Z+pp;
)?h = 1;

h+1;

~.

36 2 0-1 Knapsack problem

Wh =Wy,
Dy = DPn;
Thi=h+1,; 2
fork:=h+1to7 do '
begin
Wk = 0;
Pi =0
T = k
end;
F=h;
goto2
end

end.

The Fortran code corresponding to MT1 is included in the present volume. In
addition, a second code, MTIR, is included which accepts on input real values for
profits, weights and capacity.

Example 2.2 (continued)

Figure 2.4 gives the decision-tree produced by procedure MT1. []

Branch-and-bound algorithms are nowadays the most common way to effectively
find the optimal solution of knapsack problems. More recent techniques imbed
the branch-and-bound process into a particular algorithmic framework to solve,
with increased efficiency, large instances of the problem. We describe them in
Section 2.9.

The other fundamental approach to KP is dynamic programming. This has been
the first technique available for exactly solving the problem and, although its
importance has decreased in favour of branch-and-bound, it is still interesting
because (a) it usually beats the other methods when the instance is very hard
(see the computational results of Section 2.10.1), and (b) it can be successfully
used in combination with branch-and-bound to produce hybrid algorithms for KP
(Plateau and Elkihel, 1985) and for other knapsack-type problems (Martello and
Toth (1984a), Section 4.2.2).

2.6 DYNAMIC PROGRAMMING ALGORITHMS

Given a pair of integers m (1 < m < n) and ¢ (0 < ¢ < ¢), consider the sub-
instance of KP consisting of items 1,...,m and capacity ¢. Let f,,(¢) denote its
optimal solution value, i.e.

(&) = max Zp,xj:ijxjgé. xi=0or1 forj=1,...,m». (2.29)

j=1 j=1

2.6 Dynamic programming algorithms 37

x=(1,0,01,00,0)

2:102
x=(1,1,0,0,1.1,0)

Figure 2.4 Decision-tree of procedure MT1 for Example 2.2

We trivially have

¢ 0 foré¢=0,...,w —1;
f1(©) =

pr foré=w,...,c.

Dynamic programming consists of considering n stages (for m increasing from
1 to n) and computing, at each stage m > 1, the values f,,(¢) (for ¢ increasing
from O to ¢) using the classical recursion (Bellman, 1954, 1957; Dantzig, 1957):

38 2 0-1 Knapsack problem

Jn=1(2) for¢ =0, ..., w, — 1;
Jm(@) =

max (fn—1(8).fm-1(¢ —wp)+pm) foré=wpy, ..., c.

We call states the feasible solutions corresponding to the f,,(¢) values. The optimal
solution of the problem is the state corresponding to f,(c).

Toth (1980) directly derived from the Bellman recursion an efficient procedure
for computing the states of a stage. The following values are assumed to be defined
before execution for stage m:

Vv = min mz_:lw,.c ; (2.30)
j=1

b=2""1 2.31)

Pe =fm-1(6). foré=0,...,v; (2.32)

Xe = {Xm-1.Xm=2. ..., X1}, foré=0,...,v. (2.33)

where x; defines the value of the jth variable in the partial optimal solution
corresponding to f,,_(¢), i.e.

m—1

m=1
¢ = ZW/'X/ and fm—l(é) = ijx/'

j=1 j=1

From a computational point of view, it is convenient to encode each set X, as a
bit string, so this notation will be used in the following. After execution, values
(2.30) to (2.33) are relative to stage m.

procedure REC1:
input: v. b, (P2). (X¢). Wi, Pms
output: v.b.(P:).(Xz);

begin
if v < c then
begin
u:=v,

vi=min (v + Wy, c);
for¢:=u+1tov do

begin
P::=Py,;
Xz = Xu
end

end;
for ¢ :=v tow,, step —1 do
if P < Ps_y,, +pm then
begin

2.6 Dynamic programming algorithms 39

Ps :=Ps_y,, + Pm;
X = & =W +b
end;
b:=2b
end.

An immediate dynamic programming algorithm for KP is thus the following.
procedure DP1:

input: n.c.(p;). (w));
output: z. (x;);

begin
for¢ :=0tow; — 1 do
begin
P =0
X@ =0
end;
Vv i=wy;
b =2,
Pv =D .
X, =1
for m :=2 to n do call RECT1,;
z:=P
determine (x;) by decoding X,
end.

Procedure REC1 requires O(c) time, so the time complexity of DP1 is O(xnc).
The space complexity is O(nc). By encoding X; as a bit string in computer words
of d bits, the actual storage requirement is (1 + [#/d])c, where [a] is the smallest
integer not less than a.

2.6.1 Elimination of dominated states

The number of states considered at each stage can be considerably reduced by
eliminating dominated states, that is, those states (P, X;) for which there exists a
state (P,.X,) with P, > Ps and y < ¢. (Any solution obtainable from (Pz. X;) can
be obtained from (P,, Xy).) This technique has been used by Horowitz and Sahni
(1974) and Ahrens and Finke (1975). The undominated states of the mth stage can
be computed through a procedure proposed by Toth (1980). The following values
are assumed to be defined before execution of the procedure for stage m:

s = number of states at stage (m — 1); 2.34)
b=2""1 (2.35)

W 1, = total weight of the ith state (=1, ... ,s); (2.36)

40 2 0-1 Knapsack problem
P 1; =total profit of the ith state (i =1, ... ,s); 2.37)

X1 ={xm-1.Xm-2,....x1}. fori=1,...,s. (2.38)

where x; defines the value of the jth variable in the partial optimal solution of the
ith state, i.e.

m—1

m—1
Wl,' = ZWij and Pl, = ijXj.
j=1

j=1

Vector W1 (and, hence, P1) is assumed to be ordered according to strictly
increasing values.

The procedure uses index i to scan the states of the current stage and index &
to store the states of the new stage. Each current state can produce a new state of
total weight y = W 1; +w,,, so the current states of total weight W 1, < y, and then
the new state, are stored in the new stage, but only if they are not dominated by
a state already stored. After execution, values (2.34) and (2.35) are relative to the
new stage, while the new values of (2.36), (2.37) and (2.38) are given by (W 2;),
(P2;) and (X24), respectively. Sets X 1; and X2, are encoded as bit strings. Vectors
(W2,) and (P2;) result ordered according to strictly increasing values. On input,
it is assumed that W 1o =Plg=X19=0.

procedure REC2:

input: s.b. (W 1,).(P1;).(X1,).Wp.pm. C;
output: s. b, (W2), (P2), (X2);

begin

X20 =V
while min (y. W1,) < c do
if W1, <y then
begin
comment: define the next state (p. x);
p =Ply;
x =Xly;
if W1, =y then
begin
ifPl; +p, > p then
begin
p =Pl +pn;

2.6 Dynamic programming algorithms 41

x:=X1;,+b
end;
I:=1i+1;
y =WI1; +wp,

end;
comment: store the next state, if not dominated;
if p > P2, then

begin
k=k+1;
W2, =Wly;
P2, :=p,
X2 =x
end;
h=h+1
end
else
begin

comment: store the new state, if not dominated;
if Pl; +p,, > P2, then

begin
k=k+1;
W2, =y;
P2, :=Pl; +p,;
X2k I=X1i+b
end;
i:=1i+1;
y=WI1,+wp,
end;
s:=k;
b:=2b
end

A dynamic programming algorithm using REC2 to solve KP is the following.

procedure DP2:

input: n.c.(p;). (w;);
output: z. (x;);

begin

Wlo = 0;
Ply:=0;
X1g:=0;
s:=1;
b:=2;
Wil :=wy;
Pl :=pi;
X1, :=1;

form :=2 ton do
begin

ey

42 2 0-1 Knapsack problem
call REC2;
rename W2.P2 and X2 as W1,.P1 and X |, respectively
end;
z :=Plg;
determine (x;) by decoding X 1

end.

The time complexity of REC2 is O(s). Since s is bounded by min (2" — 1,¢), the
time complexity of DP2 is O(min (2"*!, nc)).

Procedure DP2 requires no specific ordering of the items. Its efficiency, however,
improves considerably if they are sorted according to decreasing p; /w; ratios since,
in this case, the number of undominated states is reduced. Hence, this ordering is
assumed in the following.

Example 2.3
Consider the instance of KP defined by

n =6;
(pj) = (50, 50, 64, 46, 50, 5);
w;j) = (56, 59, 80, 64, 75, 17);

¢ =190.

Figure 2.5 gives, for each stage m and for each undominated state i, the values
W, .P;, corresponding, in DP2, alternatively to W 1;. P1; and W2, P2;. The optimal

solution, of value 150, is (xj) = (1.1.0,0, { 0). For the same example, procedure
DP1 generates 866 states. []

m=1 m=2 m=23 m=4 m=>5 m==6
Wi Pi Wz Pt Wi Pl Wi P: Wi Pt Wz Pl

~.

0 0 0 0 0 0 0 0 0 0 0 0 0
1 56 50 56 50 56 50 56 50 56 50 17 5
2 115 80 64 80 64 80 64 56 50
3 115 100 115 100 115 100 73 55
4 136 114 136 114 136 114 80 64
5 179 146 179 146 97 69
6 190 150 115 100
7 132 105
8 136 114
9 153 119
10 179 146
11 190 150

Figure 2.5 States of procedure DP2 for Example 2.3

2.6 Dynamic programming algorithms 43
2.6.2 The Horowitz—Sahni algorithm

Horowitz and Sahni (1974) presented an algorithm based on the subdivision of the
original problem of n variables into two subproblems, respectively of ¢ = [n/2]
and r = n — g variables. For each subproblem a list containing all the undominated
states relative to the last stage is computed; the two lists are then combined in
order to find the optimal solution.

The main feature of the algorithm is the need, in the worst case, for two lists
of 29 — 1 states each, instead of a single list of 2" — 1 states. Hence the time and
space complexities decrease to O (min (2"/2. nc)), with a square root improvement
in the most favourable case. In many cases, however, the number of undominated
states is much lower than 2"/2 since (a) many states are dominated and (b) for n
sufficiently large, we have, in general, ¢ < 2112,

Ahrens and Finke (1975) proposed an algorithm where the technique of Horowitz
and Sahni is combined with a branch-and-bound procedure in order to further
reduce storage requirements. The algorithm works very well for hard problems
having low values of n and very high-values of w; and ¢, but has the disadvantage
of always executing the branch-and-bound procedure, even when the storage
requirements are not excessive.

We illustrate the Horowitz—Sahni algorithm with a numerical example.

Example 2.3 (continued)

We have ¢ = 3. The algorithm generates the first list for m =1, 2, 3, and the second
for m = 4, 5, 6. The corresponding undominated states are given in Figure 2.6.
Combining the lists corresponding to m = 3 and m = 6 we get the final list of
Figure 2.5. []

m=1 m=2 m=73 m=6 m=5 m=4
i W;pP, W, P, W, P; w, p, W,P, W;P;
0 00 0 0 0 o 0 0 00 00
1 5650 56 50 56 50 17 5 6446 6446
2 115100 80 64 64 46 7550
3 115 100 75 50 13996
4 136 114 81 51
5 92 55
6 139 96
7 156 101

Figure 2.6 States of the Horowitz—Sahni algorithm for Example 2.3

4 2 0-1 Knapsack problem
2.6.3 The Toth algorithm

Toth (1980) presented a dynamic programming algorithm based on (a) the
elimination of useless states and (b) a combination of procedures REC1 and REC2.

Several states computed by REC1 or REC2 are of no use for the following stages
since, of course, we are only interested in states capable of producing, at the final
stage, the optimal solution. Useless states produced by REC1 can be eliminated by
the following rule:

If a state, defined at the mth stage, has a total weight W satisfying one of the
conditions

M W<e= Y w

J=m+1

(i) ¢ —min, ;< {w;} <W <ec.

then the state will never produce P, and, hence, can be eliminated.

A similar rule can be given for REC2 (in this case, however, it is necessary to
keep the largest-weight state satisfying (i)), and the last, i.e. sth, state. The rule
cannot be extended, instead, to the Horowitz—Sahni algorithm, since, in order to
combine the two lists, all the undominated states relative to the two subproblems
must be known.

Example 2.3 (continued)

The states generated by DP2, with REC2 improved through the above elimination
rule, are given in Figure 2.7. []

1 m=2 m=3 m=4 m=25 m=6
i W, P, W, P, W, P, W, P, W, P, W, P,

0 0 0 0 0 0 0 0 0 0 0 0 0
1 56 50 56 50 56 50 80 64 136 114 190 150
2 115 100 80 64 115 100 190 150

3 115 100 136 114

4 136 114 179 146

Figure 2.7 States of the improved version of DP2 for Example 2.3

Algorithm DP2 is generally more efficient than DP1, because of the fewer
number of states produced. Notice however that, for the computation of a single
state, the time and space requirements of DP2 are higher. So, for hard problems,
where very few states are dominated, and hence the two algorithms generate almost
the same lists, DP1 must be preferred to DP2. A dynamic programming algorithm
which effectively solves both easy and hard problems can thus be obtained by
combining the best characteristics of the two approaches. This is achieved by using

2.7 Reduction algorithms 45

procedure REC2 as long as the number of generated states is low, and then passing
to REC1. Simple heuristic rules to determine the iteration at which the procedure
must be changed can be found in Toth (1980).

2.7 REDUCTION ALGORITHMS

The size of an instance of KP can be reduced by applying procedures to fix the
optimal value of as many variables as possible. These procedures partition set
N={1.2..... n} into three subsets:

J1={j €N :x; =1 in any optimal solution to KP},
JO={j €N :x; =0 in any optimal solution to KP},
F=N\(J1UJO).

The original KP can then be transformed into the reduced form

maximize z = E DjX; +p
JEF

subject to Zw,-x,- <é,
JEF

x;=0 or 1. JEF,

where p=3 ;1P E=C =3 e, W

Ingargiola and Korsh (1973) proposed the first method for determining J 1 and
JO. The basic idea is the following. If setting a variable x; to a given value b
(b =0 or 1) produces infeasibility or implies a solution worse than an existing one,
then x; must take the value (1 — b) in any optimal solution. Let / be the value of
a feasible solution to KP, and, for j € N, let uj1 (resp. u;’) be an upper bound for
KP with the additional constraint x; = 1 (resp. x; = 0). Then we have

Jl={jeN:ul <l}, (2.39)

JO={j €N :ul <I}. (2.40)

In the Ingargiola—Korsh algorithm, uj1 and u}) are computed using the Dantzig
bound. Let s be the critical item (see Section 2.2.1) and U, the Dantzig bound for
the original problem. Then u/ = U, for any j < s and u) = U, for any j > s.
Hence values j > s (resp. j < s) need not be considered in determining J 1 (resp.
J0), since U; > I. The algorithm initializes / to st.:_ll p;j and improves it during
execution. It is assumed that the items are ordered according to (2.7). Remember

that o'(j) and o °(j) represent the critical item when it is imposed, respectively,

46 2 0-1 Knapsack problem
x; =1 and x; = 0 (see (2.17) and (2.18)).
procedure IKR:

input: n.c.(p;). w;);
output: J 1.J0;

begin
J1:=0;
JO:=0;

determine s =min {; : ZLI

= Z}=11PI?
forj:=1tos do
begin
determine ¢°(j) and compute u);

wi >c);

[:=max (l. Z?Z(I”_lp,-);
i#
if u’ <lthenJ1:=J1U{j}
end;
forj .=s ton do
begin
determine ¢'(j) and compute u;

[:=max (I,p; + Z;’zl{")_lp,-);

ifu! <lthenJO:=JOU{,}
end
end.

Notice that the variables corresponding to items in J 1 and JO must take the
fixed value in any optimal solution to KP, thus including the solution of value
! when this is optimal. However, given a feasible solution ¥ of value /, we are
only interested in finding a better one. Hence stronger definitions of J 1 and J O are
obtained by replacing strict inequalities with inequalities in (2.39), (2.40), i.e.

Jl={j€eN:u <1}, (2.41)
JO={j €N :u <I}. (2.42)

If it turns out that the reduced problem is infeasible or has an optimal solution less
than /, then X is the optimal solution to the original problem.

Example 2.4

We use the same instance as in Example 2.2, whose optimal solution, of value 107,
isx=(1.0.0,1,0,0.0):

2.7 Reduction algorithms 47

n =17,
(pj) =(70,20, 39,37, 7, 5,10);
(wj) =1, 10,20, 19, 4, 3, 6);
¢ =50.

Applying procedure IKR we get:

s=3, 1=90;

j=1: u¥=97. 1=96;
j=2: ud=107;

j=3: ud=107;

i=3: u3=106;

j=4: uy =107, 1=107;
j=5: ul=106;

j=6: ui =106

j=7: wu =105,
soJ1=0@.J0={56,7}.[]

In order to use definitions (2.41), (2.42) it is simply necessary to replace the
< sign with < in the two tests of procedure IKR. With this modification we get
J1 =@, J0={4,56.7}. The optimal solution value of the reduced problem is
then 90, implying that the feasible solution of value / = 107 is optimal. (Notice
that it is worth storing the solution vector corresponding to / during execution.)

Recently, Murphy (1986) erroneously claimed that definitions (2.41), (2.42)
of /1 and JO are incorrect. Balas, Nauss and Zemel (1987) have pointed out its
mistake.

The time complexity of the Ingargiola—Korsh procedure is O(n?), since O(n)
time is required for each o%(j) or ol(j) computation (although one can expect
that, on average, these values can be determined with few operations, starting from
s5). The time complexity does not change if u;) and uj1 are computed through one
of the improved upper bounding techniques of Section 2.3.

An O(n) reduction algorithm has been independently obtained by Fayard and
Plateau (1975) and Dembo and Hammer (1980). The method, FPDHR, computes
u) and u! through the values p;' = p; — w;p, /w; (see (2.13)). Recalling that | p; |
represents a lower bound on the decrease of z(C (KP)) corresponding to the change
of the jth variable from X; to 1 — X;, we have

43 2 0-1 Knapsack problem
w=z(CKP)—p!]. j=1,...s

ul.lz LZ(C(KP))+pj*j. j=8,...,n.

which are computed in constant time, once z(C (KP)) is known. It is easy to see
that the values ujQ and ”jl obtained in this way are not lower than those of procedure
IKR, so the method is generally less effective, in the sense that the resulting sets
J0 and J 1 have smaller cardinality.

O(n?) reduction algorithms more effective than the Ingargiola—Korsh method
have been obtained by Toth (1976), Lauriére (1978) and Fayard and Plateau (1982).

An effective reduction method, still dominating the Ingargiola—Korsh one, but
requiring O(nlogn) time, has been proposed by Martello and Toth (1988). The
algorithm differs from procedure IKR in the following main respects:

(a) u}’ and uj1 are computed through the stronger bound Us;

(b) J1 and JO are determined at the end, thus using the best heuristic solution
found;

(c) at each iteration, upper bound and improved heuristic solution value are
computed in O(logn) time by initially defining w; = 3"/, w; and p, = 3., pi
(=1, ... ,n) and then determining, through binary search, the current critical
item 5 (i.e. 0°(j) or '(j)).

The procedure assumes that the items are ordered according to (2.7) and that
pifwj=—ocifj <1,p;j/wj=+ocifj > n.

procedure MTR:
input: n.c.(p;), w;);
output: J1.J0./;
begin .
forj :=0ton do compute p; = _ p; and w; = 3 /_, wi;
find, through binary search, s such that w,_; < ¢ < wy;
Li=Poori
C:=cCc—Ws_1;
forj :=s+1tondo
if w; < then

begin
I =1+p;
Cc:=C— wi
end;
forj :=1tos do
begin

find, through binary search, 5 such that
Wio1 S c+wp < Wy
cC=c+w —ws_y;

2.7 Reduction algorithms 49

0 —

uj =ps_y —p; +max ([Cpss1/Wss1].

Lps — (Ws — O)ps—1/ws—1]);
l:==max (l.ps_, — pj)
end;
forj :=s ton do
begin
find, through binary search, 5 such that
Wi Sc—wp < Wy
E =Cc—w —Ws_y,
wl = ps_y +p;+max ([Tpsa /s |ps — W5 — Ops-1/ws-1))i
l i=max (I.ps_, +p;)
end;
Jl={j <s:u) <I};
JO={j>s:ul <I}
end.

Example 2 4 (continued)

Applying procedure MTR we have
(p;) = (0, 70, 90, 129, 166, 173, 178, 188);

w;)=(0, 31, 41, o1, 80, 84, 87, 93);
§s=3,1=90,c=9,

1=102,c=2;
j=1: s=5,c= 1,u’ = 97,
j=2: §=3,c=19,u, =107
j=3: s=4,7= 9,u)=107
j=3: 5=1,c=30,uj= 99,
j=4: 5=2,C= 0,u; =107,1=107;
j=5: §=3,¢= 5, ui=106;
j=6: 5=3,C= 6, ul=106;
j=7: §=3,C= 3,u; =105;
J1={1,2,3}, J0={3,4,5,6,7}.

The reduced problem is infeasible (x3 is fixed both to 1 and to 0 and, in addition,
Y jes1 Wi > ¢), so the feasible solution of value 107 is optimal. []

Procedure MTR computes the initial value of / through the greedy algorithm.
Any other heuristic, requiring no more than O (nlogn) time, could be used with no
time complexity alteration.

The number of fixed variables can be further increased by imposing conditions
(2.5), (2.6) to the reduced problem, i.e. setting JO = JOU {j € F : w; >

50 2 0-1 Knapsack problem

¢ =Y jenwitand, if 37w < c— 3w, J1 =J1IUF. In addition,
the procedure can be re-executed for the items in F (since the values of u}’ and
uj1 relative to the reduced problem can decrease) until no further variable is fixed.
This, however, would increase the time complexity by a factor #, unless the number
of re-executions is bounded by a constant.

2.8 APPROXIMATE ALGORITHMS

In Section 2.4 we have described the greedy algorithm, which provides an
approximate solution to KP with worst-case performance ratio equal to %, in time
O(n) plus O(n log n) for the initial sorting. Better accuracy can be obtained through
approximation schemes, which allow one to obtain any prefixed performance
ratio. In this section we examine polynomial-time and fully polynomial-time
approximation schemes for KP. Besides these deterministic results, the probabilistic
behaviour of some approximate algorithms has been investigated. A thorough
analysis of probabilistic aspects is outwith the scope of this book. The main results
are outlined in Section 2.8.3 and, for the subset-sum problem, in Section 4.3.4. (The
contents of such sections are based on Karp, Lenstra, McDiarmid and Rinnooy Kan
(1985).)

2.8.1 Polynomial-time approximation schemes

The first approximation scheme for KP was proposed by Sahni (1975) and makes
use of a greedy-type procedure which finds a heuristic solution by filling, in order
of decreasing p; /w; ratios, that part of ¢ which is left vacant after the items of a
given set M have been put into the knapsack. Given M C N and assuming that
the items are sorted according to (2.7), the procedure is as follows.

procedure GS:
input: n.c.(p;). w;).M;

output: z¢. X;

begin
z8 :=0;
Ei=C =Y iemWis
X =0

forj :=1ton do
ifj ¢ M and w; < ¢ then

begin
z8 ==z8 + p;;
¢ :=2’—W}';
X =XUl{,}
end

end.

2.8 Approximate algorithms 51
Given a non-negative integer parameter k, the Sahni scheme S(k) is
procedure S(k):

input: n,c.(p;). W;);
output: z# X"

begin
"= 0;
foreach M C {1..... n} suchthat M| <kand} ., w; <cdo
begin
call GS;
if 28+ "y pj > 2" then
begin
M=z Y P
Xt=XUuM
end
end
end.

Since the time complexity of procedure GS is O(n) and the number of times it is
executed is O(n*), the time complexity of S(k) is O(n**!). The space complexity
is O(n).

Theorem 2.3 (Sahni, 1975) The worst-case performance ratio of S(k) is r (S(k)) =
k/k +1).

Proof. (a) Let Y be the set of items inserted into the knapsack in the optimal
solution. If |Y| < k, then S(k) gives the optimum, since all combinations of
size | Y| are tried. Hence, assume |Y| > k. Let M be the set of the k items of

highest profit in Y, and denote the remaining items of ¥ with j;..... Jr» assuming

Pi /Wi, > P /Wi, (i =1,...,r —1). Hence, if z is the optimal solution value,
we have R

P < — i=1,...,r. 2.43

p,‘_k+1 fori=1, ,r ()

Consider now the iteration of S(k) in which M =M, and let Jjm be the first item of
{J1;-...Jr} not inserted into the knapsack by GS. If no such item exists then the

heuristic solution is optimal. Otherwise we can write z as
m—1 r
2= P+ > i+ P (2.44)
ieM i=1 i=m
while for the heuristic solution value returned by GS we have

m—1
8 > Zpi+Zpﬁ+Zpi, (2.45)

€M i=1 ieQ

52 2 0-1 Knapsack problem

where Q denotes the set of those items of N\M which are in the heuristic
solution but not in {jj..... Jj-} and whose index is less than j,. Let ¢* =
C = DiemWi — Z:"Tl w;, and ¢ = ¢* —), ,wi be the residual capacities
available, respectlvely, in the optimal and the heurlstlc solution for the items of
N\M following ji,—1. Hence, from (2.44),

Z<ZP1+ZPJ,+C*MW'

1€M

by definition of m we have ¢ < wj, and p; /w; > p;, /w;, fori € Q, so

z < Zpt + ij, +pj, t+ Zpt

ieM ieQ

Hence, from (2.45), z < z# + p;, and, from (2.43),
z8 k

z > k+1
(b) To prove that the bound is tight, consider the series of instances with:
n=k+2; pr=2.wi=1; pp=wy=L>2forj= k+2 ¢=(k+1)L. The
optimal solution value is z = (k + 1)L, while S(k) glves z" = kL + 2. Hence, for L
sufficiently large, the ratio z* /z is arbitrarily close to k /(k + 1). []

Let M denote the maximum cardinality subset of {I..... n} such that
Z, e Wi < c. Then, clearly, for any k > |M|, S(k) gives the optimal solution.

Example 2.5

Consider the instance of KP defined by
n =8
(pj) = (350, 400, 450, 20, 70, 8, 5, 5);
(w;) =(25 35, 45, 5,25,3,2,2)
c =104
The optimal solution X = {1.3.4.5.7.8} has value z = 900.
Applying S(k) with k = 0, we get the greedy solution: X" = {1, 2, 4, 5, 6, 7, 8},
A;lflif?ng S(k) with k& = 1, we re-obtain the greedy solution for
M = {1}, {2}, {4}, {5}, {6}, {7}, {8}. For M = {3}, we obtain X" =

{1,3,4,5,6}, z" =898,
Applying S(k) with k =2, we obtain the optimal solution when M = {3.7}.[]

2.8 Approximate algorithms 53

The Sahni algorithm is a polynomial-time approximation scheme, in the sense
that any prefixed worst-case performance ratio can be obtained in a time bounded
by a polynomial. However, the degree of the polynomial increases with &, so the
time complexity of the algorithm is exponential in &, i.e. in the inverse of the
worst-case relative error ¢ =1 — r.

2.8.2 Fully polynomial-time approximation schemes

Ibarra and Kim (1975) have obtained a fully polynomial-time approximation scheme,
i.e. a parametric algorithm which allows one to obtain any worst-case relative
error (note that imposing ¢ is equivalent to imposing) in polynomial time
and space, and such that the time and space complexities grow polynomially
also with the inverse of the worst-case relative error . The basic ideas in the
Ibarra—Kim algorithm are: (a) to separate items according to profits into a class of
“large” items and one of “small” items; (b) to solve the problem for the large
items only, with profits scaled by a suitable scale factor é, through dynamic
programming. The dynamic programming list is stored in a table T of length
|(3/£)*] +1; T(k) = “undefined” or is of the form (L(k). P (k), W (k)), where L(k)
isasubsetof {1,....n}, P(k) =3 uypjs W) =3 ;g ywjand k=570, P;
with p; = Lp;/é]. It is assumed that the items are ordered according to (2.7) and
that the “small” items are inserted in set S preserving this order.

procedure IK(¢) :

input: n,c,(p;),(w));

output: z X";

begin
find the critical item s (see Section 2.2.1);
if Zj:l w;j = ¢ then

begin
-1
Zh = Zil p/’
XM ={1,...,s — 1};
return
end;
~ s
z:= Zj:l pj
comment: 7 /2 <z < Z, since z > max (Zj‘:_l'p,,ps);
6 :=2(c/3)%
S =0,

T(0) := (L(0),P(0),W (0)) := (8,0,0);
q = |2/5] (comment: g = [(3/2)%));
comment: dynamic programming phase;
for i :=11to g do T(i) := “undefined”;
forj :=1ton do
if pj <ez/3thenS =S U {j}
else

54 2 0-1 Knapsack problem

begin
pj = Lpi/dl;
fori:=q —p; to 0 step —1 do
if T(i) # “undefined” and W (i) + w; < c then
if T(i +p;) = “undefined”
orW(+p;) > W()+w; then
Ti+p,)=LGHU {JL PO +p W) +w))
end;
comment: greedy phase;
"= 0;
fori :=0to g do
if T(i) # “undefined” then
begin
z:=P@)+ ZjeApj, where A is obtained by filling the residual
capacity ¢ — W (i) with items of S in the greedy way;

if 7 > z" then
begin
zh =7
XM :=LGi)UA
end

end
end.

The dynamic programming recursion is executed » times and, at each iteration,
no more than ¢ states are considered: since each state takes a constant amount
of time, the dynamic programming phase has time complexity O(ng). The final
greedy phase is performed at most ¢ times, each iteration taking O (n) time. Hence
the overall time complexity of IK(¢) is O (nq), i.e. O(n/<?) by definition of g, plus
O (nlogn) for the initial sorting.

The space required by the algorithm is determined by the [(3/¢)?] entries of
table 7. Each entry needs no more than 2 + ¢ words, where ¢ is the number of
items defining the state. If Di,»---»D;, are the scaled profits of such items, we have
t < g/min {p,,...,p; } < 3/c. Hence the overall space complexity of IK(¢) is
O (n) (for the input) + O(1/¢%).

Theorem 2.4 (Ibarra and Kim, 1975) For any instance of KP, (z — z")z < g,
where z is the optimal solution value and z" the value returned by IK(¢).

Proof. If the algorithm terminates in the initial phase with z* = Zj:l p; then z*
gives the optimal solution. Otherwise, let {i},...,i;} be the (possibly empty) set
of items with p;, > %52 in the optimal solution, i.e.

k
zZ = E pi, + &,
I=1

2.8 Approximate algorithms 55

where « is a sum of profits of items in S . Defining ™ = Zle p,andw” = ZL] Wi,
we have, at the end of the dynamic programming phase, T(p™) # “undefined”
and W(p™) < w™ (since W (i) is never increased by the algorithm). Let L(p™) =
{J1»-, jn}. (This implies that p* = ZLI pj andW(p™) = Zfl:l wj,.) Then the sum
zZ= Zf;] pj, + 3, where /3 is a sum of profits of elements in S, has been considered
in the greedy phase (when i = p~), so z" > 7. Observe that p; = 1pi/8] >3/,
from which p;6 <p; < (p; +)6 =p;6(1 +1/p;) < p;6(1 +¢/3). It follows that

pé+a<z Sﬁ*é(l+%€)+a,
Pro+3<T<po(1+50)+5,

from which

z—zZ Sp 65/3+(a—ﬁ)s%€+a—ﬂ.
z z z

Since W (p") < w™ and the items in S are ordered by decreasing p; /w; ratios, it
follows that (o« — /3) cannot’be greater than the maximum profit of an item in §,
ie. o — B < 3¢Z. Hence (z —7)/z < 3e(1+/z). Since 7 < z" and 7 < 2z, then

(z—-zM/z <.

Example 2.5 (continued)

We apply IK(c) with € = 1.

s=3;

7 =1200;
100

b=—:
3

S =0 (items with p; < ¢Z/3 =200 will be inserted in S);
T(0)=(92.0.0);
g = 36;
dynamic programming phase:
Jj=1:p, =10, T(10) = ({1}, 350, 25);
Jj=2:p,=12,T(22)= ({1, 2}, 750, 60),
T(12) = ({2}, 400, 35);
J=3: p;3=13,TQ25) =({2, 3}, 850, 80),

56 2 0-1 Knapsack problem

T(23) = ({1, 3}, 800, 70),
T(13) = ({3}, 450, 45);
j=4,...,8: 5=1{4,56,17,8};

greedy phase:

for all the entries of table T save T(23) and T (25), we have c — W (i) > Zjes w; =
37. Hence the best solution produced by such states is P(22)+) jes P =858.T(23)
gives P(23) + Zje{“ 6} Pj = 898, T(25) gives P(25) + Zje{4_6.7.8} p; = 888. It
follows that z# = 898. X" = {1, 3, 4, 5, 6}.

The solution does not change for all values ¢ > 5—'0. For ¢ < %, we have
£Z/3 < 8, soitems 1-6 are considered “large” and the algorithm finds the optimal
solution using entry 7(i) = ({1, 3, 4, 5}, 890, 100). The value of g, however, is

at least 22 500 instead of 36.]

Ibarra and Kim (1975) have also proposed a modified implementation having
improved time complexity O(nlogn) + O((1/s%)log(1/¢)), with the second term
independent of n. Further improvements have been obtained by Lawler (1979), who
used a median-finding routine (to eliminate sorting) and a more efficient scaling
technique to obtain time complexity O(nlog(1/¢) + 1/¢*) and space complexity
o+ 1/53). Magazine and Oguz (1981) have further revised the Lawler (1979)
scheme, obtaining time complexity O (nlog(n /<)) and space complexity O(n /).

A fully polynomial-time approximation scheme for the minimization version of
KP was found, independently of the Ibarra—Kim result, by Babat (1975). Its time
and space complexity of O(n*/¢) was improved to O(n?/<) by Gens and Levner
(1979).

Note that the core memory requirements of the fully polynomial-time
approximation schemes depend on ¢ and can become impractical for small values of
this parameter. On the contrary, the space complexity of Sahni’s polynomial-time
approximation scheme is O(n), independently of r.

2.8.3 Probabilistic analysis

The first probabilistic result for KP was obtained by d’Atri (1979). Assuming that
profits and weights are independently drawn from the uniform distribution over {1,
2, ..., n}, and the capacity from the uniform distribution over {1. 2. ..., kn} (k
an integer constant), he proved that there exists an O (n) time algorithm giving the
optimal solution with probability tending to 1 as n — oc.

Lueker (1982) investigated the properties of the average value of (z(C(KP))—
z(KP)) (difference between the solution value of the continuous relaxation and the
optimal solution value of KP). Assuming that profits and weights are independently
generated from the uniform distribution between 0 and 1 by a Poisson process with
n as the expected number of items, and that the capacity is ¢ = 3n for some constant
3, he proved that:

2.9 Exact algorithms for large-size problems 57

(a) if g > % then all items fit in the knapsack with probability tending to 1, so the
question is trivial;

) if g < % then the expected value of (z(C(KP)) — z(KP)) is 0(log2n/n) and
Q1 /n).

Goldberg and Marchetti-Spaccamela (1984) improved the §2(1/n) lower bound to
Q(log’n /n), thus proving that the expected value of the difference is ©(log”n /n).
In addition, they proved that, for every fixed ¢ > 0, there is a polynomial-time
algorithm which finds the optimal solution to KP with probability at least 1 — «.
(As a function of 1/¢, the running time of the algorithm is exponential.)

Meanti, Rinnooy Kan, Stougie and Vercellis (1989) have determined, for the
same probabilistic model, the expected value of the critical ratio p; /w; as a function
of 3, namely 1/1/63 for 0 < 3 < ;. 2 — 33 for ; < 3 < 1. The result has been
used by Marchetti-Spaccamela and Vercellis (1987) to analyse the probabilistic
behaviour of an on-line version of the greedy algorithm. (An on-line algorithm for
KP is required to decide whether or not to include each item in the knapsack as it
is input, i.e. as its profit and weight become known.)

The probabilistic properties of different greedy algorithms for KP have been
studied in Szkatula and Libura (1987).

29 EXACT ALGORITHMS FOR LARGE-SIZE PROBLEMS

As will be shown in Section 2.10, many instances of KP can be solved by branch-
and-bound algorithms for very high values of n. For such problems, the preliminary
sorting of the items requires, on average, a comparatively high computing time (for
example, when n > 2000 the sorting time is about 80 per cent of the total time
required by the algorithm of Section 2.5.2). In the present section we examine
algorithms which do not require preliminary sorting of all the items.

The first algorithm of this kind was presented by Balas and Zemel (1980) and
is based on the so-called “core problem”. Suppose, without loss of generality, that

pi/w; > pjsi/wjs for j =1,...,n — 1, and, for an optimal solution (x"), define
the core as

C={ji,..., 2}
where

ji=min {j :x/ =0}. ja=max {j:x/ =1};
the core problem is then defined as

maximize =) p;x;
i€

0

58 2 0-1 Knapsack problem

subject to ijxj <c-— Z w;.

jec jE{’.?Pl/W:>P/|/W/1}
xi =0 or I. forj € C.

In general, for large problems, the size of the core is a very small fraction of
n. Hence, if we knew “a priori” the values of j; and j,, we could easily solve the
complete problem by setting x = 1 for all j € J1 = {k : px /wi > pj, /w;, }. x7 =0
for all j € JO = {k : px/wx < pj,/w;,} and solving the core problem through
any branch-and-bound algorithm (so that only the items in C would have to be
sorted). Notice that /1 and JO are conceptually close to the sets of the same name
determined by reduction procedures.

Indices j; and j, cannot be “a priori” identified, but a good approximation of the
core problem can be obtained if we consider that, in most cases, given the critical
item s, we have j; > s — (J/2) and j, < s + (9/2) for some ¥ < n.

2.9.1 The Balas-Zemel algorithm

Balas and Zemel (1980) proposed the following procedure for determining, given
a prefixed value ¥, an approximate partition (/' 1.C.J0) of N. The methodology
is very close to that used in Section 2.2.2 to determine the critical item s and
the continuous solution (X;), so we only give the statements differing from the
corresponding ones in procedure CRITICAL_ ITEM:

procedure BZC:

input: n.c.(p;).(w;). v,
output: J 1.C . (X;);
begin

while partition = “no” and |JC | > ¢ do
begin
determine the median r, of the first 3 ratios p; /w; in JC;

end;
if |JC| < ¥ then
begin
C :=JC;
sort the items in C according to decreasing p; /w; ratios;
determine the critical item s and the solution (X;) of the continuous
relaxation through the Dantzig method applied to the items in C
with the residual capacity ¢
end
else
begin
letE = {e,...,e5};

2.9 Exact algorithms for large-size problems 59

o=min {j: > w, >T—c'};

s =e,;

foreachj € J1UG U {ey..... e,_1} dox; :=1;

foreachj € JOULU {e,41.....¢,} doX; :=0;

X 1= (6 = Dje i mp\ (s} WD/ Ws3

define C as a sorted subset of JC such that |C| = ¢ and
s is contained, if possible, in the middle third of C, and
correspondingly enlarge set J 1

end

end.

Determining the median of the first three ratios (instead of that of all the ratios)
in JC increases the time complexity of the algorithm to O(n?), but is indicated in
Balas and Zemel (1980) as the method giving the best experimental results. They
had also conjectured that the expected size of the core problem is constant, and
experimentally determined it as ¥ = 25. The conjecture has been contradicted by
Goldberg and Marchetti-Spaccamela (1984), who proved that the expected core
problem size grows (very slowly) with n.

The Balas—Zemel method. also makes use of a heuristic procedure H and a
reduction procedure R. These can be summarized as follows:

procedure H:
input: C.J 1;
output: z. (x;);
begin
given an approximate core problem C and a set J 1 of items j such that x; is
fixed to 1, find an approximate solution for C by using dominance relations
between the items;

define the corresponding approximate solution (x;), and its value z, for KP
end.

procedure R:

input: C;

output: J 1. J(';

begin

fix as many variables of C as possible by applying the reduction test of

algorithm FPDHR, then that of algorithm IKR (see Section 2.7), modified
so as to compute an upper bound on the continuous solution value when
the items are not sorted;

define subsets J 1’ and J(/, containing the variables fixed, respectively, to 1

andto 0
end.

The Balas—Zemel idea is first to solve, without sorting, the continuous relaxation
of KP, thus determining the Dantzig upper bound (see Section 2.2.1), and then
searching for heuristic solutions of approximate core problems giving the upper

60 2 0-1 Knapsack problem

bound value for KP. When such attempts fail, the reduced problem is solved
through an exact procedure. The algorithm can be outlined as follows (y is a
given threshold value for which Balas and Zemel used ¥ = 50).

procedure BZ:
input: n.c.(p;). (w;). ¥.7;
output: z. (x;);

begin
call BZC ;
2€ =30 pixys
callH ;
if z=[z¢| then return;
C ={l..... n};
call R;
J1:=J1"
JO:=J0;
C :=C\(J1UJ0) (comment: new core);
if |C| > + then
begin
callH;
if z=|z°] then return;
call R;
Jl:=J1UJ1;
JO:=JOoUuJ0O;

C :=C\(J 1" UJ0') (comment: reduced core);
end;
sort the items in C according to decreasing p; /w; ratios;
exactly solve the core problem through the Zoltners (1978) algorithm;
define the corresponding values of z and (x;) for KP
end.

Two effective algorithms for solving KP without sorting all the items have been
derived from the Balas—Zemel idea by Fayard and Plateau (1982) and Martello and
Toth (1988).

2.9.2 The Fayard-Plateau algorithm

The algorithm, published together with an effective Fortran implementation (see
Fayard and Plateau (1982)), can be briefly described as follows.

procedure FP:
input: n.c.(p;). (w));
output: z. (x;);
begin

N :={l..... n};

2.9 Exact algorithms for large-size problems 61

use a procedure similar to CRITICAL. ITEM (see Section 2.2.2) to determine
the critical item s and the subset /1 C N such that, in the continuous
solution of KP, x; =1 forj € J1;

cC:=c— Zje“wj;
z¢ = ies1Pi +Cps [Ws;
apply the greedy algorithm (without sorting) to the items in N\J 1 with the
residual capacity ¢, and let (x;) (j € N\J 1) be the approximate solution
found;
z:= Zje]lpf T 2 ien\1 PiXis
if z=|z¢] then return ;
apply reduction algorithm FPDHR (see Section 2.7), defining sets J 1’ and
JO';
C =N\ " UJ0') (comment: reduced problem);
sort the items in C according to increasing values of | ;| = | p; — w;ps/ws|;
exactly solve the reduced problem through a specific enumerative technique;
define the corresponding values of z and (x;) for KP
end.

2.9.3 The Martello-Toth algorithm
The Martello and Toth (1988) algorithm can be sketched as follows.

Step 1. Partition N into J1.J0 and C through a modification of the Balas—Zemel
method. Sort the items in C.

Step 2. Exactly solve the core problem, thus obtaining an approximate solution
for KP, and compute upper bound Ug (see Section 2.3.3). If its value
equals that of the approximate solution then this is clearly optimal: stop.
Otherwise

Step 3. Reduce KP with no further sorting: if all variables x; such that j € J1
or j € JO are fixed (respectively to 1 and to 0), then we have it that C
is the exact core, so the approximate solution of Step 2 is optimal: stop.
Otherwise

Step 4. Sort the items corresponding to variables not fixed by reduction and exactly
solve the corresponding problem.

The algorithm improves upon the previous works in four main respects:

(a) the approximate solution determined at Step 2 is more precise (often optimal);
this is obtained through more careful definition of the approximate core and
through exact (instead of heuristic) solution of the corresponding problem;

(b) there is a higher probability that such an approximate solution can be proved

62 2 0-1 Knapsack problem

to be optimal either at Step 2 (because of a tighter upper bound computation)
or at Step 3 (missing in previous works);

(c) the procedures for determining the approximate core (Step 1) and reducing KP
(Step 3) have been implemented more efficiently;

(d) the exact solution of the subproblems (Steps 2 and 4) has been obtained by
adapting an effective branch-and-bound algorithm (procedure MT1 of Section
2.5.2).

Step 1

The procedure to determine the approximate core problem receives in input four
parameters: ¥ (desired core problem size), a, 3 (tolerances) and n (bound on the
number of iterations). It returns a partition (J/ 1,C .J0) of N, where C defines an
approximate core problem having residual capacity ¢ =c¢ — 3, ;; w;, such that
(i) 1= <[C] < (1+B)Y,

(ii) ZjeC w;, >¢ >0,

(iil) max {pi/wi 1k € J0} <p;j/w; <min {pi/w; 1k €J1} forallj € C.

J 1 and JO are initialized to empty, and C to N. At any iteration we try to move
elements from N to J1 or JO, until |C| is inside the prefixed range. Following
Balas and Zemel (1980), this is obtained by partitioning (through a tentative value
A) set C into three sets of items j such that p; /w; is less than X (set L), equal to A
(set E) or greater than A (set G). Three possibilities are then considered, according
to the value of the current residual capacity ¢:

(a) Zjeq w; <T< ZjeGL_JE wj,.i.e?., A =pg/wstif | E| is large enough, the desired
core is defined; otherwise A is increased or decreased, according to the values
of |G| and | L|, so that | C| results closer to the desired size at the next iteration;

(®) > egwi > T, ie, A < ps/wstif [G] is large enough we move the elements
of LUE from C to JO and increase \; otherwise we decrease A so that, at the
next iteration, |G| results larger;

(©) Y jecue Wi < T, i, A > pg/wstif |L] is large enough we move the elements
of GUE from C to J 1 and decrease \; otherwise we increase A so that, at the
next iteration, |L| results larger.

In the following description of procedure CORE, M 3(S) denotes the median of
the profit/weight ratios of the first, last and middle element of S. If the desired
C is not obtained within 7 iterations, execution is halted and the current partition
(J1.C.J0) is returned. In this case, however, condition (i) above is not satisfied,
i.e. | C| is not inside the prefixed range.

2.9 Exact algorithms for large-size problems

procedure CORE:

input: n.c.(p;). (wj). 9. . 8. m;
output: J1.C.J0;

begin
J1:=0;
JO:=0;
C:={1..... n}
C:=c;
k :=0;
A=M3(C),
while |C| > (1+3)¥ and k < 1 do

begin
G:={jeC :pj/w > A}
L:={jeC:pj/w <A}
E:={j €C:pj/wi=A}
=Z/€GWI’
=c'+ ieEWis
if ¢’ <T < c¢” then
if |[E| > (1 — a)¥ then
begin
letE ={e..... et
o=min {j:Y I w, >T—c'}
S =e,;
C ={e,.....e/} with r.t such that
t —r+1is as close as possible to ¢
and (¢ +r)/2 to s;
JO:=JOULU {e4..... e };
J1:=J1UGU/{e..... er—1}

i)

Gﬁ

end
else

if GUE|< ¥then A:=M3(L)

else)\ :=M3(G)

else
if ¢/ > T then
if |G| < (1—a))then A:=M3(L)
else
begin
JO:=JOULUE;
C =G;
A:=M3(C)
end
else
if |L| < (1 —a)V then X :=M3(G)
else
begin
J1=J1UGUE;
C:=L;

ti=c-c";

63

64 2 0-1 Knapsack problem

A:=M3(C)
end;
k=k+1
end
end.

The heaviest computations in the “while” loop (partitioning of C and definition
of ¢’ and ¢”) require O(n) time. Hence, if 5 is a prefixed constant, the procedure
runs in linear time.

Steps 2,4

Exact solutions (£;) of the core problem and of the reduced problem are obtained
through procedure MT1 of Section 2.5.2, modified so as also to compute, if
required, the value u of upper bound Us (Section 2.3.3) for KP. We refer to this
procedure as MT1’ and call it by giving the sets C (free items) and J 1 (items j
such that x; is fixed to 1).

procedure MT1’:
input: n.c.(p;).(w;).C.J 1, bound,
output: (£)). u;
begin
define the sub-instance KP’ consisting of the items in C with residual capacity
€= Ljen Wi
if bound = “no” then call MT1 for KP’
else call MT1 for KP’ with determination of u = Us;
let (£;) be the solution vector returned by MT1
end.

Step 3

Reduction without sorting is obtained through the following procedure, which
receives in input the partition determined at Step 1 (with only the items in C
sorted according to decreasing p; /w; ratios) and the value z" of the approximate
solution found at Step 2. The procedure defines sets J1 and JO according to the
same rules as in procedure MTR (Section 2.7), but computing weaker bounds u;)

and uj‘ when the current critical item 5 is not in C.

procedure MTR':
input: n.c.(p;). (w;).z".J1.C,J0;
output: J1.J0;
begin

comment: it is assumed that the items in C are 1,2.....f (f =

| C|), sorted according to decreasing p; /w; ratios;
C—= 2 enWis
jes1Pis

C =
pi=

2.9 Exact algorithms for large-size problems 65

forj := 1to f do compute w; = > ~/_ w; and p; = _/_, pi:
find, through binary search, s € C such that w,_| < ¢ < wy;
foreachj e J1U{l..... s} do
if ¢+ wi < Wf then
begin
find, through binary search, 5 € C such that
wi_1 < E+Wj < Ws;
= E+WJ‘ — Ws_1,
P =P = pj +P5_y +max ([Tpsa /e
| ps — (W5 — Ops_1/ws—1]);
" i=max zh.p —p;+Ps_))
end
else
begin
uj0 =p —p;+Ds+ (T +w; —Wppr/wrl;
2t i=max z".p - p; +p))
end;
foreachj € JOU {s..... f}do
if c —w; >w, then
begin
find, through binary search, 5 € C such that
Wi_1 <C—wj <wg,
=C — Wi — Ws_1;
u; ==p+p;j+ps_; +max ([CPss1/Wss1] .-
| ps — (ws — Ops_1/ws_1]);
" i=max z".p +p; +ps_))
end
else
begin
u' = |p+p+@—w)pi/wi;
if ¢ —w; > 0then z" :=max (z".p +p))
end;
={j€eJoU{s..... o) <zMy
Jl={jeJluf{l.... shiul <zh)
end.

= ol

=
(e

The heaviest computations are involved in the two “for each” loops: for O (n)
times a binary search, of time complexity O(log|C |), is performed. The overall
time complexity is thus O(nlog|C|), i.e. O(n) for fixed |C|.

Algorithm

The algorithm exactly solves KP through Steps 1-4, unless the size of core C
determined at Step 1 is too large. If this is the case, the solution is obtained

66 2 0-1 Knapsack problem

through standard sorting, reduction and branch-and-bound. On input, the items are
not assumed to be sorted.

procedure MT2:
input: n.c.(p;).w)). 9. 0.8, n;
output: z. (x;);
begin
forj:=1ton dox; :=0;
comment: Step 1;

call CORE;
if |C| < (1— a)n then
begin

sort the items in C by decreasing p; /w; ratios;
comment: Step 2;
bound = “yes”;

call MT1’;

B .
zn = Zje]lp/+ jec PiXjs
if z* = u then

foreachj c J1U{k € C : % =1} dox; :=1
else (comment: Step 3)
begin
call MTR';
if J1 DJ1andJ0 D JO then
foreachj cJ1U{ke€C : % =1}dox; =1
else (comment: Step 4)
begin _
C:={l..... n\J 1UJ0);
sort the items in C according to
decreasing p; /w; ratios;

bound := “no”;
J1:=J1;
call MT1’ ;
foreachj € JIU{k €C: & =1}doy =1
end
end
end
else (comment: standard solution)
begin
sort all the items according to decreasing p; /w; ratios;
call MTR;
"=
C:={l..... n\J 1UJ0);
bound:= “no”;
call MT1’;

foreachj c J1U{k €C : % =1} dox; =1
end;

2.10 Computational experiments 67

z = Y P
if z < z" then
begin
define the solution vector (x;) corresponding to z";
z:=z"
end

end.

On the basis of the computational experiments reported in the next section, the
four parameters needed by MT2 have been determined as

9 { n if n < 200,
“l2yn otherwise;

a=02;
8=1.0;
n =20.

The Fortran implementation of MT2 is included in the present volume.

2.10 COMPUTATIONAL EXPERIMENTS

In this section we analyse the experimental behaviour of exact and approximate
algorithms for KP on sets of randomly generated test problems. Since the difficulty
of such problems is greatly affected by the correlation between profits and weights,
we consider three randomly generated data sets:

uncorrelated: p; and w; uniformly random in [1, v];
weakly correlated: w; uniformly random in [1, v],
p; uniformly random in [w; —r. w; +r];
strongly correlated: w; uniformly random in [1, v],
pi=w; +r.

Increasing correlation means decreasing value of the difference max ; {p; /w;} —
min; { p; /w;}, hence increasing expected difficulty of the corresponding problems.
According to our experience, weakly correlated problems are closer to real world
situations.

For each data set we consider two values of the capacity: ¢ = 2v and
¢ =053, w;. In the first case the optimal solution contains very few items,
so the generated instances are expected to be easier than in the second case, where
about half of the items are in the optimal solution. (Further increasing the value of
¢ does not significantly increase the computing times.)

68 2 0-1 Knapsack problem
2.10.1 Exact algorithms

We give separate tables for small-size problems (n < 200) and large-size problems
(n > 500).
We compare the Fortran IV implementations of the following algorithms:
HS = Horowitz and Sahni (1974), Section 2.5.1;
MTR+HS = HS preceded by reduction procedure MTR of Section 2.7;
NA = Nauss (1976), with its own reduction procedure;
MTI1 = Martello and Toth (1977a), Section 2.5.2;
MTR+MTI1 = Martello and Toth (1977a) preceded by MTR;
MTR+DPT = Toth (1980), Section 2.6.3, preceded by MTR;

BZ = Balas and Zemel (1980), Section 2.9.1, with its own reduction
procedure;

FP = Fayard and Plateau (1982), Section 2.9.2, with its own reduction
procedure;

MT2 = Martello and Toth (1988), Section 2.9.3, with MTR and MTR'.

NA, MTI1, FP and MT2 are published codes, whose characteristics are given
in Table 2.1. HS, MTR and DPT have been coded by us. For BZ we give the
computing times presented by the authors.

Table 2.1 Fortran codes for KP

Core Number of
Authors memory statements List
Nauss (1976) 8n 280 Available from the author
Martello and Toth (1977a) 8n 280 This volume (also in
Martello and Toth (1978))
Fayard and Plateau (1982) Tn 600 In Fayard and Plateau (1982)
Martello and Toth (1988) 8n 1400 This volume

All runs (except those of Table 2.8) were executed on a CDC-Cyber 730. For
each data set, value of ¢ and value of #, the tables give the average running time,
expressed in seconds, computed over 20 problem instances. Since Balas and Zemel
(1980) give times obtained on a CDC-6600, which we verified to be at least two
times faster than the CDC-Cyber 730 on problems of this kind, the times given in
the tables for BZ are those reported by the authors multiplied by 2.

Code FP includes its own sorting procedure. The sortings needed by HS, NA,
MT1, DPT and MT2 were obtained through a subroutine (included in MT2), derived

2.10 Computational experiments 69

Table 2.2 Sorting times. CDC-Cyber 730 in seconds. Average times over 20 problems

n 50 100 200 500 1000 2000 5000 10000
time 0.008 0.018 0.041 0.114 0.250 0.529 1.416 3.010

Table 2.3 Uncorrelated problems: p, and w; uniformly random in [1,100]. CDC-Cyber 730
in seconds. Average times over 20 problems

c n HS MTR NA MTI1 MTR FP MTR
+HS +MTI1 +DPT
50 0.022 0.013 0.015 0.015 0.012 0.013 0.013
200 100 0.039 0.024 0.025 0.026 0.025 0.018 0.029
200 0.081 0.050 0.055 0.051 0.050 0.032 0.055
n 50 0.031 0.016 0.015 0.016 0.013 0.013 0.020
05 Z w; 100 0.075 0.028 0.029 0.030 0.026 0.021 0.043
Jj=1 200 0.237 0.065 0.073 0.068 0.057 0.053 0.090

Table 2.4 Weakly correlated problems: w, uniformly random in [1,100], p; in [w;—10,
w,+10]. CDC-Cyber 730 in seconds. Average times over 20 problems

c n HS MTR NA MT1 MTR FP MTR
+HS +MT1 +DPT

50 0.031 0.018 0.019 0.017 0.014 0.016 0.022

200 100 0.049 0.029 0.038 0.032 0.024 0.023 0.041

200 0.091 0.052 0.060 0.055 0.048 0.030 0.066

n 50 0.038 0.025 0.035 0.022 0.020 0.021 0.071
055 w; 100 0.079 0.042 0.086 0.040 0.031 0.039 0.158
Jj=1 200 0.185 0.070 0.151 0.069 0.055 0.057 0.223

Table 2.5 Strongly correlated problems: w, uniformly random in [1,100], p; = w; + 10.
CDC-Cyber 730 in seconds. Average times over 20 problems

c n HS MTR NA MTI MTR FP MTR
+HS +MT1 +DPT

50 0.165 0.101 0.117 0.028 0.025 0.047 0.041

200 100 1.035 0.392 0.259 0.052 0.047 0.096 0.070
200 3584 2785 3.595 0.367 0.311 0.928 0.111

n 50 time time time 4.870 4.019 17.895 0.370
05w 100 — — — time time time 1.409

Jj=1 200 — — — — — — 3.936

70 2 0-1 Knapsack problem

from subroutine SORTZV of the CERN Library, whose experimental behaviour
is given in Table 2.2. All the times in the following tables include sorting and
reduction times.

Tables 2.3, 2.4 and 2.5 compare algorithms HS, MTR+HS, NA, MT],
MTR+MT]1, FP and MTR+DPT on small-size problems (we do not give the times
of MT2, which are almost equal to those of MTR+MT1). For all data sets, v = 100
and r = 10. Table 2.3 refers to uncorrelated problems, Table 2.4 to weakly correlated
problems. All algorithms solved the problems very quickly with the exception of HS
and, for weakly correlated problems, MTR+DPT. MT1 is only slightly improved
by previous application of MTR, contrary to what happens for HS. Table 2.5 refers
to strongly correlated problems. Because of the high times generally involved,
a time limit of 500 seconds was assigned to each algorithm for solution of the
60 problems generated for each value of ¢. The dynamic programming approach
appears clearly superior to all branch-and-bound algorithms (among which MT1
has the best performance).

For large-size instances we do not consider strongly correlated problems, because
of the impractical times involved. Tables 2.6 and 2.7 compare algorithms MT]I,
BZ, FP and MT?2. Dynamic programming is not considered because of excessive
memory requirements, HS and NA because of clear inferiority. The problems were
generated with v = 1000, r = 100 and ¢ = 0.5 "_, w;.

FP is fast for n < 2000 but very slow for n > 5000, while BZ has the opposite
behaviour. MT2 has about the same times as FP for n < 2000, the same times
as BZ for n = 5000, and slightly higher than BZ for n = 10000, so it can
be considered, on average, the best code. MT1, which is not designed for large

Table 2.6 Uncorrelated problems: p; and w, uniformly random in [1,1000]; ¢ = 0. SZ W
CDC-Cyber 730 in seconds. Average times over 20 problems

n MT1 BZ FP MT2
500 0.199 — 0.104 0.157
1000 0.381 0.372 0.188 0.258
2000 0.787 0.606 0.358 0.462
5000 1.993 0.958 1.745 0.982

10000 4.265 1.514 7.661 1.979

Table 2.7 Weakly correlated problems: w, uniformly random in [1,1000], p, in [w,—100,
w; + 100]; ¢ = 0. SZ =1 Wj. CDC-Cyber 730 in seconds. Average times over 20 problems

n MT1 BZ FP MT2
500 0.367 — 0.185 0.209
1000 0.663 0.588 0.271 0.293
2000 1.080 0.586 0.404 0.491
5000 2.188 0.744 1.782 0.771

10000 3.856 1.018 19.481 1.608

2.10 Computational experiments 71

Table 2.8 Algorithm MT2. w, uniformly random in [1,1000]; ¢ = 0.5 Z;:l w,.
HP 9000/840 in seconds. Average times over 20 problems

Uncorrelated problems: Weakly correlated problems:
n p, uniformly random p, uniformly random
in [1,1000] in [w, — 100, w, + 100]
50 0.008 0.015
100 0.016 0.038
200 0.025 0.070
500 0.067 0.076
1000 0.122 0.160
2000 0.220 0.260
5000 0515 0414
10000 0.872 0.739
20000 1.507 1.330
30000 2.222 3.474
40000 2.835 2.664
50000 3.562 3492
60 000 4.185 504.935
70000 4.731 4.644
80000 5.176 5515
90000 5.723 6.108
100 000 7.001 7.046
150000 9.739 time limit
200000 14.372 —
250000 17.135 —

problems, is generally the worst algorithm. However, about 80 per cent of its time
is spent in sorting, so its use can be convenient when several problems are to be
solved for the same item set and different values of c¢. A situation of this kind
arises for multiple knapsack problems, as will be seen in Section 6.4.

n = 10000 is the highest value obtainable with the CDC-Cyber 730 computer
available at the University of Bologna, because of a core memory limitation of 100
Kwords. Hence, we experimented the computational behaviour of MT2 for higher
values of n on an HP 9000/840 with 10 Mbytes available. We used the Fortran
compiler with option “-0”, producing an object with no special optimization. The
results obtained for uncorrelated and weakly correlated problems are shown in
Table 2.8. Uncorrelated problems were solved up to n = 250000 with very regular
average times, growing less than linearly with n. Weakly correlated problems show
an almost linear growing rate, but less regularity; for high values of n, certain
instances required extremely high times (for n = 60000 one of the instances took
almost 3 hours CPU time, for n = 150000 execution was halted after 4 hours).

2.10.2 Approximate algorithms

In Tables 2.9-2.11 we experimentally compare the polynomial-time approximation
scheme of Sahni (Section 2.8.1) and a heuristic version of algorithm MT2

72

2 0-1 Knapsack problem

Table 2.9 Uncorrelated problems: p; and w, uniformly random in [1,1000]; ¢ = 0.5 Z};l w,.
HP 9000/840 in seconds. Average times (average percentage errors) over 20 problems

MT?2 approx.
time (% error)

S(0)
time (% error)

S(1)
time (% error)

S(2)
time (% error)

50

100

200
500
1000
2000
5000
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
150000
200000
250000

0.004(0.10569)
0.009(0.05345)
0.015(0.03294)
0.029(0.00767)
0.058(0.00418)
0.117(0.00251)
0.296(0.00182)
0.641(0.00076)
1.248(0.00032)
1.873(0.00016)
2.696(0.00016)
3.399(0.00011)
3.993(0.00009)
4.652(0.00003)
5.307(0.00008)
5.842(0.00016)
6.865(0.00007)
9.592(0.00005)
13.223(0.00008)
16.688(0.00010)

0.005(5.36560)
0.009(2.25800)
0.017(1.15739)
0.049(0.49120)
0.105(0.21213)
0.224(0.10531)
0.618(0.05540)
1.320(0.02045)
2.852(0.00897)
4.363(0.00786)
6.472(0.00521)
8.071(0.00428)
9.778(0.00403)
11.420(0.00301)
13.075(0.00329)
14.658(0.00247)
16.347(0.00231)
25.357(0.00156)
35.050(0.00144)
44.725(0.00094)

0.017(5.13968)
0.060(2.21412)
0.210(1.12217)
1.242(0.47978)
4.894(0.20748)
19.545(0.10338)

125.510(0.05488)

0.319(5.05006)
2.454(2.19447)
19.376(1.11691)

299.593(0.47577)

(Section 2.9.3). The fully polynomial-time approximation schemes are not included
since a limited series of experiments showed a dramatic inferiority of these
algorithms (see also Section 4.4.2, where this trend is confirmed for the subset-sum

problem).

The heuristic version of MT2 was obtained by halting execution at the end of
Step 2, and returning the approximate solution of value z”. In order to obtain a
small core problem, procedure CORE was executed with parameters

n = 200.

As for the Sahni scheme S(k), we experimented S(0), S(1) and S(2), since the
time complexity O(n**!) makes the algorithm impractical for k > 3.

Tables 2.9, 2.10 and 2.11 give the results for the three data sets, with v =
1000. r =100 and ¢ = 0.5 Z;;l w;. For each approximate algorithm, we give (in
brackets) the average percentage error. This was computed as 100(z —z¢)/z, where
z¢ is the approximate solution value and z either the optimal solution value (when

2.10 Computational experiments 73

Table 2.10 Weakly correlated problems: w, uniformly random in [1,1000], p, in [w, — 100,
w, + 100]; ¢ = 0.5 Z;;l w,. HP 9000/840 in seconds. Average times (average percentage

errors) over 20 problems

MT?2 approx.
time (% error)

S(0)
time (% error)

S(1)
time (% error)

S(2)
time (% error)

50 0.006(0.17208) 0.004(2.13512) 0.017(1.81004) 0.302(1.77572)
100 0.008(0.04296) 0.008(0.87730) 0.055(0.78573) 2.281(0.76862)
200 0.013(0.06922) 0.015(0.31819) 0.194(0.28838) 17.779(0.28216)
500 0.033(0.01174) 0.046(0.14959) 1.139(0.14300) 273.118(0.14135)

1000 0.058(0.00774) 0.103(0.08226) 4.432(0.07842) —
2000 0.114(0.00589) 0.222(0.03740) 17.626(0.03634) —
5000 0.312(0.00407) 0.619(0.01445) 113.527(0.01413) —

10000 0.645(0.00261) 1.324(0.00630) — —

20000 1.297(0.00155) 2.802(0.00312) — —

30000 1.943(0.00104) 4.372(0.00216) — —

40000 2.667(0.00052) 6.432(0.00177) — —

50000 3.374(0.00036) 8.013(0.00139) — —

60000 4.544(0.00028) 9.377(0.00095) — —

70000 4.662(0.00040) 11.069(0.00083) — —

80000 6.029(0.00031) 13.041(0.00070) — —

90000 6.249(0.00040) 15.662(0.00071) — —
100000 6.618(0.00017) 16.358(0.00050) — —
150000 10.231(0.00019) 25.530(0.00041) — —
200000 12.991(0.00004) 35.230(0.00027) — —
250000 16.062(0.00009) 45.234(0.00020) — —

Table 2.11 Strongly correlated problems: w, uniformly random in [1,1000], p, = w, + 100;
c=05 Zj’;l w,. HP 9000/840 in seconds. Average times (average percentage errors) over 20
problems

MT?2 approx. S(0) S(1) S(2)
n time (% error) time (% error) time (% error) time (% error)

50 0.008(1.50585) 0.003(3.25234) 0.019(1.68977) 0.340(0.74661)
100 0.008(0.81601) 0.007(1.43595) 0.061(0.73186) 2.574(0.39229)
200 0.015(0.51026) 0.017(0.77478) 0.226(0.40653) 20.877(0.26096)
500 0.029(0.27305) 0.046(0.33453) 1.372(0.17836) 316.804(0.09783)

1000 0.059(0.10765) 0.111(0.15991) 5.388(0.08409) —
2000 0.119(0.06850) 0.236(0.08866) 21.173(0.05196) —
5000 0.315(0.02148) 0.614(0.02740) 132.973(0.01421) —

10000 0.679(0.01384) 1.341(0.01573) — —

20000 1.266(0.00559) 2.787(0.00694) — —

30000 1.879(0.00512) 4.333(0.00504) — —

40000 2.603(0.00292) 6.022(0.00372) — —

50000 3.182(0.00240) 7.598(0.00239) — —

60 000 3.795(0.00224) 9.194(0.00252) — —

70 000 4.529(0.00167) 10.760(0.00214) — —

80000 5.090(0.00154) 12.324(0.00185) — —

90000 5.595(0.00115) 13.968(0.00179) — —
100000 6.320(0.00132) 15.569(0.00165) — —

150 000 9.141(0.00083) 24.583(0.00082) — —
200000 12.005(0.00077) 34.400(0.00083) — —
250000 15.950(0.00055) 44.001(0.00044) — —

74 2 0-1 Knapsack problem

available) or an upper bound determined by the approximate version of MT2.
The execution of each approximate algorithm was halted as soon as the average
computing time exceeded 100 seconds.

Table 2.9 shows that it is not convenient to heuristically solve uncorrelated
problems, since the exact version of MT2 requires about the same times as its
approximate version, which in turn dominates S(k). The same consideration holds
for weakly correlated problems with n < 50000 (Table 2.10); for n > 50000, the
approximate version of MT2 dominates S(0), while S(1) and S(2) have impractical
time requirements. Table 2.11 shows that the approximate version of MT2; which
dominates S(0), must be recommended for large-size strongly correlated problems;
for small values of n, S(1) and S(2) can produce better approximations but require
dramatically higher computing times.

The Fortran code corresponding to MT2, included in the volume, allows use
either of the exact or the approximate version through an input parameter.

2.11 FACETS OF THE KNAPSACK POLYTOPE

In this section we give an outline of the main results obtained in the study of the
knapsack polytope. Since such results did not lead, up to now, to the design of
effective algorithms for KP, the purpose of the present section is only to introduce
the reader to the principal polyhedral concepts and to indicate the relevant literature
concerning knapsack problems. Detailed introductions to the theory of polyhedra
can be found in Bachem and Groétschel (1982), Pulleyblank (1983), Schrijver (1986)
and Nemhauser and Wolsey (1988), among others.

We start with some basic definitions. Given a vector a € R" and a scalar
a € R, the set {x € R" :) aix; = ao} is called a hyperplane. A
hyperplane defines two halfspaces, namely {x € R" : Z;Zl ajx; < ap} and
{x € R" : 3"/_ajx; > ao}. The intersection of finitely many halfspaces, when it
is bounded and non-empty, is called a polyfope. Hence, polytopes can be written
as P ={x e R": Z;:l ajxj < ajp fori =1,...,r}; alternatively, they can
be described as the convex hull of finitely many points, i.e. P = conv (§), with
S C R" and | S| finite. m points x'..... x™ € R" are called affinely independent if
the equations Y ;" Mx* =0 and 5., Ax =0 imply A =0 fork=1.....m.
The dimension of a polytope P C R". dim (P), is |P| — 1, where P is the largest
subset of affinely independent points of P. A subset F of a polytope P C R" is
called a face of P if there exists an inequality ", @;x; < ao which is satisfied by
any x € P and such that F = {x € P : 3_7_, @;x; = ap}. In other words, a face is the
intersection of the polytope and a hyperplane defining a halfspace containing the
polytope itself. A face F of P such that dim (F) = dim (P)~—1 is called a facet of P.
Hence an inequality Z;'ZI a;x; < ag defines a facet of P if (a) it is satisfied by any
x € P, and (b) it is satisfied with equality by exactly dim (P) affinely independent
x € P. The set of inequalities defining all the distinct facets of a polytope P

2.11 Facets of the knapsack polytope 75

constitutes the minimal inequality representation of P. Hence the importance of
facets in order to apply linear programming techniques to combinatorial problems.
Coming to KP, its constraint set (conditions (2.2), (2.3)) defines the knapsack

polytope

K = conv xeR":ijxjgc, xj €{0.1} forj=1,...,n
j=1

It is easy to verify that, with assumption (2.6) (w; < ¢ for all j),
dim(K) =n.

In fact (a) dim(K) < n (obvious), and (b) dim(K) > n, since K contains the
n + 1 affinely independent points x* (k = 0.....n), where x® = (0.....0) and x*
corresponds to unit vector ¢, (k =1..... n). The two main classes of facets of K
are based on minimal covers and (1, k)-configurations.

AsetS CN={l..... n} is called a cover for K if

ij >C.

j€S

A cover is called minimal if

Z wj <c forany i €S.
jes\ii}

The set E(S)=S US’, where
S'={j € N\S : w; > max;es {w;}},

is called the extension of S to N. Let S be the family of all minimal covers S for K.
Balas and Jeroslow (1972) have shown that constraints (2.2), (2.3) are equivalent
to the set of canonical inequalities

> x5 <IS|—1 forall €S, (2.46)
JEE(S)

in the sense that x € {0, 1}" satisfies (2.2), (2.3) if and only if it satisfies (2.46).
Balas (1975), Hammer, Johnson and Peled (1975) and Wolsey (1975) have given
necessary and sufficient conditions for a canonical inequality to be a facet of K.

A rich family of facets of K can be obtained by “lifting” facets of lower
dimensional polytopes. Given a minimal cover S for K, let Ks C R!S! denote
the | S |-dimensional polytope

76 2 0-1 Knapsack problem

Ks =conv ¢ x € {0.1}!5! : ijxj <cy, (2.47)
jes

i.e. the subset of K containing only points x such that x; =0 for all j € N\S. It
is known (see, for instance, Balas (1975), Padberg (1975), Wolsey (1975)) that the

inequality Z
x < [S[=1
jes

defines a facet of the lower dimensional polytope K. Nemhauser and Trotter (1974)
and Padberg (1975) have given a sequential lifting procedure to determine integer
coefficients J; (j € N\S) such that the inequality

ZX/ + Z ﬂijS‘S‘—l

Jj€Ss JEN\S

defines a facet of K. Calculating these coefficients requires solution of a sequence
of |[N\S| 0-1 knapsack problems. Furthermore, the facet obtained depends on the
sequence in which indices j € N\S are considered. Zemel (1978) and Balas and
Zemel (1978) have given a characterization of the entire class of facets associated
with minimal covers, and a simultaneous lifting procedure to obtain them. These
facets have in general fractional coefficients (those with integer coefficients coincide
with the facets produced by sequential lifting).

A richer class of facetial inequalities of K is given by (1, k)-configurations
(Padberg, 1979, 1980). Given a subset M C N and t € N\M, define the set
S =MU{t}.S isa(l,k)-configuration for K if (a) 3", w; < ¢ and (b) QU{r}
is a minimal cover for every Q C M with | Q| =k, where k is any given integer
satisfying 2 < k < |M|. Note that if k = |M|, a (1, k)-configuration is a minimal
cover for K (and, conversely, any minimal cover S can be expressed as a (1, k)-
configuration, with k = | S| — 1, for any ¢ € §). Padberg (1980) proved that, given
a (1, k)-configuration S = M U{t} of K, the complete and irredundant set of facets
of the lower dimensional polytope Ks (see 2.47) is given by the inequalities

r—k+1x + Z xp <,
JES(r)

where S(r) C M is any subset of cardinality r, and r is any integer satisfying
k < r < |M]|. Sequential or simultaneous lifting procedures can then be used to
obtain facets of the knapsack polytope K.

Recently, Gottlieb and Rao (1988) have studied a class of facets of K, containing
fractional coefficients, which can be derived from disjoint and overlapping minimal
covers and (1, k)-configurations. For such class, they have given necessary and
sufficient conditions which can easily be verified without use of the computationally

2.12 The multiple-choice knapsack problem 77

heavy simultaneous lifting procedures. The computational complexity of lifted
inequalities has been analysed by Hartvigsen and Zemel (1987) and Zemel (1988).

2.12 THE MULTIPLE-CHOICE KNAPSACK PROBLEM

The Multiple-Choice Knapsack Problem (MCKP), also known as the Knapsack
Problem with Generalized Upper Bound (GUB) Constraints, is a 0-1 knapsack
problem in which a partition N;..... N, of the item set N is given, and it is
required that exactly one item per subset is selected. Formally,

maximize z = Z DX (2.48)
j=1

subject to ijxj <c. (2.49)
j=1
dx=lk=1..r. (2.50)
JEN,
x;=0o0rl. jEN={l.... n}:UNk. (2.51)

assuming

NhﬂNk=® forallh #k

The problem is NP-hard, since any instance of KP, having r elements of profit p;
and weightw; (j =1..... r) and capacity c, is equivalent to the instance of MCKP
obtained by setting n =2r, p; =w; =0 forj =r+1,...,2r and Ny = {k. r +k}
fork=1,...,r.

MCKP can be solved in pseudo-polynomial time through dynamic programming
as follows. Given a pair of integers / (1 </ <r)and ¢ (0 < ¢ < ¢), consider the
sub-instance of MCKP consisting of subsets Nj..... N, and capacity ¢. Let f;(¢)
denote its optimal solution value, i.e.

fi1(¢) = max ijxj :ijxj gé,ij =lfork=1,...,1,

jEN jeN J €Nk

x,=0or1 forjenN

78 2 0-1 Knapsack problem

where N = |J /_;Nk, and assume that f;(¢) = —oc if the sub-instance has no
feasible solution. Let

wy=min{w; :j € Ny} fork=1..... r;

clearly,

—oC for¢ =0..... w,—1;

fi@)=

max {p; :j € Ny.w; <&} foré=wy..... c

forl=2..... r we then have
—oc foré=0.....5 4, Wi — 1
fi@)= max{ fi_1(& —w)+p; :j EN.w; <}
for ¢ = Zi_l We.o..., c

The optimal solution is the state corresponding to f,(c). If we have >, _, Wi > ¢
then the instance has no feasible solution, and we obtain f,(¢) = —oc. For each
value of /, the above computation requires O (| N;|c) operations, so the overall time
complexity of the method is O (nc).

The execution of any algorithm for MCKP can be conveniently preceded by a
reduction phase, using the following

Dominance Criterion 2.1. For any Ny(k = 1..... r), if there exist two items
i.j € Ny such that
pi<p; and w; >w;

then there exists an optimal solution to MCKP in which x; = 0, i.e. item i is
dominated.

Proof. Obvious from (2.50). (]

As is the case for KP, dynamic programming can solve only instances of limited
size. Larger instances are generally solved through branch-and-bound algorithms,
based on the exact solution of the continuous relaxation of the problem, C (MCKP),
defined by (2.48)—(2.50) and

0<x5 <1 jeN. (2.52)

An instance of C(MCKP) can be further reduced through the following

Dominance Criterion 2.2. For any Ny(k = 1..... r), if there exist three items
h.i.j € Ny such that

2.12 The multiple-choice knapsack problem 79

wy < w; <w; and Pi — Ph gpj_pi (2.53)
Wi — Wy Wi —w;

then there exists an optimal solution to C(MCKP) in which x; = 0, i.e. item i is
dominated.

We do not give a formal proof of this criterion. However, it can be intuitively
verified by representing the items of N, as in Figure 2.8 and observing that

(i) after application of Dominance Criterion 2.1, the remaining items can only
correspond to points in the shaded triangles;

(ii) for C (MCKP), all points i of each triangle are dominated by the pair of
vertices A.j (since for any value x; # 0, there can be found a combination of
values x;.x; producing a higher profit).

Hence

(iii) after application of Dominance Criterion 2.2, only those items remain which

profits
Dj J 2777778
Di
Ph h %

:

Wi w; w; weights

Figure 2.8 Representation of items for Dominance Criteria 2.1 and 2.2

80 ' 2 0-1 Knapsack problem

correspond to the vertices defining the segments of the piecewise (concave)
linear function.

In addition, by analysing the structure of the Linear Program corresponding to
C(MCKP), it is not difficult to see that

(iv) in the optimal solution of C (MCKP), r — 1 variables (corresponding to items
in » — 1 different subsets) have value 1; for the remaining subset, either one
variable has value 1 or two variables (corresponding to consecutive vertices
in Figure 2.8) have a fractional value.

Formal proofs of all the above properties can be found, e.g., in Sinha and Zoltners
(1979).

As previously mentioned, the reduction and optimal solution of C(MCKP) play
a central role in all branch-and-bound algorithms for MCKP.

The reduction, based on Dominance Criteria 2.1 and 2.2, is obtained (see, e.g.,
Sinha and Zoltners, (1979)) by sorting the items in each subset according to
increasing weights and then applying the criteria. The time complexity for this
phase is clearly O(3",_, | Ni[log| Ni|), i.e. O(nlog max{|Ni|: 1 <k <r}).

O(nlogr) algorithms for the solution of the reduced C(MCKP) instance have
been presented by Sinha and Zoltners (1979) and Glover and Klingman (1979).
Zemel (1980) has improved the time complexity for this second phase to O (n). A
further improvement has been obtained by Dudzinski and Walukiewicz (1984b),
who have presented an O(rlogz(n /r)) algorithm.

The reduction phase is clearly the heaviest part of the process. However, in a
branch-and-bound algorithm for MCKP, it is performed only at the root node, while
the second phase must be iterated during execution.

Algorithms for solving C(MCKP) in O(n) time, without sorting and reducing
the items, have been independently developed by Dyer (1984) and Zemel (1984).
These results, however, have not been used, so far, in branch-and-bound algorithms
for MCKP, since the reduction phase is essential for the effective solution of the
problem.

Branch-and-bound algorithms for MCKP have been presented by Nauss (1978),
Sinha and Zoltners (1979), Armstrong, Kung, Sinha and Zoltners (1983), Dyer,
Kayal and Walker (1984), Dudzinski and Walukiewicz (1984b, 1987).

The Fortran implementation of the Dyer, Kayal and Walker (1984) algorithm
can be obtained from Professor Martin E. Dyer.

3
Bounded knapsack problem

3.1 INTRODUCTION

The Bounded Knapsack Problem (BKP) is: given n item types and a knapsack, with
p; = profit of an item of type j;
w; = weight of an item of type j;

b; = upper bound on the availability of items of type j;
¢ = capacity of the knapsack,

select a number x; (j =1, ... ,n) of items of each type so as to
maximize z = ijxj A3.1)
j=t
subject to ijxj <ec, (3.2)
j=1

0 <xj <bj and integer, j €N ={1,...,n}. (3.3)

BKP is a generalization of the 0-1 knapsack problem (Chapter 2), in which b; =1
forallj € N.
We will assume, without loss of generality, that

pj»w;j,b; and c are positive integers, (3.4)
ijWj >c, (3-5)
j=1

bjw; <cforjeN. (3.6)

Violation of assumption (3.4) can be handled through a straightforward
adaptation of the Glover (1965) method used for the 0-1 knapsack problem

81

82 3 Bounded knapsack problem

(Section 2.1). If assumption (3.5) is violated then we have the trivial solution
x; = b; for all j € N, while for each j violating (3.6) we can replace b; with
lc¢/wj]. Also, the way followed in Section 2.1 to transform minimization into
maximization forms can be immediately extended to BKP.

Unless otherwise specified, we will suppose that the item types are ordered so
that

Wi T wa W

A close connection between the bounded and the 0-1 knapsack problems is self-
evident, so all the mathematical and algorithmic techniques analysed in Chapter 2
could be extended to the present case. The literature on BKP, however, is not
comparable to that on the binary case, especially considering the last decade.
The main reason for such a phenomenon is, in our opinion, the possibility of
transforming BKP into an equivalent 0-1 form with a generally limited increase in
the number of variables, and hence effectively solving BKP through algorithms for
the 0-1 knapsack problem.

In the following sections we give the transformation technique (Section 3.2)
and consider in detail some of the basic results concerning BKP (Section 3.3).
The algorithmic aspects of the problem are briefly examined in Section 3.4. We
do not give detailed descriptions of the algorithms since the computational results
of Section 3.5 show that the last generation of algorithms for the 0-1 knapsack
problem, when applied to transformed instances of BKP, outperforms the (older)
specialized algorithms for the problem.

The final section is devoted to the special case of BKP in which b; = +oc for all
Jj € N (Unbounded Knapsack Problem). For this case, interesting theoretical results
have been obtained. In addition, contrary to what happens for BKP, specialized
algorithms usually give the best results.

3.2 TRANSFORMATION INTO A 0-1 KNAPSACK PROBLEM

The following algorithm transforms a BKP, as defined by (3.1)-(3.3), into an
equivalent 0-1 knapsack problem with

fi = number of variables;
(p;j) = profit vector;
(W;) = weight vector;

¢ =c = capacity.

For each item-type j of BKP, we introduce a series of |log,b; | items, whose profits
and weights are, respectively, (p;.w;), (2p;.2w;), (4p;, 4w;), ... , and one item
such that the total weight (resp. profit) of the new items equals b;w; (resp. b;p;).

3.2 Transformation into a 0-1 knapsack problem 83

procedure TBO1:
input: n. (p;). w;). (b;);
output: 7. (p;). (W));

begin
a:=0;
forj :=1ton do
begin
B:=0;
k:=1;
repeat
it 5+k > b; thenk :=b; — 3;
A=n+1;
Pn = kpj;
W;, = ij;
Bi=pB+k;
k =2k
until 3 = b;
end
end.

The transformed problem has 7 =) [log,(b; + 1)] binary variables, hence

O(#) gives the time complexity of the procedure. To see that the transformed

problem is equivalent to the original one, let &;,..... %, (g = [log,y(b; +1)]) be the
binary variables introduced for x; and notice that item j, corresponds to n, items

of type j, where

2h-1 if h<gq;
M = g—15i-1 :
by — > 27 if h=gq.

Hence x; = 5°7_, n,%;, can take any integer value between 0 and b;.

Notice that the transformation introduces 29 binary combinations, i.e. 29 —(b; +1)
redundant representations of possible x; values (the values from n, to 277! — 1
have a double representation). Since, however, ¢ is the minimum number of
binary variables needed to represent the integers from O to b;, any alternative
transformation must introduce the same number of redundancies.

Example 3.1
Consider the instance of BKP defined by

n =3;
(p;) =0, 15, 11);
wj)) =(C1, 3, 5)
(b)) =(6, 4, 2);
¢ =10.

84 3 Bounded knapsack problem
Applying TBO1, we get the equivalent 0-1 form:

A

A =8;

(p;) = (10,20, 30, 15, 30, 15, 11, 11);

) =(C1, 2, 3, 3, 6, 3, 5 5)

Items 1 to 3 correspond to the first item type, with double representation of the value
x1 = 3. Items 4 to 6 correspond to the second item type, with double representation

of the values x; =1, x, =2 and x; = 3. Items 7 and 8 correspond to the third item
type, with double representation of the value x3 = 1.[]

3.3 UPPER BOUNDS AND APPROXIMATE ALGORITHMS

3.3.1 Upper bounds

The optimal solution X of the continuous relaxation of BKP, defined by (3.1), (3.2)
and

0<x; <b, jEN,

can be derived in a straightforward way from Theorem 2.1. Assume that the items
are sorted according to (3.7) and let

J
s=min{j:2biwi >c} (3.8)
i=1
be the critical item type. Then

X; =b; forj=1,...,s -1,

x;=0 forj=s+1,...,n.
_ c
Xy = —.

Wy

where

]
Il

s—1
c— E biw;.
j=1
Hence the optimal continuous solution value is

s—1 p
-V

E bjpj +CW—,

j=1 s

3.3 Upper bounds and approximate algorithms 85

and an upper bound for BKP is

s—1
U= bp+ [EP—SJ . (3.9)
j=1 s
A tighter bound has been derived by Martello and Toth (1977d) from
Theorem 2.2. Let
s—1 —
c
s ijpj + [;J Ds (3.10)
J=1
be the total profit obtained by selecting b; items of type j forj =1, ...,5s —1, and

|*s| items of type s. The corresponding residual capacity is

Then
U=z + [C'MJ G.11)

is an upper bound on the solution value we can obtain if no further items of type
s are selected, while selecting at least one additional item of this type produces
upper bound

Ul=z'+ [ps — (W, — c')ps—‘EJ. (3.12)
Ws_1
Hence
Uy, =max (U’ UY (3.13)

is an upper bound for BKP. Since from (3.9) we can write U, =z’ + [¢'ps/w;],
U® < U, is immediate, while U! < U, is proved by the same algebraic
manipulations as those used in Theorem 2.2 (ii). U, < U, then follows.

The time complexity for the computation of U; or U, is O(n) if the item types
are already sorted. If this is not the case, the computation can still be done in
O(n) time through an immediate adaptation of procedure CRITICAL. ITEM of
Section 2.2.2.

Determining the continuous solution of BKP in 0-1 form still produces bound
U,. The same does not hold for U,, since (3.11) and (3.12) explicitly consider
the nature of BKP hence U and U are tighter than the corresponding values
obtainable from the 0-1 form.

Example 3.1 (continued)

The critical item type is s = 2. Hence

15
Ui =60+ [4 ?J = 80.

86 3 Bounded knapsack problem
11
U®=175+ [1 ?J =77

10
Ul=75+ [15—2 TJ =170;

U, =171.

Considering the problem in 0-1 form and applying (2.10) and (2.16), we would
obtain U, = U, = 80. []

Since U, < Uy < z' +p; < 2z, the worst-case performance ratio of U; and U,
is at most 2. To see that p(U,) = p(U,) = 2, consider the series of problems with
n=3 pi=wj=kandb;=1forallj,and c =2k — 1: we have U; = U =2k - 1
and z =k, so U;/z and U,/z can be arbitrarily close to 2 for k sufficiently large.

All the bounds introduced in Section 2.3 for the 0-1 knapsack problem can
be generalized to obtain upper bounds for BKP. This could be done either in a
straightforward way, by applying the formulae of Section 2.3 to BKP in 0-1 form
(as was done for U,) or, better, by exploiting the peculiar nature of the problem
(as was done for U,). This second approach, not yet dealt with in the literature,
could be a promising direction of research.

3.3.2 Approximate algorithms

Value z’ defined by (3.10) is an immediate feasible solution value for BKP. Let
z be the optimal solution value. Then the absolute error z — z’ is bounded by p;
(since z’ < z < Uy < z’ +py), while the ratio z’/z can be arbitrarily close to 0
(consider, e.g., n =2, py=w; =1, pp=wy =k, by=by=1and c =k, for k
sufficiently large). The worst-case performance ratio, however, can be improved to
1/2 by computing (still in O(n) time)

2" = max (z'.ps)

as the approximate solution value. In fact, z < z’ +p, < 2z", and a tightness
example is:n =2, py=w; =1, pp=wy =k, by =1, by =2 and ¢ = 2k, for k
sufficiently large.

If the item types are sorted according to (3.7), a more effective greedy algorithm
is the following:

procedure GREEDYB:
input: n.c.(p;). W)). (b));
output: z¢ (x;);
begin

C:=c;

z8 :=0);

3.4 Exact algorithms 87

Jjr=1;
forj :=1ton do
begin
x; =min(|c/w;]. bj);
C =C — WjXj;
z8 =28 +pix;;
if bjp; > bj+p;~ then j~ :=j
end;
if bj-p;+ > z¢ then
begin
z8 = bj'pj:;
forj :==1to ndox; :=0;
X = bj'
end
end.

The worst-case performance ratio is %, since trivially z& > z* and the series of

problems with n =3, py=w; =1, pp=wy=p3=w3=k, b =by=b3 =1 and
¢ = 2k proves the tightness. The time complexity is clearly O(n), plus O (nlogn)
for sorting.)

Transforming BKP into an equivalent 0-1 problem and then applying any of the
polynomial-time, or fully polynomial-time approximation schemes of Section 2.8,
we obtain approximate solutions obeying the worst-case bounds defined for such
schemes. In fact the two formulations of any instance have, of course, the
same optimal value, and the solution determined by the scheme for the O-1
formulation preserves feasibility and value for the bounded formulation. Hence
the worst-case performance ratio is maintained. The time and space complexities
of the resulting schemes are given by those in Section 2.8, with n replaced by
A =370 [logy(b; + D]

In this case too, better results could be obtained by defining approximation
schemes explicitly based on the specific structure of BKP.

3.4 EXACT ALGORITHMS

In this section we briefly outline the most important algorithms from the literature
for the exact solution of BKP. The reason for not giving a detailed description
of these methods is the fact that they are generally useless for effective solution
of the problem. In fact, the high level of sophistication of the algorithms for the
0-1 knapsack problem has not been followed in the algorithmic approach to BKP,
so the most effective way to solve bounded knapsack problems nowadays is to
transform them into 0-1 form and then apply one of the algorithms of Section 2.9.
(This is confirmed by the experimental results we present in the next section.) Of
course, a possible direction of research could be the definition of more effective
specific algorithms for BKP through adaptation of the results of Chapter 2.

88 3 Bounded knapsack problem
3.4.1 Dynamic programming

Let f,,(¢) denote the optimal solution value of the sub-instance of BKP defined by
item types 1,...,m and capacity ¢ (1 <m < n. 0 < ¢ < c). Clearly

0 for ¢=0,...,w —1;

1 for ¢=wi.....2w; — 1;
hi@) =
(b] — 1)p1 for ¢ = (b1 - 1)W1 b1W1 -1

b[[)] for f‘=b1W1....,C.

fm (&) can then be computed, by considering increasing values of m from 2 to n,
and, for each m, increasing values of ¢ from O to ¢, as

(@) = max{ f,,_ (& — wy) +Ip,, : I integer, 0 <! < min(by,,|¢/Wn])}.

The optimal solution value of BKP is given by f,(c). For each m, O(cby)
operations are necessary to compute f,,(¢) (¢ =0, ... ,c). Hence the overall time
complexity for solving BKP is O(c) _, by), i.e. O (nc?) in the worst case. The
space complexity is O(nc), since the solution vector corresponding to each f,, (&)
must also be stored.

The basic recursion above has been improved on, among others, by Gilmore
and Gomory (1966) and Nemhauser and Ullmann (1969). Dynamic programming,
however, can only solve problems of very limited size. (Nemhauser and Ullmann
(1969) report that their algorithm required 74 seconds to solve, on an IBM-7094,
a problem instance with n = 50 and b; = 2 for each j.)

3.4.2 Branch-and-bound

Martello and Toth (1977d) adapted procedure MT1 of Section 2.5.2 to BKP.
The resulting depth-first branch-and-bound algorithm, which incorporates upper
bound U, of Section 3.3.1, is not described here, but could easily be derived from
procedure MTUI presented in Section 3.6.2 for the unbounded knapsack problem.
(See also a note by Aittoniemi and Oehlandt (1985).)

Ingargiola and Korsh (1977) presented a reduction algorithm related to the one
in Ingargiola and Korsh (1973) (Section 2.7) and imbedded it into a branch-search
algorithm related to the one in Greenberg and Hegerich (1970) (Section 2.5). (See
also a note by Martello and Toth (1980c).)

Bulfin, Parker and Shetty (1979) have proposed a different branch-and-bound
strategy, incorporating penalties in order to improve the bounding phase.

Aittoniemi (1982) gives an experimental comparison of the above algorithms,
indicating the Martello and Toth (1977d) one as the most effective. As already

3.5 Computational experiments 89

mentioned, however, all these methods are generally outperformed by algorithm
MT2 (Section 2.9.3) applied to the transformed O-1 instance. The Fortran
implementation of this algorithm (MTB2) is included in the present volume.

3.5 COMPUTATIONAL EXPERIMENTS

In Tables 3.1, 3.2 and 3.3 we analyse the experimental behaviour of exact and
approximate algorithms for BKP through data sets similar to those used for the 0-1
knapsack problem, i.e.:

uncorrelated: p; and w; uniformly random in [1,1000];

weakly correlated: w; uniformly random in [1,1000],
p; uniformly random in [w; — 100. w; + 100];

strongly correlated: w; uniformly random in [1,1000],
pi=w;+ 100.

For all data sets, the values b; are uniformly random in [5,10], and c is set to
0.5 Z;;l b;jw; (so about half of the items are in the optimal solution).
The tables compare the Fortran IV implementations of the following methods:

Table 3.1 Uncorrelated problems: p; and w; uniformly random in [1,1000], &; uniformly
random in {5,10]; ¢ = 0.5 Z;’zl bw;. HP 9000/840 in seconds. Average times (average
percentage errors) over 20 problems

MTB IK MTB2 MTB2 GREEDYB
approximate

n time time time time (% error) time (% error)
25 0.034 0.022 0.023 0.011(0.09851) 0.001(0.09721)
50 0.121 0.115 0.049 0.020(0.04506) 0.005(0.04775)
100 0.464 0.149 0.084 0.031(0.02271) 0.012(0.01354)
200 1.761 0.462 0.143 0.061(0.01166) 0.023(0.00809)
500 9.705 5.220 0.395 0.158(0.00446) 0.065(0.00246)
1000 36.270 11.288 0.583 0.324(0.00079) 0.138(0.00071)
2000 88.201 33.490 1.107 0.649(0.00097) 0.272(0.00033)
5000 159.213 106.550 2272 1.585(0.00028) 0.745(0.00008)
10000 — — 3.599 3.055(0.00031) 1.568(0.00003)
20000 — — 6.689 6.195(0.00011) 3.332(0.00001)
30000 — — 9.445 9.692(0.00010) 5.144(0.00000)
40000 — — 14.119 13.443(0.00003) 7.080(0.00000)
50000 — — 14.836 15.298(0.00005) 8.942(0.00000)

90

3 Bounded knapsack problem

Table 3.2 Weakly correlated problems: w, uniformly random in [1,1000], p; in [w, — 100,

w, + 100], b, uniformly random in [5,10]; ¢ = 0.5 Zj":l bjw,. HP 90007840 in seconds.
Average times (average percentage errors) over 20 problems
MTB IK MTB2 MTB2 GREEDYB
approximate
n time time time time (% error) time (% error)
25 0.051 0.206 0.075 0.012(0.08072) 0.001(0.13047)
50 0.150 0.855 0.199 0.019(0.03975) 0.007(0.04214)
100 0.478 3.425 0.207 0.037(0.01384) 0.014(0.01374)
200 1.350 8.795 0.354 0.061(0.00901) 0.021(0.00461)
500 6.232 25.840 0.532 0.147(0.00414) 0.057(0.00126)
1000 16.697 59.182 0.574 0.292(0.00228) 0.125(0.00054)
2000 39.707 57.566 0.810 0.568(0.00242) 0.265(0.00015)
5000 131.670 131.212 1.829 1.572(0.00062) 0.725(0.00004)
10000 — — 3.359 3.052(0.00037) 1.572(0.00001)
20000 — — 6.973 6.633(0.00021) 3.293(0.00000)
30000 — — 9.785 9.326(0.00016) 5.089(0.00000)
40000 — — 6435.178 12.182(0.00017) 6.966(0.00000)
50000 — — — 15.473(0.00010) 8.533(0.00000)

Table 3.3 Strongly correlated problems: w, uniformly random in [1,1000], p, = w, + 100,
b, uniformly random in [5,10]; ¢ = 0.5 27:1 b;w;. HP 9000/840 in seconds. Average times
(average percentage errors) over 20 problems

MTB IK MTB2 MTRB2 GREEDYB
approximate

n time time time time (% error) time (% error)
25 3.319 216.864 23.091 0.012(0.36225) 0.002(0.62104)
50 279.782 — 4513.810 0.018(0.14509) 0.005(0.22967)
100 — — — 0.037(0.14295) 0.010(0.16482)
200 — — — 0.066(0.07570) 0.023(0.08262)
500 — — — 0.139(0.03866) 0.059(0.03919)
1000 — — — 0.283(0.01688) 0.123(0.01701)
2000 — — — 0.589(0.00818) 0.265(0.00822)
5000 — — — 1.529(0.00352) 0.756(0.00352)
10000 — — — 3.133(0.00181) 1.558(0.00181)
20000 — — — 5.794(0.00064) 3.169(0.00064)
30000 — — — 9.847(0.00054) 5.065(0.00054)
40000 — — — 12.058(0.00042) 6.705(0.00042)
50000 — — — 15.265(0.00034) 8.603(0.00034)

3.6 A special case: the unbounded knapsack problem 91

exact algorithms:
MTB = Martello and Toth (1977d);
IK = Ingargiola and Korsh (1977);

MTB2 = Transformation through procedure TBO1 (Section 3.2) and solution
through algorithm MT?2 (Section 2.9.3);

approximate algorithms:
MTB2 approximate = MTB2 with heuristic version of MT2 (Section 2.10.2);
GREEDYB = greedy algorithm (Section 3.3.2).

All runs were executed on an HP 9000/840 (with option “-0” for the Fortran
compiler), with values of »n ranging from 25 to 50000 (for n > 50000, the size of
the transformed instances could exceed the memory limit). The tables give average
times and percentage errors computed over sets of 20 instances each. The errors
are computed as 100(z — z¢)/z, where z¢ is the approximate solution value, and z
either the optimal solution value (when available) or upper bound U, introduced in
Section 3.3.1. The execution of each algorithm was halted as soon as the average
time exceeded 100 seconds.

MTB?2 is clearly the most efficient exact algorithm for uncorrelated and weakly
correlated problems. Optimal solution of strongly correlated problems appears to be
practically impossible. As for the heuristic algorithms, GREEDYB dominates the
approximate version of MTB2 for uncorrelated and weakly correlated problems,
but produces higher errors for strongly correlated problems with n < 2000. The
anomalous entry in Table 3.2 (MTB2 exact, # = 40000) was produced by an
instance requiring more than 34 hours!

3.6 A SPECIAL CASE: THE UNBOUNDED KNAPSACK
PROBLEM

In this section we consider the problem arising from BKP when an unlimited
number of items of each type is available, i.e. the Unbounded Knapsack Problem
(UKP)

maximize z = px; (3.14)
j=1

subject to ijxj <c. (3.15)
j=1

xj > 0 and integer, j €N ={l,... . n}. (3.16)

92 3 Bounded knapsack problem

The problem remains NP-hard, as proved in Lueker (1975) by transformation
from subset-sum. However, it can be solved in polynomial time in the n = 2 case
(Hirschberg and Wong (1976), Kannan (1980)). Notice that the result is not trivial,
since a naive algorithm, testing x; =i. x, = [(c — iw)/w,]| for i taking on integer
values from 0 to |c/w;|, would require a time O(c), exponential in the input
length.

UKP can clearly be formulated (and solved) by defining an equivalent BKP
with b; = |c¢/w;]| for j = 1,...,n, but algorithms for BKP generally perform
rather poorly in instances of this kind. Also transformation into an equivalent 0-1
knapsack problem is possible (through a straightforward adaptation of the method of
Section 3.2), but usually impractical since the number of resulting binary variables
(Z;’=l [log,(|c/wj] + 1)]) is generally too elevated for practical solution of the
problem.

We maintain assumptions (3.4) and (3.7), while (3.6) transforms into

w; <c¢ forj €N 3.17

and (3.5) is satisfied by any instance of UKP.

3.6.1 Upper bounds and approximate algorithms
The optimal solution of the continuous relaxation of UKP, defined by (3.14), (3.15)
and

x; > 0. JEN,

isx;=c/wi,x;=0forj=2,...,n, and provides the trivial upper bound

By also imposing X; < |c¢/wi |, which must hold in any integer solution, the
continuous solution is
Xy =1—/1>
wi
0

X;= forj=3,...,n,
_ c
Xy = —,
W)
where
C = c(mod wy). (3.18)

This provides the counterpart of upper bound U, of Section 3.3.1, i.e.

3.6 A special case: the unbounded knapsack problem 93

U = [W%Jpl + {Ei—iJ. (3.19)

(Note that the critical item type is always s = 2.)
The counterpart of the improved upper bound U, is

U =max (U°. UY). (3.20)
where

, c 4
Zi=|—|p1+|— | p2 (3.21)

wi \p)
¢’ = ¢(mod wy), (3.22)
Ud=z'+ [c"’iJ, (3.23)

w3
Ul=z'+ [pz—(wz—c')p—lJ. (3.24)
wi

In this case, however, we can exploit the fact that s = 2 to obtain a better bound.
Remember (see Section 3.3.1) that U'! is an upper bound on the solution value we
can obtain if at least |c/w,] + 1 items of type 2 are selected. Notice now that this
can be done only if at least [(w, — ¢’)/w,]| items of type 1 are removed from the
solution corresponding to z’, and that ¢’ + [(w, — ¢’)/w;|w, units of capacity are
then available for the items of type 2. Hence, a valid upper bound can be obtained
by replacing U' with

Y ot
Ul=z'+ [(c’+ [wz ¢ 1 wl) P _ [Wz ¢ .‘le. (3.25)
wi w2 wi

Furthermore, T < U' since, with ¢’ + [(wy — ') /wi]wi > wa, T' is obtained
by “moving” a greater number of capacity units from items of type 1 to (worse)
items of type 2. We have thus proved the following

Theorem 3.1 (Martello and Toth, 1990a)
Us =max(U°.T . (3.26)

where U® and U ! are defined by (3.18), (3.21)-(3.23) and (3.25), is an upper bound
for UKP and, for any instance, U3 < U,.

The time complexity for the computation of Uy, U;, U, and Usj is O(n), since
only the three largest ratios p; /w; are needed.

94 3 Bounded knapsack problem

Example 3.2
Consider the instance of UKP defined by

n =3;
(pj) =1(20,5, 1)
(w;) = (10,5, 3);
c =39.

The upper bounds are

Uy =78.

5
U1=60+\\9§J=69
0 1
U"=65+ 45 = 66;

20
U'=65+ [5— IEJ = 68;

U, = 68.

— 1 5 1

1 _ _ Z =2 - i
7 =5+ (o0] 10) £ =[] 2] -
U3 =66. []

Since Uz < U; < Uy < Uy < z' +p; <2z, the worst-case performance ratio of
all bounds is at most 2. To see that p(Up) = p(U,) = p(Uz) = p(U3z) = 2, consider
the series of problems with n = 3. p; = w; = k for all j, and ¢ = 2k — 1: we
have Uy = U; = U, = Uz =2k — 1 and z =k, so the ratio (upper bound)/z can be
arbitrarily close to 2 for k sufficiently large.

The heuristic solution value defined by (3.21) has an interesting property.
Remember that the analogous values z’ defined for BKP (Section 3.3.2) and for the
0-1 knapsack problem (Section 2.4) can provide an arbitrarily bad approximation
of the optimal value z. For any instance of UKP, instead, we have it that z’ /z > %
The proof is immediate by observing that z — z’ < p| and, from (3.17), z' > p;.
The series of problems with n = 2. py =w; =k +1. pp =w, =k and ¢ = 2k
shows that % is tight, since z’/z = (k + 1)/(2k) can be arbitrarily close to % for k
sufficiently large. Also notice that the same property holds for the simpler heuristic
value z" = |¢ /w1 |p1.

The greedy algorithm of Section 3.3.2 can now be simplified as follows. (We
assume that the item types are sorted according to (3.7).)

3.6 A special case: the unbounded knapsack problem 95

procedure GREEDYU:
input: n.c.(p;). (w;);
output: z%. (x;);

begin
C:=c;
z8 :=0;
forj :=1ton do
begin
x; 1= |7 /w;);
cC=C— Wij;
z8 == z8 +pix;
end
end.

The time complexity of GREEDYU is O (n), plus O(nlogn) for the preliminary
sorting.

Magazine, Nemhauser and Trotter (1975) studied theoretical properties of the
greedy algorithm when applied to the minimization version of UKP. In particular,
they determined necessary and sufficient conditions for the optimality of the greedy
solution (see also Hu and Lenard (1976) for a simplified proof), and analysed
the worst-case absolute error produced by the algorithm. Ibarra and Kim (1975)
adapted their fully polynomial-time approximation scheme for the 0-1 knapsack
problem (Section 2.8.2) to UKP. The resulting scheme produces, for any fixed
¢ > 0, a solution having worst-case relative error not greater than ¢ in time
O(n + (1/e%)log(1/¢)) and space O(n + (1/¢)). Also Lawler (1979) derived from
his algorithm for the 0-1 knapsack problem (Section 2.8.2) a fully polynomial-time
approximation scheme for UKP, obtaining time and space complexity O (n+(1/¢%)).

3.6.2 Exact algorithms

An immediate recursion for computing the dynamic programming function f,,(¢)
(see Section 3.4.1), is

PN

f1(5)=[ch1 fore =0,c;

wi

Jm(€) = max { Jm—1(& = Iw,) +Ip,, : 1 integer. 0 </ < [—C—J }

W
form = 2,...,nand ¢ = 0,c.

The time complexity for determining z = f,(c) is O(nc?).
Gilmore and Gomory (1965) have observed that a better recursion for computing
fm(@), form=2,...,n,is

9 3 Bounded knapsack problem

Jm-1(2) foré¢ =0..... W — 1;
fm(é) =

max (fon—((C).fin (€ — W) +pm) foré=wy,.c,

which reduces the overall time complexity to O (nc).

Specialized dynamic programming algorithms for UKP have been given by
Gilmore and Gomory (1966), Hu (1969), Garfinkel and Nemhauser (1972),
Greenberg and Feldman (1980), Greenberg (1985, 1986). Dynamic programming,
however, is usually capable of solving only instances of limited size.

More effective algorithms, based on branch-and-bound, have been proposed by
Gilmore and Gomory (1963), Cabot (1970) and Martello and Toth (1977d). The
last one has proved to be experimentally the most effective (Martello and Toth,
1977d), and derives from algorithm MT1 for the 0-1 knapsack problem, described
in Section 2.5.2. Considerations (i) to (iii) of that section easily extend to this
algorithm, while parametric computation of upper bounds (consideration (iv)) is no
longer needed, since the current critical item type is always the next item type to
be considered. The general structure of the algorithm and the variable names used
in the following detailed description are close to those in MTI1. It is assumed that
the item types are sorted according to (3.7).

procedure MTU1:
input: n.c.(pj). W));
output: z. (x;);

begin

1. [initialize]
z:=0;
7:=0;
¢ :=c;
Pn+1 :=0;
Wpa) 1= +0C;

fork :=1tondo i :=0;
compute the upper bound U = Us on the optimal solution value;
for k :=n to 1 step —1 do compute m; = min{w; :i > k};
j=1
2. [build a new current solution]
while w; > ¢ do
if z > 7+ [¢pjs1/wj+1] thengoto Selsej :=j + I;
y = e/wil;
u = [(& = ywppjs1 /Wi |;
if z > Z +yp; +u then go to 5;
if u = 0 then go to 4;
3. [save the current solution)
¢ =¢—yw;
Z:=Z+yp;
=y;
=j+1;

\'*)

3.6 A special case: the unbounded knapsack problem

if ¢ > m;_, then go to 2;
if z > 7 then go to 5;

y =0

4. [update the best solution so far]
z =2 +ypj;
fork:=1toj — 1dox; :=%;
Xj =Y,

fork :=j +1tondox :=0;
if z = U then return ;

5. [backtrack]
find i =max{k <j: & > 0};
if no such i then return ;

¢i=0C+w;

Z:=2 — Pi;

f,' = f,' — 1;

if z > Z+ |_épi+1/w',+1j then
begin

comment: remove all items of type i;
c=0¢+ W,')?,‘;

2:=2 —p,')?,‘;

x =0 :

J=1i;

goto5

end;

ji=i+1;
if ¢ —w; > m; then go to 2;
h:=1i;

6. [try to replace one item of type i with items of type]
h=h+1;
if z > %+ |&pn/wa] then go to 5;
if w, = w; then go to 6;
if w, > w; then
begin
if w, > ¢ orz>Z+p, then go to 6;
z:=Z+pp,
for k :=1to n do x; = 3;
xp =1,
if z = U then return;
i=h;
goto6
end
else
begin
if ¢ —w, < my,_, then go to 6;
Jj=h;
goto 2
end
end.

97

98 3 Bounded knapsack problem

Example 3.3

Consider the instance of UKP defined by
n =17;

(pj) = (20,39, 52, 58, 31, 4, 5);

(wj) = (15, 30, 41, 46, 25, 4, 5);
¢ = 101.

Figure 3.1 gives the decision-tree produced by algorithm MTUI. []

The Fortran implementation of procedure MTU1 is included in that of procedure
MTU?2, which is described in the next section.

3.6.3 An exact algorithm for large-size problems

Experimental results with algorithm MTU1, reported in Martello and Toth (1977b),
show a behaviour close to that of analogous algorithms for the 0-1 knapsack
problem, i.e.: (i) in spite of its worst-case complexity, many instances of UKP can
be exactly solved within reasonable computing times, even for very large values of
n; (i) when this is possible, the sorting time is usually a very large fraction of the
total time; however, (iii) only the item types with the highest values of the ratio
pj/w; are selected for the solution, i.e. max{;j : x; > 0} < n.

The concept of core problem (Section 2.9) can be extended to UKP by recalling
that, in this case, the critical item type is always the second one. Hence, given
a UKP and supposing, without loss of generality, that p;/w;, > pj./wj. for
j=1,...,n—1, we define the core as

C={1,2,...,7n=max{j : x; > 0}}.
and the core problem as

maximize z = E DjX
jec

subject to Z wix; <c,
jec

x; > 0 and integer, JjeC.

If we knew “a priori” the value of 7, we could solve UKP by setting x; = 0 for all
Jj such that p;/w; < py/wy, determining C as {j : p;/w; > pz/wxz} and solving
the resulting core problem by sorting only the items in C. 7 cannot, of course, be
“a priori” identified, but we can determine an approximate core without sorting as
follows.

99

3.6 A special case: the unbounded knapsack problem

0000 10H=X
TE1=1

¢'¢ opdwrexyg 10§ [N.LIA 91npa201d JO 921)-UOISIII

001°0008)=x (C000009=x
1€1=2 0g1=1

[°¢ om3L]

1'10°00°09=x
671=1

(0T00009)=x
8CI=2

100 3 Bounded knapsack problem

Assuming no condition on the ratios p; /w;, we select a tentative value for pz/wx
and solve the corresponding core problem: if the solution value equals that of an
upper bound, then we have the optimum; otherwise, we reduce the variables not
in the core and, if any variables are left, we try again with a decreased tentative
value. Reduction is based on the following criterion. Let U,(j) denote upper bound
U, (g = 1.2 or 3) of Section 3.6.1 for UKP, with the additional constraint x; = 1,
i.e. an upper bound on the solution value that UKP can have if item type j is used
for the solution. If, for j not in the approximate core, we have U,(j) < z (where z
denotes the solution value of the approximate core problem), then we know that x;
must take the value 0 in any solution better than the current one. Given a tentative
value ¥ for the initial core problem size, the resulting algorithm is thus (Martello
and Toth, 1990a) the following.

procedure MTUZ2:
inPUt: n.c, (pj) (WJ) J;
output: z. (x;);

begin
k=0;
N:={12,.... n};
repeat

k =min(k +9.|N|);

find the kth largest value r in {p; /w; : j € N};

G:={j EN:p;/w; >r}

E={j €N :p/wi=r);

E := any subset of E such that |[E|=k — |G|;

C =G UE;

sort the item types in C according to decreasing p; /w; ratios;

exactly solve the core problem, using MTU1, and let z and (x;) define
the solution;

if kK = J (comment: first iteration) then

compute upper bound U3 of Section 3.6.1;
if z < Us then (comment: reduction)
for eachj € N\C do
begin
u =U(j);
if u > z then u := Us(j);
ifu <zthenN :=N\{j}
end
until z = Uz or N =C:
foreach; c {I1..... n}\C do x; :=0
end.

At each iteration, the exact solution of the core problem is obtained by first
identifying dominated item types in C, then applying algorithm MTUI1 to the

undominated item types. Dominances are identified as follows.

Definition 3.1 Given an instance of UKP, relative to item types set N, item type

3.6 A special case: the unbounded knapsack problem 101

k € N is dominated if the optimal solution value does not change when k is removed
from N.

Theorem 3.2 (Martello and Toth, 1990a) Given any instance of UKP and an item
type k, if there exists an item type j such that

w,
{—kJ pj > pe (327)
wj

then k is dominated.

Proof. Given a feasible solution in which x; = o > 0 and x; = 3, a better solution
can be obtained by setting x; = 0 and x; = 8+ |wy/w;|a. In fact: (i) the new
solution is feasible, since |wy/w;|aw; < awy; (ii) the profit produced by item
type j in the new solution is no less than that produced by item types j and & in
the given solution, since, from (3.27), |wi/w;|ap; > api. [

Corollary 3.1 All dominated item types can be efficiently eliminated from the core
as follows:

1. sort the item types according to (3.7), breaking ties so that w; < wj,;
2.forj:=1to|C|—1do
fork:=j+1to |C|doif (3.27) holds then C := C\{k}.

Proof. Condition (3.27) never holds if either p; /w; < py fwi or wy < w;. [

Hence the time complexity to eliminate the dominated item types is O (] C |?) (or
O (n?), if the original UKP is considered).

Example 3.3 (continued)

Taking ¥ = 4, the core problem is defined by:
(p;) =(20. 39. 52. 58);
(w;) = (15, 30. 41. 46).

Applying Corollary 3.1, we find that item type 1 dominates item types 2 and 4.
Applying MTUI to the resulting problem, defined by

(pj) =(20. 52);

(wj) =(15. 41).

we obtain the branch-decision tree of Figure 3.2.

102 3 Bounded knapsack problem

f:&)@
t=d1

z=132

x=(6.0) x=(4.1)

Figure 3.2 Decision-tree of procedure MTU2 for Example 3.3

The core problem solution value (z = 132) is not equal to upper bound
Us relative to the original instance without the dominated item types (Uz =
max(120 + |11 3. 120+ [(11 + [32]15)3 — [32]20]) = 133). Hence we apply
the reduction phase:

52
j=5:U,(5=31+ (100+ [1—D =132 <z

—

j=6:U(6)=4+ (120+ [72J> =132 < z;

—

2
j=7:U(D) =5+ (120+ [6%J> =132<z.

Since all the item types not in core are reduced, we conclude that the core
problem has produced the optimal solution z = 132. (x;) =4, 0, 1, 0, 0, 0, 0). (]

The initial tentative value ¥ was experimentally determined as

9 = max (100, [%J)

The Fortran implementation of algorithm MTU?2 is included in the present volume.

3.6.4 Computational experiments

Table 3.4 compares the algorithms for UKP on the same data sets of Section 3.5,
but with w; uniformly randomly generated in the range [10,1000], so as to avoid
the occurrence of trivial instances in which the item type with largest p; /w; ratio
has w; = 1 (so x; = ¢ is the optimal solution).

For all problems, ¢ was set to 0.5 "7, w; for n < 100000, to 0.1 37/, wj (in
order to avoid integer overflows) for n > 100000.

We compare the Fortran 1V implementations of algorithms MTU1 and MTU2.
The kth largest ratio p; /w; was determined through the algorithm given in Fischetti
and Martello (1988) (including Fortran implementation). All runs have been

3.6 A special case: the unbounded knapsack problem 103

Table 3.4 w, uniformly random in [10,1000]; ¢ =0. SZ *,w; for n < 100000, ¢ =0. IZ LW,
for n >100000. HP 9000/840 in seconds. Average times over 20 problems

Uncorrelated: Weakly correlated: Strongly correlated:

p, unif. random in p, unif. random in p,=w, + 100

[1,1000] [w, — 100, w, + 100]

n Sorting ~ MTUI1 MTU2 MTUI MTU2 MTUI MTU2
50 0.01 0.01 0.01 0.01 0.01 0.01 0.01
100 0.01 0.01 0.01 0.01 0.01 0.01 0.01
200 0.02 0.02 0.02 0.02 0.03 0.06 0.02
500 0.05 0.05 0.04 0.05 0.05 131.70 0.04
1000 0.11 0.11 0.07 0.11 0.08 — 0.08
2000 0.24 0.24 0.13 0.24 0.14 — 0.14
5000 0.60 0.68 0.32 0.62 0.29 — 0.35
10000 1.35 1.44 0.60 1.37 0.66 — 0.62
20000 3.21 331 123 494.93 1.18 — 1.39
30000 4.71 5.38 1.82 — 1.94 — 1.91
40000 6.12 9.67 2.73 — 248 — 2.66
50000 8.04 21.91 3.25 — 3.30 — 3.34
60000 10.53 41.11 3.90 — 371 — 4.10
70 000 12.50 17.63 4.89 — 4.50 — 4.81
80000 13.86 172.00 5.28 — 5.00 — 5.12
90000 15.56 — 5.88 — 541 — 5.68
100 000 17.96 — 5.83 — 6.22 — 5.81
150 000 27.41 — 10.05 — 10.14 — 9.95
200000 37.56 — 13.08 — 11.98 — 13.26
250000 48.55 — 17.35 — 17.52 — 17.94

executed on an HP 9000/840 with option “-

o” for the Fortran compiler. For each

data set and value of n, Table 3.4 gives the average running times (including
sorting), expressed in seconds, computed over 20 problem instances. Sorting times
are also separately shown. Execution of an algorithm was halted as soon as the
average running time exceeded 100 seconds.

The table shows that MTU2 always dominates MTU]1, and can solve very large
problems with reasonable computing time also in the case of strongly correlated
data sets. The initial value of ¢ always produced the optimal solution. With
the exception of strongly correlated data sets, MTU1 requires negligible extra
computational effort after sorting, when n < 10000. For larger values of n, the
branch-and-bound phase can become impractical. This shows that the superiority
of MTU2 (particularly evident for very large instances and for strongly correlated
problems) derives not only from the avoided sorting phase but also from application
of the dominance criterion. In fact, the number of undominated item types was
always very small and almost independent of n.

4

Subset-sum problem

4.1 INTRODUCTION

The Subset-Sum Problem (SSP) is: given a set of n items and a knapsack, with
w; = weight of item j;
¢ = capacity of the knapsack,

select a subset of the items whose total weight is closest to, without exceeding, c,

1.e.
n

maximize z =ijxj .1
j=1

subject to Zw,-xj <c, 4.2)
j=1
x;=0o0r1, JEN={1,...,n}. “.3)

where .
{ 1 if item j is selected;
X; =

0 otherwise.

The problem is related to the diophantine equation

ijxj =2, 4.4)
=1
xp=0orl, j=1,...,n, 4.5)

in the sense that the optimal solution value of SSP is the largest ¢ < ¢ for which
(4.4)—(4.5) has a solution.

SSP, which is also called the Value Independent Knapsack Problem or
Stickstacking Problem, is a particular case of the 0-1 knapsack problem
(Chapter 2)—arising when p; = w; for all j—hence, without loss of generality,
we will assume that

105

106 4 Subset-sum problem

w; and ¢ are positive integers, (4.6)
> owi>e, (4.7)
j=1

w; < ¢ forj € N. 4.8)

Violation of such assumptions can be handled as indicated in Section 2.1. -

The problem arises in situations where a quantitative target should be reached,
such that its negative deviation (or loss of, e.g., trim, space, time, money) must be
minimized and a positive deviation is not allowed. Recently, massive SSP’s have
been used in several coefficient reduction procedures for strengthening LP bounds
in general integer programming (see Dietrich and Escudero (1989a, 1989b)).

SSP can obviously be solved (either exactly or heuristically) by any of the
methods described in Chapter 2 for the 0-1 knapsack problem. It deserves, however,
specific treatment since specialized algorithms usually give much better results. A
macroscopic reason for this is the fact that all upper bounds of Sections 2.2 and
2.3 give, for SSP, the trivial value ¢ (since p;/w; = 1 for all j). SSP can be
seen, in fact, as the extreme case of correlation between profits and weights (see
Section 2.10). As a consequence, one would even expect catastrophic behaviour of
the branch-and-bound algorithms for the 0-1 knapsack problem, degenerating, for
SSP, into complete enumeration (because of the value ¢ produced, at all decision
nodes, by upper bound computations). This is not always true. In fact, as soon as
a feasible solution of value ¢ is determined, one can obviously stop execution and,
as we will see, this phenomenon often occurs for problems in which the number
of items is not too small. Also note that the reduction procedures of Section 2.7
have no effect on SSP, because of the bound’s uselessness.

We describe exact and approximate algorithms for SSP in Sections 4.2 and 4.3,
respectively, and analyse computational results in Section 4.4.

4.2 EXACT ALGORITHMS
4.2.1 Dynamic programming

Given a pair of integers m (1 <m < n)and ¢ (0 < ¢ < ¢), let f,,(¢) be the optimal
solution value of the sub-instance of SSP consisting of items 1..... m and capacity
¢. The dynamic programming recursion for computing f, (c) (optimal solution value
of SSP) can be easily derived from that given in Section 2.6 for the 0-1 knapsack
problem:

0 for ¢=0,...,w —1;

i@ ={

wy for é=wy,...,c;

4.2 Exact algorithms 107

form=2,...,n:
X Jn—1(2) for¢ =0, ... ,w, —1;
(€)= . . .
max (fr—1(8). fn_1(& —wp) +wy) foré=wy,,...,c.

The time and space complexity to compute f,(c) is thus O (nc).

Faaland (1973) has presented a specialized dynamic programming approach of
the same complexity, which is also suitable for the bounded version of SSP, defined
by (4.1), (4.2) and

0<x <b. j=1...,n,

x; integer, j=1,...,n.

The algorithm derives from a recursive technique given by Verebriusova (1904) to
determine the number of non-negative integer solutions to diophantine equations
(4.4).

Ahrens and Finke (1975) proposed a more effective approach which reduces, on
average, the time and space required to solve the problem. The method derives from
their dynamic programming algorithm for the 0-1 knapsack problem (Section 2.6.2)
and makes use of the “replacement selection” technique, described in Knuth (1973),
in order to combine the partial lists obtained by partitioning the variables into four
subsets.

Because of the large core memory requirements (the Ahrens and Finke (1975)
algorithm needs about 2"/*** words) dynamic programming can be used only for
small instances of the problem.

Martello and Toth (1984a) used “partial” dynamic programming lists to obtain
a hybrid algorithm (described in the next section) to effectively solve also large
instances of SSP. These lists are obtained through a recursion conceptually close
to procedure REC2 given in Section 2.6.1 for the 0-1 knapsack problem, but
considering only states of total weight not greater than a given value ¢ < ¢. The
particular structure of SSP produces considerabie simplifications. The undominated
states are in this case those corresponding to values of ¢ for which the diophantine
equation (4.4)—(4.5) has a solution. At stage m, the undominated states are
determined from the following information, relative to the previous stage:

s = number of states at the previous stage; 4.9)
b=2m—l; 4.10)
W 1; = total weight of the ith state ({ =1, ... ,s); “4.11)

Xl,‘ {X[,Xz,...,xm_l} fOI’i=1,...,S, (412)

108 4 Subset-sum problem

where x; defines the value of the jth variable in the solution relative to the ith state,

ie. W1; = Z;:l wix;. Vector W 1; is assumed to be ordered according to strictly
increasing values. The procedure updates values (4.9) and (4.10), and stores the
new values of (4.11) and (4.12) in (W 2,) and (X2;). Sets X 1; and X2, are encoded
as bit strings. Note that, for SSP, states having the same weight are equivalent, i.e.
dominating each other. In such situations, the algorithm stores only one state, so
vector (W 2;) results are ordered according to strictly increasing values. On input,
it is assumed that W15 =X 13 = 0.

procedure RECS:
input: s.6. (W1,). (X1;).w,.¢;
output: s.bH. (W2;). (X2);

begin
i =0
k:=0;
h=1;
Y =Wy
W5y 1= +oc;
W2() =0;
X2y :=0;
while min(y. W 1,) < ¢ do
begin
k=k+1;
if W1, <y then
begin
W2k Z=W1h;
X2k 2=X1h;
h=h+1
end
else
begin
W2, =y;
X2, :=X1;+b
end
if W2, =y then
begin
I:=1i+1;
y = W1, +w,
end
end
s:=k;
b:=2b
end.

Procedure RECS is a part of the hybrid algorithm described in the next section.
It can also be used, however, to directly solve SSP as follows.

4.2 Exact algorithms 109

procedure DPS:
input: n.c. (w));
output: z. (x;);
begin
¢ :=c;
Wiy :=0;
X1y :=0;
s:=1;
b:=2;
w 11 =W,
X1, :=1;
m:=2;
repeat
call RECS;
rename W2 and X2 as W1 and X 1, respectively;
m:=m+1
untilm >norWil; =c;
z =Wlg;
determine (x;) by decoding X 1,
end.

The time complexity of RECS is O(s). Since s is bounded by min (2" — 1.¢),
the time complexity of DPS is O (min (2"*!, nc)).

4.2.2 A hybrid algorithm

Martello and Toth (1984a) used a combination of dynamic programming and tree-
search to effectively solve SSP. Assume that the items are sorted beforehand so
that

Wi Wy > W (4.13)

The algorithm starts by applying the dynamic programming recursion to a subset
containing the last (small) items and by storing the corresponding state lists. Tree-
search is then performed on the remaining (large) items. In this way, the state
weights in the lists are small and close to each other, while, in the branch-decision
tree, the current residual capacity ¢ takes small values after few forward moves,
allowing use of the dynamic programming lists.

The algorithm starts by determining two partial state lists:

(i) given a prefixed value MA < n — 1, list (WA;.XA;). i =1, ...,SA, contains
all the undominated states induced by the last MA items;

(i) given two prefixed values MB (MA < MB < n)and ¢ (w, < T < ¢), list
(WB; . XB;). i = 1,...,SB, contains the undominated states of weight not
greater than ¢ induced by the last MB items.

110 4 Subset-sum problem

Figure 4.1, in which NA=n — MA+1 and NB =n — MB + 1, shows the states
covered by the two lists: the thick lines approximate the step functions giving, for
each item, the maximum state weight obtained at the corresponding iteration.

)
maximum

state weight

C | e e e e e e e e e e e
(WA;, XA))
(WB;:, XB;)
C |- \\
N .
I'VB NA n items
! :<— MA —
| 1 |
< MB >!

Figure 4.1 States covered by the dynamic programming lists

The following procedure determines the two lists. List (WA;,XA;) is first
determined by calling procedure RECS in reverse order, i.e. determining, for
m=n.n—1,... ,NA(= n — MA+ 1), the optimal solution value ¢,,(¢) of the sub-
instance defined by items m.m+1..... n and capacity ¢ < c. List (WB;, XB;) is then
initialized to contain those states of (WA;. XA;) whose weight is not greater than ¢,
and completed by calling RECS form =NA—1.NA—-2, ..., NB(=n—MB +1).
Note that the meaning of XA and XB is consequently altered with respect to (4.12).

procedure LISTS:
input: n.c.(w;), NA,NB.C;
output: SA. (WA)). (XA;).SB.(WB;). (XB;);

begin
comment: determine list (WA;. XA;);
¢ :=c;
W 10 = 0;
X1p:=0;
s:=1;
b:=2;
W1, =wy,;

X1, :=1;

4.2 Exact algorithms 111

m:=n-—1;
repeat
call RECS;

rename W2 and X2 as W1 and X 1, respectively;
m:=m-—1
untilm < NAorWl; =¢;
fori :=1tos do
begin
WA,‘ =W 1,';
XA,‘ =X 1,‘
end;
SA = 5;
if WAs4 < c then (comment: determine list (WB;.XB;))
begin
¢ :=¢;
determine, through binary search, i = max{i : WA; < T};
si=1i;
repeat
call RECS;
rename W2 and X2 as W1 and X 1, respectively;
m:=m—1
until m < NB;
rename W1 and X 1 as WB and XB, respectively;
SB =5
end
end.

Example 4.1
Consider the instance of SSP defined by

n =10;

(w;) =(41,34,21,20,8,7,7, 4,3, 3);
¢ = 50;

MA =4

MB = 6;
c =12.

Calling LISTS, we obtain SA =9. SB =8 and the values given in Figure 4.2.]

We can now state the overall algorithm. After having determined the dynamic
programming lists, the algorithm generates a binary decision-tree by setting £; to
lorOforj=1,...,NA— 1. Only the first NA — 1 items are considered, since all
the feasible combinations of items NA,..., n are in list (WA;.XA;). A forward

112 4 Subset-sum problem

i |WA;, XA;(decoded) | WB; XB;(decoded)
0 0 0 0 0
1 3 1 3 1
2 4 100 4 100
3 6 11 6 11
4 7 101 7 101
5 10 111 8 100000
6 11 1100 10 111
7 13 1011 11 1100
8 14 1101 12 100100
9 17 1111

Figure 42 Dynamic programming lists for Example 4.1

move starting from an item j consists in: (a) finding the first item j/ > j which
can be added to the current solution; (b) adding to the current solution a feasible
sequence j'.j' + 1, ... ,j" of consecutive items until the residual capacity ¢ is no
greater than ¢. A backtracking step consists in removing from the current solution
that item j'” which was inserted last and in performing a forward move starting
from j' + 1.

At the end of a forward move, we determine the maximum weight é of a dynamic
programming state which can be added to the current solution. This is done by
assuming the existence of two functions, A and B, to determine, respectively,

A(C) = maxoS,SSA{i : WA, < 5},
B(2,j) = maxoci<sp{i : WB; < ¢ and y} =0 for all k < j},

where (y,i) denotes the binary vector encoded in XB;. (Both A(¢) and B(¢.j) can be
implemented through binary search.) After updating of the current optimal solution
z (z := max(z,(c —)+ 8)), we proceed to the next forward move, unless we find
that the solution values of all the descendent decision nodes are dominated by
(c — &)+ 6. This happens when either the next item which we could insert is one
of the MA last items, or is one of the MB last items and the residual capacity ¢ is
no greater than ¢.

Values F; = Zj'.'zk w; (k = 1,...,n) are used to avoid forward moves when
¢ > F;» or an upper bound on the optimal solution obtainable from the move is no
greater than the value of the best solution so far.

4.2 Exact algorithms 113

procedure MTS:
input: n.c.(w;).c. MA.MB,;
output: z. (x;);
begin
1. [initialize]
NA:=n—-MA+1;
NB :=n—MB +1;
call LISTS;
zZ = WASA;
fork:=1to NA—1dox; :=0;
let (y) be the binary vector encoded in XAgy;
for k := NA to n do x; := y;;
if z = ¢ then return;
for k :=n to 1 step —1 do compute F) = Z;':k Wi
5= 0
(o

S N

fork :=1ton do %, :=0;
J=1

2. [try to avoid the next forward move]
whilew; > ¢andj < NAdoj:=j +1;
if j = NA then go to 4;
if F; < ¢ then

begin
if Z +F; > z then (comment: new optimal solution)
begin
z:=2+F;;
fork:=1toj — 1do x; :=%;
fork:=jtondox :=1;
if z = ¢ then return
end;
goto5
end;

determine, through binary search, r = min{k > j : F; < ¢&};
s =n-—-r+1;
comment: at most s items can be added to the current solution;
u:=F; —Fj; .
comment: u = ,ﬁ:;" w; = total weight of the s largest available items;
if Z+u <z then go to 5;
3. [perform a forward move]
while w; < ¢ andj <NAand ¢ > ¢ do

begin
¢=0C—wj,
Zi=2 4wy,
%=1
Ji=j+1

114 4 Subset-sum problem

4. [use the dynamic programming lists]
if ¢ < ¢ then
begin
6 .= WBg j),
flag :="b"
end
else
begin
b= WAA((.);
flag :=="a”;
ifé<candz <7+ then
begin
6= WBB((« j);
flag :="b"
end

end;
comment: 6 is the maximum additional weight obtainable from the lists;

if Z + 6 > z then (comment: update the optimal solution)
begin
z:=%+6;
fork:=1toj — 1 do x; = %;
if flag ="a” then
begin
fork:=jtoNA—-1doux, :=0;
let (yi) be the vector encoded in XA, y;
for k := NA to n do x; =y,
end
else
begin
fork :=jto NB — 1do x;, :=0;
let (y) be the vector encoded in XBg: jy;
for k :==max(NB.j) to n do x; = y;
end;
if z = ¢ then return
end;
if (¢ < wya_1 orj =NA) then go to 5;
if (¢ <wyg_j0rj >NB)and (¢ <c)thengoto5
else go to 2;
5. [backtrack]
find i =max{k <j: % =1};
if no such i then return;

¢ = +wy;
Z=2 —wy;
X% =0
ji=i+1;
goto?2

end.

4.2 Exact algorithms 115

Example 4.1 (continued)

Executing MTS, we obtain:
NA =7,

NB =35,
(Fv) = (148, 107, 73, 52, 32, 24, 17, 10, 6, 3),

the dynamic programming lists of Figure 4.2 and the branch-decision tree of Figure

43.7

z=17
x=(0.0.0.0.0.0.1.1.1.1)

=0

(£3=%4=0)

x=(0.0.1.0.1.1.1.1.0,1)

Figure 4.3 Branch-decision tree of Procedure MTS for Example 4.1

116 4 Subset-sum problem

The Fortran implementation of procedure MTS is included in that of procedure
MTSL, which is described in the next section. The parameters for the dynamic
programming lists must take into account the ‘“difficulty” of the problem. They
have been experimentally determined as the following functions of n and wmax =
max{w; }:

MA = min 2log,,wmax, 0.7n);
MB = min (2.5log,,wmax, 0.8n);

c= 1-3WNB~

These values are automatically decreased by the code corresponding to MTS
whenever the space required from the lists is larger than the available core memory.
A different hybrid algorithm for SSP can be found in Plateau and Elkihel (1985).

4.2.3 An algorithm for large-size problems

Computational experiments with algorithm MTS show (Martello and Toth, 1984a)
that many instances of SSP can be exactly solved in reasonable computing time,
since they admit a large number of feasible solutions of value ¢ (i.e. optimal).
Hence, for large-size problems, there is the possibility of finding one such solution
by considering (and sorting) only a relatively small subset of the items. This can
be obtained by defining a core problem which has a structure similar to that
introduced for the 0-1 knapsack problem (Section 2.9) but can be determined much
more efficiently as follows. Given an instance of SSP, we determine the critical
item s =min{j : Y./_, w; > ¢} and, for a prefixed value ¥ > 0, we define the
core problem

s+9
maximize Z = Z w;X; 4.14)
j=s—9
s+19 s—9—1
subject to Z wix; <¢=c— Z wj. (4.15)
j=s—9 j=1
xj=0orl. j=s—9,...,s+9. (4.16)
Then we sort items s — 9, ..., s + ¢ according to (4.13) and solve the core problem
through procedure MTS. If the solution value found is equal to & then we have an
optimal solution of value ¢ for SSP, defined by values x;_y,...,X;.y returned by

MTS, and by x; = 1 for j < s — 4, x; =0 for j > s +1J. Otherwise, we enlarge the
core problem by increasing ¥ and repeat.

4.3 Approximate algorithms 117

procedure MTSL:
input: n.c. (w;). Y. MA.MB .T;
output: z. (x;);

begin

determine s =min{j : Y./, w; > c};

repeat
a :=max(l.s — v);
b :=min(n.s + 9);
g=c-— Zj’.:l W)
sortitems a.a + 1,....b according to decreasing weights;
call MTS for the core problem (4.14)-(4.16) and let Z be the solution

value returned;

9 =29

untilZ =c¢orb—a+1=n;

lety; (j =a, ...,b) be the solution vector returned by MTS;

forj:=1toa—1dox; =1,
forj :=a to b do x; :=y;;
forj :=b+1tondox =0
z:=Z4+(c—7)

end.

A “good” input value for ¥ was experimentally determined as
¥ =45,

The Fortran implementation of MTSL is included in the present volume.

4.3 APPROXIMATE ALGORITHMS
4.3.1 Greedy algorithms

The most immediate approach to the heuristic solution of SSP is the Greedy
Algorithm, which consists in examining the items in any order and inserting each
new item into the knapsack if it fits. By defining p; = w; for all j, we can use
procedure GREEDY given in Section 2.4 for the 0-1 knapsack problem. This
procedure will consider, for SSP, the item of maximum weight alone as a possible
alternative solution, and guarantee a worst-case performance ratio equal to % No
sorting being needed, since (2.7) is satisfied by any instance of SSP, the time
complexity decreases from O (rlogn) to O(n).

For SSP, better average results can be obtained by sorting the items according
to decreasing weights. Since in this way the item of maximum weight is always
considered first (and hence inserted), we no longer need to explicitly determine it,
so a considerably simpler procedure is the following. We assume that the items are
sorted according to (4.13).

118 4 Subset-sum problem

procedure GS:
input: n.c. (w));
output: z8 . (x;);
begin
¢:=c;
forj :=1ton do
if wj > ¢thenx; =0
else

The worst-case performance ratio is still % while the time complexity grows to
O(nlogn) because of the required sorting.

An O(n?) greedy algorithm, with better worst-case performance ratio was given
by Martello and Toth (1984b). The idea is to apply the greedy algorithm n times,
by considering item sets {1,...,n}, {2,...,n}, {3,...,n}, and so on, respectively,
and take the best solution. Assuming that the items are sorted according to (4.13),
the algorithm is the following.

procedure MTGS:
input: n.c. (w));
output: z¢ X*:

begin
z8 :=0;
fori :=1ton do
begin
¢ =c;
Y =0;

forj :=i ton do
if w; < ¢ then

end;
ifc — ¢ > z% then

begin
z8 :=c — ¢
Xh=Y;
if z8 = ¢ then return

end

end
end.

4.3 Approximate algorithms 119

The time complexity of MTGS is clearly O (n?). Its worst-case performance ratio
is established by the following

Theorem 4.1 (Martello and Toth, 1984b) r(MTGS) = 3.

Proof. We will denote by z (k) the value ¢ —¢ of the solution found by the algorithm
at the kth iteration, i.e. by considering item set {k,...,n}. Let

g =max {j : 3 k <j such that item j is not selected for z(k)}. 4.17)

Q= Z wj, (4.18)
=g+l
and note that, because of (4.17), items ¢ + 1,...,n are selected for all z(k)

with £k < g + 1. Let z = Z]'.;l w;x;" be the optimal solution value and define

A={j<q 5 =1}

(a) If |A| < 2 then z&8 = z. In fact: (i) if |A| = 1, with A = {j,}, we have
z8 > z(j1) > wj, + Q = z; (iD) if |A| = 2, with A = {1, 2} and ji < jo, we
have z& > z(ji) > w;, +w;, +Q =z.

(b) If [A| > 2 then z8 > 3¢ > 3z. In fact: (i) if w, > ic, we have
28 > 2(qg —2) = wa_a +we_ 1 +wy +Q > 3¢; (i) if wy < je, there must
exist an iteration k < ¢ — 1 in which item ¢ is not selected for z(k) since
wy, >82>c— z(k), and hence we have z¢ > z(k) > ¢ — w, 2 2c.

To prove that value % is tight, consider the series of instances with n =4, w| =
2R, wo =R + 1, ws = wq = R and ¢ = 4R. The optimal solution value is z = 4R,
while z(1) =z(2)=3R +1,z(3) = 2R and z(4) = R, so z¥ = 3R + 1. Hence the
ratio z4 /z can be arbitrarily close to 4, for R sufficiently large. []

Note that, for the series of instances above, the optimal solution would have
been produced by a modified version of the algorithm applying the greedy search at
iteration k to item set {k,...,n,1,...,k — 1} (the result would be z& = z(3) = 4R).
However, adding a fifth element with ws = 1 gives rise to a series of problems
whereby z#4/z tends to % for the modified algorithm as well. Also, from the practical
point of view, computational experiments with the modified algorithm (Martello
and Toth, 1985a) show very marginal average improvements with considerably
higher computing times.

More accurate approximate solutions can obviously be obtained by using any of
the approximation schemes described for the 0-1 knapsack problem (Section 2.8).
However, by exploiting the special structure of the problem, we can obtain better

approximate solution of SSP.

120 4 Subset-sum problem
4.3.2 Polynomial-time approximation schemes

The first polynomial-time approximation scheme was given by Johnson (1974).
The idea is to identify a subset of “large” items (according to a given parameter k)
and to find the corresponding optimal solution. This is completed by applying the
greedy algorithm, for the residual capacity, to the remaining items. The algorithm
can be efficiently implemented as the following procedure (slightly different from
the original one presented by Johnson (1974)), in which k is supposed to be a
positive integer:

procedure J(k):
input: n.c. (w;);
output: z* X";
begin
L:={j:w >c/tk+D};
determine X" C L such that z* = Zjexh w; is closest to, without exceeding,
c;
t=c—z
§={1..... ni\L;
sort the items in S according to decreasing weights and let m = min;cs {w; };
while S# @ and ¢ > m do

begin
let j be the first item in S;
S =S\{j};
if w; < then
begin
¢ =8 —wy;
Xh=Xx"u{j}
end
end;
hi=c—¢

end.

The time complexity to determine the initial value of z” and the corresponding
X" through complete enumeration is O (n*), since | X"| < k. The remaining part of
the algorithm requires time O(nlogn)—for sorting—plus O(n). The overall time
complexity of J(k) is thus O(nlogn) for k = 1, and O(n*) for k > 1. The space
complexity is O(n).

Theorem 4.21(Johnson, 1974) r(Jk) =k/(k +1).

Proof. Let z = Zj cx+ W, be the optimal solution value and consider partition of
the optimal item set X* into L* = {j € X* :w; > c/(k + 1)} and §* = X*\L*.
Similarly, partition item set X" returned by J(k) into L" = {j € X" : w; > ¢ /(k+1)}

and S"* = X"\L". Since L" is the optimal subset of L = {j : w; > c/(k + 1)},

4.3 Approximate algorithms 121

initially determined by the algorithm, we have 3. ;. w; > ;. w;. Hence, if
§* C 8", we also have)" cciwj >)¢
algorithm is optimal. Otherwise, let ¢ € S* be any item not selected for S”: it
must be w, +z" > ¢, 50 2" > ¢ —w, > ckJtk +1) > zk J(k + 1).

Tightness of the k/(k + 1) bound is proved by the series of problems with
n=k+2. wy=R+1. w; =R forj > 1and ¢ = (k+1). The optimal solution value
is z = (k + DR. Since it results that L = {1}, the heuristic solution is z" = kR + 1,
so the ratio z" /z can be arbitrarily close to k /(k + 1) for R sufficiently large. []

s+ w; and the solution found by the

Note that J(1) produces the greedy solution. In fact L = {j : w; > ¢/2}, so
only one item (the one with largest weight) will be selected from L while, for the
remaining items, a greedy search is performed.

Example 4.2
Consider the instance of SSP defined by

n =9;
(w;) = (81, 80, 43, 40, 30, 26, 12, 11, 9);
¢ = 100.

MTGS gives, in O(n?) time: z" = max (93, 92, 95, 96, 88, 58, 32, 20,9) =
96, X" = {4, 5, 6}.

J(1) (as well as GS) gives, in O(nlogn) time: L = {1, 2}, z" =93, X" = {1, 7}.

J(2) gives, in O(n?) time: L = {1, 2, 3, 43, zh =95 X"=1{3,4,7}.

J(3) gives, in O(n?) time: L = {1, 2, 3, 4, 5, 6}, z" =99, X" = {3, 5, 6}.

The optimal solution z = 100. X = {2,8.9} is found by J(11). []

A better polynomial-time approximation scheme has been found by Martello
and Toth (1984b) by combining the idea in their algorithm MTGS of the previous
section with that in the Sahni (1975) scheme for the 0-1 knapsack problem (see
Section 2.8.1). For k = 2, the resulting scheme applies MTGS to the original
problem (for & = 1 the scheme is not defined but it is assumed to be the greedy
algorithm). For & = 3, it imposes each item in turn and applies MTGS to the
resulting subproblem, taking the best solution. For £ = 4, all possible item pairs
are imposed, and so on. It will be shown in Section 4.4.2 that, for practical purposes,
k =2 or 3 is enough for obtaining solutions very close to the optimum. It is assumed
that the items are sorted according to (4.13).

procedure MTSS(k):
input: n.c. (w));
output: z". X";
begin

"= 0;

122 4 Subset-sum problem

foreachM C N ={1..... n} such that |M| < k —2 do
begin
8= em Wis
if ¢ < c then
begin
call MTGS for the subproblem defined by item set
N\M and reduced capacity ¢ — g, and let z& =
Zjev w; (V. C N\M) be the solution found;
if z8 >z’ then
begin
zh =28,
Xt=MuUV;
if z/ = ¢ then return
end
end
end
end.

Since there are O (n*~2) subsets M C N of cardinality not greater than k —2, and
recalling that MTGS requires O(n?) time, the overall time complexity of MTSS(k)
is O(n*). The space complexity is clearly O(n). From Theorem 4.1 we have
r(MTSS(2)) = %. Martello and Toth (1984b) have proved that r(MTSS(3)) = g
and (k +3)/(k +4) < r(MTSS(k)) < k(k + 1)/(k(k + 1) +2) for k > 4. Fischetti
(1986) exactly determined the worst-case performance ratio of the scheme:

Theorem 4.3 (Fischetti, 1986) r(MTSS(k)) = (3k — 3)/(3k — 2).

Proof. We omit the part proving that r(MTSS(k)) > (3k — 3)/(3k — 2). Tightness
of the bound is proved by the series of problems with n = 2k, w; = 2R for
J <k, wi=R+1,w =R forj >kand c = 3k — 2)R (e.g., for k = 4,
(wj) = 2R.2R.2R.R + 1.R.R R .R). ¢ = 10R). The unique optimal solution, of
value z = (3k — 2)R, includes all the items but the kth. Performing MTSS(k), there
is no iteration in which M contains all items j < k, so the optimal solution could
be found only by a greedy search starting from an item j < k. All such searches,
however, will certainly include item k (since, at each iteration, at least two items
of weight R are not in M), hence producing a solution value not greater than the
greedy solution value z = z8 = (3k — 3)R + 1. It follows that the ratio z"/z can
be arbitrarily close to (3k — 3)/(3k — 2) for R sufficiently large. []

MTSS(k) dominates the Johnson (1974) scheme J(k), in the sense that, for
any k > 1, the time complexity of both schemes is O (n*), while r(MTSS(k)) =
Bk —3)/(3k —2) > k/(k + 1) = r(J(k)) (for example: r(MTSS(2)) = % =rdJ@a3)),
r(MTSS(3)) = % = r(J(6)), r(MTSS4)) = T96 = r(J(9))). Also note that, for
increasing values of &, the solution values returned by MTSS(k) are non-decreasing
(because of the definition of M), while those returned by J(k) are not (if, for

4.3 Approximate algorithms 123

example, (w;) = (8.5.5.3) and ¢ = 12, J(1) returns z" = 11, while J(2) returns
h
z" =10).

Example 4.2 (continued)

We have already seen that MTSS(2) gives, in O (n?) time: z" = 96. X" = {4.5.6}.
MTSS(3) gives, in O(n?) time: z" = 100. X" = {2.8,9} (optimal). The solution is
found when M = {2} and the greedy search is performed starting from item 8. []

A more effective implementation of MTSS(k) can be obtained if, at each iteration
i in the execution of MTGS, we update a pair (L. ¢) having the property that all
itemsinB ={i..... n}\(M UL) will be selected by the greedy search starting from
i,and & =c¢ — Zj ¢ W;- In this way, the greedy search can be performed only for
the items in L with residual capacity €. Since each iteration removes items from
L, execution of MTGS can be halted as soon as L = @. The improved version of

MTSS(k) is obtained by replacing the call to MTGS with the statement

call MTGSM,
where:
procedure MTGSM:
input: n.c.(wj).M.g.z";
output: z8.V;
begin
z8 :=27";
L:={1..... n}\M;
t=c—g;
S =0
i1 :=0;
repeat
=1+ 1;
if i ¢ M then
begin
while L # @ and w; < & (j the first item in L) do
begin
¢:=¢C— Wj;
S=Su{j}
L=L\{j}
end;
¢:=7;
T:=8;
for each j € L do if w; < ¢ then
begin
¢ =0 —wy;
T:=TU{j}

124 4 Subset-sum problem

ifc —¢ > z8 then

begin
z8 :=¢ — ¢
V=T
end;
¢:=C+w;
S :=85\{i}
end;
until L=@ orz& =¢

end.

Example 4.2 (continued)
Calling MTGSM with " =0. M =@ and g =0, the execution is:

L={1,...,9}. =100, S =3;

i=1:¢= 19, S={1},L={2....9%
o= 7, T={1,7},28=93, V={1,7}
=100, S =0;
i=2:¢= 20, §={2},L={3,....9%
¢= 8 T=1{27})
¢=100, S =@;
i=3:¢= 17, §={3,4},L={5,...,9};
G= 5 T={347),28=95V ={3,4, 7
F= 60, S =1{4};
i=4:. = 4 S=1{4,56),L=1{789}
¢= 4, T=1{4, 5,6} z8 =96,V = {456}
G= 44, 5 ={5,6};
i=5:.¢= 12, §=1{56,7,8 9}, L=,
¢= 12, T=1{5678, 9}
c= 42, $=16,7.8,9}. O

For large values of n, the computing time required by MTSS(k) can be further
reduced in much the same way used for MTSL (Section 4.2.3), i.e. by determining
the solution for an approximate core problem and then checking whether the
requestea performance (evaluated with respect to upper bound ¢ on z) has been
obtained.

Fischetti (1989) has proposed a polynomial-time approximation scheme, FS(k),
based on the subdivision of N into a set of “small” items and a number of sets of
“large” items, each containing items of “almost equal” weight. Although the worst-
case performance ratio of the scheme has not been determined, it has been proved

4.3 Approximate algorithms 125

that #(FS(k)) > ((k +2)> — 4)/(k +2)*. With this ratio, the result is *(MTSS(k)) >
r(FS(k)) for k < 6, while »(MTSS(k)) < r(FS(k)) for k > 6.

4.3.3 Fully polynomial-time approximation schemes

The algorithms of the previous section allow one to obtain any prefixed worst-case
performance ratio r in polynomial time and with linear space. The time complexity,
however, is exponential in the inverse of the worst-case relative error ¢ = 1 — 7.

The fully polynomial-time approximation scheme proposed by Ibarra and Kim
(1975) for the 0-1 knapsack problem (procedure IK(e) of Section 2.8.2) also
applies to SSP. No sorting being required, the time complexity decreases from
O(nlogn) + O(n/e*) to O(n/e?), polynomial in 1/e, while the space complexity
remains O(n + (1 /53)). Lawler (1979) adapted to SSP his irﬁproved version of
the Ibarra and Kim (1975) scheme for the 0-1 knapsack problem, obtaining time
complexity O(n + (1/¢3)) and space complexity O(n + (1/£?)), or time and space
complexity O(n + (1/})log(1/¢)).

All of the above schemes are based on the same idea, i.e. (see Section 2.8.2):
(a) partitioning the items, basing on the value of ¢, into “large” and “small” ones;
(b) solving the problems for the large items only, with scaled weights, through
dynamic programming; (c) completing the solution, in a greedy way, with the
small items. Gens and Levner (1978, 1980) have proposed a fully polynomial-
time approximation scheme based on a different (and simpler) principle. They
solve the complete problem through ordinary dynamic programming but, at each
iteration, reduce the current dynamic programming lists by keeping only state
weights differing from each other by at least a threshold value depending on «¢.
The scheme can be conveniently defined using procedure RECS of Section 4.2.1.
Note that the algorithm results similar to procedure DPS for the exact dynamic
programming solution of SSP (Section 4.2.1). The main difference consists in
determining, after each RECS call, reduced lists W1 and X 1, instead of simply
renaming W2 and X2 as W1 and X 1.

procedure GL(¢):
input: n.c. (w));
output: z* X*;
begin '
determine o =max{j : Y ’_,w: <c};

7= max(ZJ‘.’=l w;. max;{w;}) (comment:: < z < 27);
¢ :=c;

w 10 =0

X 1() =0

s =1

b:=2;

Wi, =wy;

X1, =1;

m:=2;

repeat

126 4 Subset-sum problem

call RECS ;
h =0
Jj=0
repeat
if W2, >WI1, + eZthenj =j+1
else j :=max{qg : W2, < W1, +ez};
h=h+1;
Wi, =Ww2;
X1, =X2;
until j = s;
m:=m+1;
s:=h
untilm >norWi; =c;
=Wl
determine X" by decoding X 1
end.

At each iteration, the reduced dynamic programming lists clearly satisfy W 1,,,—
Wi, >¢Z for h=1,...,5s —2. Hence the number of states is always bounded
by s < 2z/(¢Z), that is, from z < 2Z, by s < (4/¢). It follows that the scheme
has time and space complexity O (n /). The proof that the solution determined by
GL(¢) has worst-case relative error not greater than ¢ is given in Levner and Gens
(1978) and Gens and Levner (1978).

The time and space complexity of GL(¢) can be better or worse than that of the
Lawler (1979) scheme, according to the values of n and .

Example 4.2 (continued)

Calling GL(%) , we initially find ¢ =1 . Z = 81 and the weight list W1 given in
the first column of Figure 4.4. No state is eliminated for m =2.3. Form =4. W24
is eliminated since W25 — W23 = 3 < ¢Z = 27. The approximate solution found
has the final value of W 14, i.e. z# = 96 (with X* = {4.5.6}). [

4.3.4 Probabilistic analysis

As for the 0-1 knapsack problem (Section 2.8.3), we give a brief outline of the
main results obtained in probabilistic analysis.

The first probabilistic result for SSP was obtained by d’Atri and Puech (1982).
Assuming that the weights are independently drawn from a uniform distribution
over {1,2,...,c(n)} and the capacity from a uniform distribution over {I,
2,...,nc(n)}, where c(n) is an upper bound on the weights value, they proved
that a simple variant of the greedy algorithm solves SSP with probability tending
to 1.

Lagarias and Odlyzko (1983) considered SSP with equality constraint and
assumed that the weights are independently drawn from a uniform distribution

127

4.3 Approximate algorithms

7't 9dwrexy 103 Aqumu Aq poonpoid siySrom 91eIS 'y eI

96 96 96 96 8
6L I8 8 £8 £8 L
oL oL 0oL 0L 08 9
(49 1 99 69 eL €8 S
96 2% 96 94 96 9% 96 9¢ €8 0L £8 I8 14
6L S¢ 0L LE 0L 8¢ 0L 124 0L 194 08 08 18 I8 €
4 9T ey 9T 124 9T 2% 0¢ [34 oy 124 974 08 08 I8 18 [4
9T 6 9T I 9T Cl 9¢ 9C 0¢ 0¢ oy oy [a4 [34 08 08 I8 I
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IMm M IM M IM M M. M IMm M IM M IM M IMm M IM L
=W Q=u L=uw Q=u C=uw y=uw c=u = uw 1=w

128 4 Subset-sum problem

over {1,2, ... ,2”"2} and the capacity is the total weight of a randomly chosen
subset of the items. They presented a polynomial-time algorithm which finds the
solution for “almost all” instances with ¢ > 1. The result was extended to ¢ > %
by Frieze (1986).

The probabilistic properties of a “bounded” variant of SSP were investigated by
Tinhofer and Schreck (1986).

4.4 COMPUTATIONAL EXPERIMENTS

In the present section we analyse the experimental behaviour of exact and
approximate algorithms for SSP on random and deterministic test problems.
The main class of randomly generated test problems we use is

(i) problems P(E) : w; uniformly random in [1, 10€];
_10F
c=n T

For each pair (n, E), the value of ¢ is such that about half the items can be expected
to be in the optimal solution. In all algorithms for SSP, execution is halted as soon
as a solution of value ¢ is found. Hence the difficulty of a problem instance is related
to the number of different solutions of value c. It follows that problems P(E) tend
to be more difficult when E grows. As we will see, truly difficult problems can be
obtained only with very high values of 10f. This confirms, in a sense, a theoretical
result obtained by Chvital (1980), who proved that, for the overwhelming majority
of problems P(n/2) (with n large enough), the running time of any algorithm
based on branch-and-bound and dynamic programming is proportional at least to
2"/10 The Chvital problems, as well as problems P(E) with very high values of
E, cannot be generated in practice because of the integer overflow limitation. A
class of difficult problems which does not have this drawback is

(ii) problems EVEN/ODD : w; even, uniformly random in [1, 10%];

n103

c =

+1 (odd).

Since these problems admit no solution of value c, the execution of any enumerative
algorithm terminates only after complete exploration of the branch-decision tree.
Deterministic problems with the same property have been found by Todd (1980)
and Avis (1980):

(iii) problems TODD : w; = 2*"+! + 254 4 1, with k = [log,n ;
c=[0.5370, wi] =(n+ 12" =28+ [%J

4.4 Computational experiments 129

(iv) problems AVIS : w; =n(n+1)+j;
L nn+1)+ "
c=|— n 5):

4.4.1 Exact algorithms

We first compare, on small-size difficult problems, the Fortran IV implementations
of the dynamic programming algorithm of Ahrens and Finke (1975) and of
algorithm MTSL (Section 4.2.3). We used a CDC-Cyber 730 computer, having
48 bits available for integer operations, in order to be able to work with the large
coefficients generated.

Table 4.1 gives the results for problems P (E), with E = 3, 6, 12, Table 4.2 those
for problems EVEN/ODD, TODD, AVIS. Each entry gives the average running

Table 4.1 Problems P(E). CDC-Cyber 730 in seconds. Average times over 10 problems

P(3): w, uniformly P(6): w, uniformly P(12): w; uniformly
random in [1, 10%]; random in [1, 10°]; random in [1, 1012];
¢ =nl03/4 ¢ =nl0%/4 ¢ =nl02/4
n Ahrens MTSL Ahrens MTSL Ahrens MTSL
and Finke and Finke and Finke
8 0.012 0.004 0.012 0.004 0.013 0.004
12 0.023 0.010 0.029 0.013 0.029 0.013
16 0.040 0.011 0.091 0.049 0.092 0.050
20 0.069 0.007 0.322 0.185 0.422 0.232
24 0.137 0.010 0.640 0.513 2.070 1.098
28 0.349 0.010 1.341 0.647 9.442 6.306
32 0.940 0.009 2.284 0.661 time limit time limit
36 2.341 0.009 4,268 0.605 — —
40 5.590 0.011 9.712 0.663 — —

Table 4.2 Problems EVEN/ODD, TODD, AVIS. CDC-Cyber 730 in seconds

EVEN/ODD; TODD; AVIS;
average times over single trials single trials
10 problems
n Ahrens MTSL Ahrens MTSL Ahrens MTSL
and Finke and Finke and Finke
8 0.013 0.005 0.013 0.002 0.016 0.002
12 0.028 0.021 0.050 0.005 0.041 0.005
16 0.090 0.053 0.199 0.020 0.111 0.012
20 0.392 0.190 0.785 0.257 0.326 0.046
24 1.804 0.525 3.549 0.400 0.815 0.126
28 7.091 0.969 15.741 0.403 2.010 0.291
32 21.961 1.496 70.677 0.407 4.348 0.579
36 time limit 2.184 308.871 0.409 8.345 1.146

40 — 2.941 — — 15.385 1.780

130 4 Subset-sum problem

time, expressed in seconds, computed over 10 problem instances (except for the
deterministic TODD and AVIS problems, for which single runs were executed).
Each algorithm had a time limit of 450 seconds to solve the problems generated
for each data set. MTSL was always faster than the Ahrens and Finke (1975)
algorithm. Table 4.1 shows that problems P(E) become really hard only when
very high values of 10f are employed. Table 4.2 demonstrates that the “artificial”
hard problems can still be solved, in reasonable time, by MTSL. (Problems TODD
cannot be generated for n > 40 because of integer overflows.)

We used a 32-bit HP 9000/840 computer, having a core memory limitation of
10 Mbytes, to test MTSL on very large “easy” P(E) instances. Since the Fortran
implementation of MTSL requires only two vectors of dimension n, we were
able to solve problems up to one million variables. Because of integer overflow
limitations, the capacity was set to n10%/50, hence E could not be greater than 5.
Table 4.3 gives the average times, computed over 20 problem instances, relative
to problems P(2), P(3), P(4), P(5). The results show very regular times, growing
almost linearly with n. No remarkable difference comes from the different values
of E used. The initial value of ¥J (¥ = 45) always produced the optimal solution.
All runs were executed with option “-0” for the Fortran compiler, i.e. with the
lowest optimization level.

Table 4.3 Problems P(E). HP 9000/840 in seconds. Average times over 20 problems

P(2) P(3) P4) P(5)
w, uniformly w, uniformly w, uniformly w, uniformly
random in random in random in random in
[1, 102]; [1, 10%]; [1, 10%]; [1, 10%];
n ¢ =nl0?/50 ¢ = nl03/50 ¢ = nl10*/50 ¢ = nl0%/50
1000 0.007 0.010 0.022 0.125
2500 0.009 0.014 0.025 0.116
5000 0.016 0.020 0.031 0.121
10000 0.028 0.032 0.046 0.126
25000 0.070 0.071 0.088 0.173
50000 0.136 0.138 0.156 0.252
100000 0.277 0.272 0.295 0.392
250000 0.691 0.674 0.716 0.801
500000 1.361 1.360 1.418 1.527
1000000 2.696 2.720 2.857 2.948

44.2 Approximate algorithms

We used the hard problems of the previous section to experimentally compare
approximate algorithms for SSP. The runs were executed on a CDC-Cyber 730
computer, with values of n ranging from 10 to 1000 for problems EVEN/ODD and
P(10) (E = 10 being the maximum value not producing integer overflows), from
10 to 35 for problems TODD. We compared the Fortran IV implementations of the

4.4 Computational experiments 131

polynomial-time approximation schemes of Johnson (1974) and Martello and Toth
(1984b) and those of the fully polynomial-time approximation schemes of Lawler
(1979) and Gens and Levner (1978, 1980) (referred to as J(k), MTSS(k), L(¢) and
GL(¢), respectively). The size of the approximate core for MTSS(k) was set to
200/k.

We used the values %, % and 2 of the worst-case performance ratio r. These are
the smallest values which can be imposed on all the schemes. Table 4.4 shows the
parameters used and the time and space complexities.

Table 44 Time and space complexities

k) MTSS(k) L(e) GL(¢)
r k time space k& time space ¢ time space time space
;1 0 Oom 1 0m) Om 3 Om+=%) Om+%) OF) O*)
23 0om) om 2 0w Om) ; Om+L%) On+%) O(F) 0%
8 6 0w omy 3 0mH Om 5 Om+%) On+L) OF) O%)

For each triple (type of problem, value of r, value of n), we generated ten
problems and solved them with the four algorithms. The tables give two types
of entries: average running times and average percentage errors. The errors were
computed with respect to the optimal solution for problems TODD. For problems
P(10) and EVEN/ODD we used the optimal solution when n < 50, and the upper
bound ¢ (for P(10)) or ¢ — 1 (for EVEN/ODD) when n > 50. When all ten problems
were exactly solved by an algorithm, the corresponding error entry is “exact” (entry
0.0000 means that the average percentage error was less than 0.00005).

Table 4.5 gives the results for problems P(10). L(¢) has, in general, very short
times and very large errors. This is because the number of large items is very small
(for n < 50) or zero (for n > 100). MTSS(k) dominates the other algorithms,
J(k) dominates GL(¢). For any n > 25, J(k) gives exactly the same results,
independently of r since, for all such cases, set L is empty, so only the greedy
algorithm is performed. The running times of GL(¢) grow with n and with r, those
of J(k) only with n, those of MTSS(k) only with r (for n > 50), while L(¢) has
an irregular behaviour.

Table 4.6 gives the results for problems EVEN/ODD. As in Table 4.5, L{¢c)
always has very short times and very large errors, MTSS(k) dominates the other
algorithms and J(k) dominates GL(¢). The running times and the growing rates
of errors are the same as in Table 4.5 while the absolute errors are different. In
many cases MTSS(k) found the optimal solution; since, however, the corresponding
value does not coincide with ¢, execution could not stop, so the running times grow
with r.

Table 4.7 gives results for problems TODD. Since these problems are
deterministic, the entries refer to single trials. MTSS(k) dominates all the

132 4 Subset-sum problem

Table 4.5 Problems P(10): w; uniformly random in [1, 10'°]; ¢ = n10'%9/4. CDC-Cyber
730 in seconds. Average values over 10 problems

Time Percentage error
n r Jk) MTSS(k) L) GL() J(k) MTSS(k) L&) GL(¢)
% 0.001 0.001 0.004 0.005 2.0871 2.0871 5.5900 2.0307
10 ‘% 0.001 0.001 0.012 0.009 2.0044 0.4768 3.7928 1.2864
g 0.003 0.006 0.025 0.014 0.8909 0.1894 2.8857 0.9088
% 0.002 0.003 0.001 0.014 0.3515 0.3515 5.3916 1.8044
25 % 0.002 0.005 0.008 0.020 0.3515 0.0467 1.9958 0.6695
g 0.003 0.035 0.069 0.037 0.3515 0.0049 1.5973 0.6100
;— 0.004 0.005 0.001 0.029 0.0833 0.0833 0.8870 0.2519
50 % 0.004 0.009 0.001 0.050 0.0833 0.0058 0.8870 0.1008
g 0.004 0.166 0.016 0.079 0.0833 0.0002 0.9902 0.0794
;— 0.009 0.014 0.002 0.061 0.0082 0.0082 1.0991 0.0611
100 4§ 0.009 0.020 0.001 0.093 0.0082 0.0004 1.0991 0.0708
g 0.010 0.207 0.001 0.157 0.0082 0.0001 1.0991 0.0541
% 0.020 0.022 0.003 0.112 0.0032 0.0039 0.7441 0.0077
250 % 0.022 0.029 0.003 0.235 0.0032 0.0004 0.7441 0.0070
g 0.022 0.158 0.003 0.374 0.0032 0.0000 0.7441 0.0059
% 0.049 0.022 0.008 0.254 0.0010 0.0040 0.2890 0.0016
500 ‘% 0.042 0.033 0.006 0.438 0.0010 0.0001 0.2850 0.0016
g 0.047 0.180 0.007 0.685 0.0010 0.0000 02890 0.0015

0.100 0.024 0.013 0.540 0.0002 0.0014 0.1954 0.0005
1000 0.102 0.030 0013 0.909 0.0002 0.0001 0.1954 0.0006

0.102 0.224 0013 1374 0.0002 0.0000 0.1954 0.0005

o B —

4.4 Computational experiments 133

Table 4.6 Problems EVEN/ODD. CDC-Cyber 730 in seconds. Average times over
10 problems

Time Percentage error
n r J(k)y MTSS(k) L(s) GL(e) Jk) MTSSk) L) GL(e)
% 0.001 0.001 0.005 0.005 2.2649 2.2649 7.5859 1.5131
10 % 0.001 0.002 0.012 0.009 23209 0.8325 3.1369 0.8403
g 0.003 0.007 0.025 0013 09202 0.0720 25209 0.9041
% 0.002 0.003 0.001 0015 0.2432 0.2432 7.6416 1.0688
25 % 0.002 0.005 0011 0.026 0.2432 0.0384 23360 0.4288
g 0.002 0.048 0.077 0.042 0.2432 exact 1.9808 0.3584
;— 0.004 0.006 0.001 0.030 0.0400 0.0400 24480 0.1424
50 % 0.004 0.011 0.001 0.051 0.0400 0.0016 2.4480 0.1680
g 0.004 0.287 0.019 0.084 0.0400 exact 1.1232 0.0816
% 0.009 0.011 0.002 0.060 0.0160 0.0160 0.7352 0.0792
100 3 0.009 0.028 0.002 0.100 0.0160 exact 0.7352 0.0792
g 0.008 0.274 0.002 0.166 0.0160 exact 0.7352 0.0520
% 0.022 0.022 0.003 0.141 0.0019 0.0006 0.4221 0.0080
250 % 0.021 0.028 0.004 0.235 0.0019 exact 0.4221 0.0070
g 0.021 0.242 0.003 0.380 0.0019 exact 0.4221 0.0058
% 0.047 0.026 0.007 0.291 0.0003 0.0006 0.2682 0.0021
500 % 0.047 0.031 0.007 0.483 0.0003 exact 0.2682 0.0021
g 0.047 0.257 0.007 0.774 0.0003 exact 0.2682 0.0024

0.104 0029 0013 0595 exact 0.0010 0.1325 0.0002

1000 0.104 0.033 0.014 0992 exact exact 0.1325 0.0002

NI AW =

0.104 0.293 0.014 1.567 exact exact 0.1325 0.0001

134 4 Subset-sum problem

Table 4.7 Problems TODD. CDC-Cyber 730 in seconds. Single trials

Time Percentage error
n or J(ky MTSS(k) L(s) GL(¢) J(k) MTSS(k) L(¢) GL(¢)
% 0.001 0.001 0.002 0.005 9.9721 9.9721 8.2795 exact
10 % 0.001 0.002 0.013 0.008 9.9721 exact 44157 exact
& 0004 0006 0022 0011 exact exact 2.1366 exact
% 0.001 0.001 0.001 0.008 exact exact 12.3660 6.1343
15 % 0.002 0.002 0.016 0.016 exact exact 6.2072 3.0185
& 0001 0012 0033 0023 exact exact 14548 exact
% 0.001 0.003 0.001 0.014 4.7761 4.7761 47482 4.7482
20 % 0.001 0.003 0.006 0.023 4.7761 exact 4.7482 exact
g 0.002 0.018 0.036 0.040 4.7761 exact 2.3787 exact
% 0.001 0.003 0.001 0.016 exact exact 7.6896 7.6896
25 % 0.001 0.004 0.001 0.036 exact exact 7.6896 exact
g 0.001 0.028 0.048 0.059 exact exact 3.3638 1.9210
% 0.002 0.003 0.001 0.017 3.2261 3.2261 3.2255 3.2255
30 % 0.003 0.005 0.001 0.030 3.2261 exact 3.2255 3.2253
g 0.002 0.038 0.017 0.052 3.2261 exact 0.8063 exact
% 0.003 0.004 0.001 0.021 exact exact 5.5555 2.7777
35 % 0.002 0.004 0.001 0.035 exact exact 5.5555 2.7777
% 0.002 0.045 0.015 0.062 exact exact 1.3888 exact

algorithms, while L(¢) is generally dominated by all the algorithms. J(k) dominates
GL(¢) for n odd (J(1) always finds the optimal solution). For n even, GL(¢)
has higher times but much smaller errors than J(k), MTSS(2) always finds the
optimal solutions, MTSS(1) only for n odd. This behaviour of the algorithms can
be explained by analysing the structure of the optimal solution to problems TODD.
Let m = |n/2], so ¢ = (n + 1)2*" — 2 + m. Hence the number of items in any
feasible solution is at most m since, by algebraic manipulation, the sum of the
m + 1 smallest weights is

m+l1

Zw,. =2(m + 1287 + 212" _ Yy m+1) > ¢

i=1

4.4 Computational experiments 135

(in problems TODD the w;’s are given for increasing values). For n odd (n =
2m + 1), the sum of the m largest weights is feasible, since

Z w, = (2m+2)2k+n _ 2k+n—m+1 +m <c,

i=n—m+1

and hence optimal. So, after sorting, the greedy algorithm (J(1) or MTSS(1)) finds
the optimal solution. For n even (n = 2m), (a) any solution including w, includes
at most m — 2 further items, since

m~—1
W + Zw,- =Q2m+ D2 $25Q" —)+ m > ¢;

i=1
(b) it follows that the best solution including w, has value

n
Z; = Z w; = 2m2k+rl _ 2k+n-m+2 +m — 1 < c;

i=n—m+2

(c) the best solution not including w, has value

n—1
n= Z wi = Qm + 12K —2k=m L < e,

i=n—m

and z; > z;. So z; is the optimal solution value and MTSS(2) finds it when, after
sorting, it applies the greedy algorithm starting from the second element.

We do not give the results for problems AVIS, for which the algorithms have
a behaviour similar to that of problems TODD. In fact, let s = |[(n — 1)/2], so
¢ =sn(n+ 1)+ n(n — 1)/2. Since the sum of the s + 1 smallest weights is

s+1
Zw,— =sn(n+1)+n(n+1)+% s+D(s+2)>c,

i=1

any feasible solution will include, at most, s items. The sum of the s largest weights
is feasible, since

n
Z w; =sn(n+1)+s(n—s)+%s(s+1)§c,

i=n—s+l

hence optimal. So, after sorting, the greedy algorithms J (1) and MTSS(1) always
find the optimal solution.

The computational results of this section (and others, reported in Martello and
Toth (1985a)) show that all the polynomial-time approximation schemes for SSP

136 4 Subset-sum problem

have an average performance much better than their worst-case performance. So,
in practical applications, we can obtain good results with short computing times,
i.e. by imposing small values of the worst-case performance ratio.

Although polynomial-time approximation schemes have a worse bound on
computing time, their average performance appears superior to that of the fully
polynomial-time approximation schemes, in the sense that they generally give better
results with shorter computing times and fewer core memory requirements.

The most efficient scheme is MTSS(k). For n > 50, the largest average erroy of
MTSS(2) was 0.0075 per cent, that of MTSS(3) 0.0005 per cent. So, for practical
purposes, one of these two algorithms should be selected while using higher values
of k would probably be useless.

S

Change-making problem

5.1 INTRODUCTION

In Chapter 1 the change-making problem has been presented, for the sake of
uniformity, as a maximization problem with bounded variables. However, in the
literature it is generally considered in minimization form and, furthermore, the main
results have been obtained for the case in which the variables are unbounded. Hence
we treat the bounded case in the final section of this chapter, the remaining ones
being devoted to the Change-Making Problem (CMP) defined as follows. Given n
item types and a knapsack, with

w; = weight of an item of type j;
¢ = capacity of the knapsack,

select a number x; (j =1, ... ,n) of items of each type so that the total weight is
¢ and the total number of items is a minimum, i.e.

n

minimize z =ij 5.1
j=1

subject to Z wixj =c. 5.2)
Jj=1
X; > 0 and integer, j €N ={l..... n}. (5.3)

The problem is NP-hard also in this version, since Lueker (1975) has proved
that even the feasibility question (5.2)-(5.3) is NP-complete. The problem is
called “change-making” since it can be interpreted as that of a cashier having
to assemble a given change, ¢, using the least number of coins of specified values
w; (j = 1,...,n) in the case where, for each value, an unlimited number of
coins is available. CMP can also be viewed as an unbounded knapsack problem
(Section 3.6) in which p; = —1 for all j and, in the capacity constraint, strict
equality is imposed. (On the other hand, imposing inequality Z;=1 wix; > ¢ gives
rise to a trivial problem whose optimal solution is x; = [¢ /w;] (where [is the item
type of maximum weight) and x; = 0 for j € N\{/}, since item type / “dominates”
all the others in the sense of Theorem 3.2.) Note that, because of (5.2), a feasible

137

138 5 Change-making problem

solution to the problem does not necessarily exist.
It is usual in the literature to consider positive weights w;. Hence, we will also
assume, without loss of generality, that

w; and c are integers; 5.4)
w; <c for jEN; (5.5)
wiEw; if i#]. (5.6)

Violation of assumption (5.4) can be handled by scaling. If assumption (5.5) is
violated, then we can set x; = O for all j such that w; > ¢ and, if there is an
item type (say k) with wx = ¢, immediately determine an optimal solution (x; = 1,
x; =0 for j € N\{k}). If assumption (5.6) is violated then the two item types
can be replaced by a single one. Note that, on the contrary, the assumption on
the positivity of w; (j € N) produces a loss of generality, because of the equality
constraint.

CMP can arise, in practice, in some classes of unidimensional cargo-loading and
cutting stock problems. Consider, for example, a wall to be covered with panels:
how is it possible, given the available panel lengths, to use the least possible number
of panels?

In the following sections we examine lower bounds (Section 5.2), greedy
solutions (Sections 5.3, 5.4), dynamic programming and branch-and-bound
algorithms (Sections 5.5, 5.6), and the results of computational experiments
(Section 5.7). Section 5.8 analyses the generalization of the problem to the case
where, for each j, an upper bound on the availability of items of type j is given
(Bounded Change-Making Problem).

52 LOWER BOUNDS
Assume, without loss of generality, that the item types satisfy
wi>wy >wy>w; for j=4,...,n (5.7)
Let us consider the continuous relaxation of CMP, i.e. (5.1), (5.2) and
x; >0, Jj €N.

From (5.7), its optimal solution X is straightforward (*; = ¢/w;.X; = 0 for
Jj =2, ...,n) and provides an immediate lower bound for CMP:

5.2 Lower bounds 139

If we also impose, similarly to what has been done for the unbounded knapsack
problem (Section 3.6.1), the obvious condition ¥; < |¢/w;], which must hold in
any integer solution, the continuous solution becomes

— c
X1 = R E
wi

x;=0 for j=3,...,n,

HE

X
where
¢ =c(mod wy). (5.8)

This gives an improved lower bound:

12

Suppose now that |¢/w | items of type 1 and |€/w-] items of type 2 are initially

selected, and let
z/ = [LJ + {LJ, (59)
wi wo

¢’ =¢(mod wy). (5.10)

In the optimal solution to CMP, either x, < |€/w,] or x, > |T/w2]. In the former
case the continuous relaxation gives a lower bound

C/
L'=z"+ [—w (5.11)
while in the latter a valid lower bound is

(5.12)

L1=z’—1+rl+w1}

)

since the condition implies x; < |¢/wi] — 1. We have thus proved the following

Theorem 5.1 (Martello and Toth, 1980b). The value
Ly =min (L°. L"),

where L0 and L' are defined by (5.8)-(5.12), is a lower bound for CMP.

140 5 Change-making problem

Since L, can be re-written as z’ + [¢’/w,], we have L% > L,. Also, by noting
that L' =z’ + [(¢' + w; — wa)/w,] and w; —wy > 0, we have L' > L. Hence L,
is dominated by the new bound.

The time complexity for the computation of the above bounds is clearly O (n).
No sorting is in fact needed, since only the three largest weights are required.

Example 5.1

Consider the instance of CMP defined by
n =5

w;) =(11,8,5,4, 1)
c =29.

We obtain

Lower bounds Ly. L, and L, are the respective conceptual counterparts of
upper bounds Up.U; and Uj introduced for the unbounded knapsack problem
(Section 3.6.1), for which we have proved that the worst case performance ratio is
2. As often occurs, however, maximization and minimization problems do not have
the same theoretical properties for upper and lower bounds (see, e.g., Section 2.4).
For CMP, the worst-case performance of the lower bounds above is arbitrarily
bad. Consider in fact the series of instances with n = 3, w; =k, wp = k — 1,
wy=1land c =2k —3 (k > 3): we have Ly = L, = L, = 2, while the optimal
solution has value z = & — 2, so the ratio L; /z (i = 1.2 or 3) can be arbitrarily
close to O for k sufficiently large.

5.3 GREEDY ALGORITHMS

In the present section we consider both the change-making problem (5.1)—(5.3) and
the generalization we obtain by associating an integer non-negative cost g; with
each item type j € N and changing the objective function to

n
minimize z =) _q;x. (5.13)

J=1

5.3 Greedy algorithms 141

We obtain an Unbounded Equality Constrained Min-Knapsack Problem (UEMK).
UEMK contains, as special cases:

(i) CMP, when ¢; = 1 for all j € N;

(ii) the unbounded knapsack problem (Section 3.6) in minimization form, when an

extra item type n + 1 is added, with g,+; =0 and w,,; = —1.

For convenience of notation, we assume that the item types are sorted according
to decreasing values of the cost per unit weight, i.e.

Do 2 (5.14)
wi T owy Wy

and note that, for CMP, this implies
wp < wy <...< w,.

A greedy algorithm for UEMK can be derived immediately from procedure
GREEDYU of Section 3.6.1 as follows.

procedure GREEDYUM:
input: n.c.(g;). (w));
output: z¢ . (x;).c;

begin
C =,
z8:=0;
forj :=nto 1 step —1do
begin
xj = [T/wil;
C=Cc— Wij;
z8 = z8 +qjx;
end
end.

The time complexity of GREEDYUM is O (n), plus O(nlogn) for the preliminary
sorting. By replacing the last statement with

78 =28 +x;

we obtain a greedy algorithm for CMP.

On return from GREEDYUM, if ¢ = O then z¢ and (x;) give a feasible (not
necessarily optimal) solution. If ¢ > 0 then no feasible solution has been found by
the procedure.

Example 5.1 (continued)

Applying GREEDYUM we obtain (x;) = (2. 0. 1. 0. 2),z% =5 and ¢ = 0, while
the optimal solution has value z =4 (as will be seen in Section 5.5.2). []

142 5 Change-making problem

The case in which at least one item type has weight of value 1, has interesting
properties. First, a feasible solution to the problem always exists. Furthermore,
GREEDYUM always returns a feasible solution, since the iteration in which
this item is considered produces ¢ = 0. The worst-case behaviour of the greedy
algorithm, however, is arbitrarily bad, also with this restriction. Consider in fact
the series of instances (both of CMP and UEMK) with: n = 3. ¢; = 1 for
allj. wy=1. wy=k. ws=k+1and c =2k > 2, for whichz =2 and z% =k, so the
ratio z8 /z goes to infinity with k. (The absolute error produced by GREEDYUM
for UEMK has been investigated by Magazine, Nemhauser and Trotter (1975), the
relative error produced for CMP by Tien and Hu (1977).)

Consider now a change-making problem for the US coins, i.e. with: n = 6.
wi =1.wy =5 w3 =10. wy =25. ws =50. wg = 100. It is not difficult to be
convinced that GREEDYUM gives the optimal solution for any possible value of
¢ (expressed in cents). Situations of this kind are analysed in the next section.

5.4 WHEN THE GREEDY ALGORITHM SOLVES CLASSES OF
KNAPSACK PROBLEMS

We consider instances of CMP and UEMK in which at least one item type has
weight of value 1.
For CMP, this implies that, after sorting,

l=w; <wy <...<w,. (5.15)
A weight vector (wy,...,w,) is called canonical if the greedy algorithm exactly
solves all instances of CMP defined by the vector and any positive integer c.

Chang and Gill have given the following necessary and sufficient condition for
testing whether a vector is canonical.

Theorem 5.2 (Chang and Gill, 1970a) A vector (wy,...,w,) satisfying (5.15) is
canonical if and only if for all integers c in the range

Wn(Wan—l +w, — 3Wn—1)

w3 <c<
Wy — Wy

the greedy solution is optimal.

The proof is quite involved and will not be reported here. Furthermore,
application of the theorem is very onerous, calling for optimality testing of a usually
high number of greedy solutions.

5.4 When the greedy algorithm solves classes of knapsack problems 143

Example 5.2
Consider the instance of CMP defined by

n="17,
wj)=(1, 2, 4,8, 10, 16).

This vector can be proved to be canonical. However, application of the Chang
and Gill (1970a) test requires us to solve, both in an exact and greedy way, 386
instances. []

We now turn to instances of UEMK. Let j* denote an item type such that
wj. = 1 and g;» = min {g; : w; = 1} and note that all item types k for which
Gk /wk > qj+/wj- are “dominated” by j* so they can be eliminated from the
instance. Hence we assume, without loss of generality, that the item types, sorted
according to (5.14), satisfy

l=w; <w; for j=2,...,n. (5.16)

For k = 1,...,n and for any positive integer ¢, let fi(c) and gi(c) denote,
respectively, the optimal and greedy solution value to

k
minimize E qiX;
j=1

k
subject to ijxj =c,
j=1

x; >0 andinteger, j=1,...,k.

When fi(c) = gi(c) for all c—or, more concisely, fi = gr—Wwe say that the pair of
vectors ((q1,...,qk), (Wi,...,wg)) is canonical. The following theorem provides a
recursive sufficient condition for checking whether a pair of vectors is so.

Theorem 5.3 (Magazine, Nemhauser and Trotter, 1975) Assume that (q1,...,qn)
and (wy, ..., w,) satisfy (5.14) and (5.16). If, for fixed k (1 < k < n). fi = g« and
Wike1 > Wy, then, by defining m = [wy/wi| and v = mwy — wyy, the following
are equivalent:

(i) fes1 = k1,
(ii) fes1(mwy) = grear(mwy),
(iii) qr+1 + gu(y) < myy.

144 5 Change-making problem

Proof. 1t is obvious that (i) follows from (i). Since gy i(mwy) = qre1 + g ()
and fi(mwy) < mgy, (iii) follows from (ii). To prove that (i) follows from
(iii), suppose, by absurdity, that (iii) holds but there exists a value ¢ for which
Sr+1(¢) < gre1(c). It must be ¢ > wyy, since for ¢ < wyy; we have fi(c) =
Ji(c) = gr(c) = gr+1(c) while for ¢ = wy,; we have fio (Wei1) = ot Wie1) = Grat-
Let p = |c/wi] and 6 = ¢ — pwy, and note that p > m — 1.

If x;+; > O in an optimal solution, then fi,1(¢) — g¢+1(¢) = frs1(C — Xps1Wps1) —
gr+1(C — Xks1Wi41) (since the greedy solution includes at least x4 items of type
k +1), so we can assume that ¢ is such that x;,; = 0 in any optimal solution. Hence

Jea1(c) = fi(c) = gi(c) = pgr + i (&) = mgy + (p — m)qr + [(6). (5.17)

From the definition of é, by algebraic manipulation we can write ¢ = wy, +(p —
m)wi ++ + 6. Hence: (a) if p > m then

Jen1(©) < Grw1 +(p — m)qe + g (7) + fr(6); (5.18)

(b) ifp =m — 1 then 7+6—Wk =C — Wiyl >0andfk(7+6) =fk(7+é—wk)+qk,
SO
fin1(€) < Grer +fi(y + 6 — wi) < Grat — qic + 8 () + fi(6),

showing that (5.18) holds for all p > m — 1. Combining (5.17) and (5.18) we obtain
mqr < qr+1 +8x(7), a contradiction. [] (An alternative proof has been given by Hu
and Lenard (1976).)

Theorem 5.3 is known as the “one-point theorem” since, given a canonical pair
«q1s---qx)s Wi,...,wg)) and a further item, k + 1, satisfying qr+1/Wee1 > qr /Wi
and wyy, > wg, the canonicity of ((q1,.-.,qk+1), W1,...,wis1)) is guaranteed by
optimality of the greedy solution for the single value ¢ = mwy. Moreover, this
check does not require exact solution of the instance, since execution of the greedy
algorithm for the value ¢ = ¥ (requiring O (k) time) is sufficient to test condition
(iii).

Given g;, w; (j =1, ..., n) satisfying (5.14) and (5.15), the following procedure
checks condition (iii) for £ = 1, ... ,n — 1. Note that condition (5.15), always
satisfied by CMP, is not necessarily satisfied by an instance of UEMK.

procedure MNT:
input: n.(g;). (w));

output: opr;
begin
Al :=n;
n:=1;

optimal = “yes”;
while n < 7i and optimal = “yes” do
begin
m = Wy /Wy ;

5.5 Exact algorithms 145

CI=mw, — Wy,
call GREEDYUM,;
if g,o1 +28 < mg, then n :=n + 1 else optimal := “no”
end;
opt = n;
n:=rn
end.

The time complexity of MNT is clearly O(n?). On return, we know that the
pairs ((q1,-..,qk), (Wi,...,wy)) are canonical for all £k < opt. If opt < n, then the
pair with & = opt + 1 is not canonical, while, for the pairs with k > opt + 1 the
situation is undecided.

Example 5.2 (continued)

By setting g; =1 for j=1,...,6, and applying MNT, we have
n=12,3:m=2,¢=0,z8=0;
n=4 m=2,¢c=6,z8=2, 0pt =4.

Hence the greedy algorithm exactly solves all the instances induced by items
(1,...,k) with £ < 4, while it fails for at least one instance with k = 5 (see, e.g.,
the case with ¢ = 16). The situation for (wy,...,ws) cannot be decided through
procedure MNT, although the vector is canonical, as can be proved using Theorem

52.7

Further characterizations of instances for which the greedy solution is optimal
have been given by Chang and Korsh (1976) and Tien and Hu (1977).

5.5 EXACT ALGORITHMS

Chang and Gill (1970a) have presented a recursive procedure for the exact solution
of those instances of CMP in which one item type has weight of value 1. An Algol
implementation of this method has been given by Chang and Gill (1970b) and
corrected by Johnson and Kernighan (1972). The resulting code is, however, highly
inefficient, as shown in Martello and Toth (1977c, 1980b) through computational
experiments, so no account of it will be taken in the following.

In the following sections we consider algorithms for the exact solution of CMP
with no special assumption.

5.5.1 Dynamic programming

Given a pair of integers m (1 < m < n) and & (0 < & < c¢), consider the
sub-instance of CMP consisting of item types 1,...,m and capacity ¢, and denote

146 5 Change-making problem

with f,,(¢) the corresponding optimal solution value (f,,(¢) = oc if no solution of
value ¢ exists). Then, clearly,

oc for all positive ¢ < ¢ such that ¢(mod w,) # 0;

&) =
ho=9, for€'=lw1,withl=0,.‘.,{LJ.
wi

[(&) can be computed, by considering increasing values of m from 2 to n and,
for each m, increasing values of ¢ from O to ¢, as

fn(@) = min{fm-l(é —Iwp)+ 11 integer. 0 << {LJ }
W
The optimal solution value of CMP is then given by f, (c). The time complexity
for this computation is O (nc?), the space complexity O (nc).
By adapting to CMP the improved recursion proposed by Gilmore and Gomory
(1965) for the unbounded knapsack problem (Section 3.6.2), we obtain

Jm-1(8) for¢ =0, ... ,w, — 1
Im(&) =

min (£, 1(€), fu(@ —wp)+1) foré=w,,...,c,

which reduces the time complexity to O(nc). Wright (1975) has further noted that,
if the items are sorted according to increasing weights, only values of ¢ not greater
than w,,wy,,+; need be considered at each stage m. In fact, w,, items of type m + 1
give the same weight as wy; items of type m and a better value for the objective
function. A specialized dynamic programming algorithm for CMP can be found in
Wright (1975).

5.5.2 Branch-and-bound
In the present section we assume that the item types are sorted so that
Wi > Wy > ... > W, (5.19)

To our knowledge, the only branch-and-bound algorithms for CMP are those in
Martello and Toth (1977c, 1980b). We give a description of the latter, which has a
structure similar to that of MTUT1 (Section 3.6.2), with one important difference.

As in MTUI, at a forward move associated with the jth item type, if a lower
bound on the best solution obtainable is less than the best solution so far, the
largest possible number of items of type j is selected. As usual, a backtracking
move consists in removing one item of the last inserted type. Before backtracking
on item type i, let £; (j = 1,...,i) be the current solution, & = ¢ — Z,’l=1 w;k;
and ¢ = Zj’=1 % the corresponding residual capacity and value, and z the best
solution value so far. The following is then true (Martello and Toth, 1980b):

5.5 Exact algorithms 147

if ¢ < w;, thevalue I =z —2 is a lower bound on f,(¢) (= number of items
needed to obtain a change ¢ with item weights (w,...,w,), see Section 5.5.1). In
fact: (a) only item types i +1,...,n can produce ¢(< w;), so (b) if the solution of
value z has been obtained at a decision node descending from the current one, then,
clearly, I; = f,(¢); otherwise, at each leaf A of the decision sub-tree descending
from the current node, the lower bound, say 7 + L,, allowed the search to be
stopped, so a valid lower bound on f,(¢) is miny{Ly} >z — % = [,.

The consideration above leads to a dominance criterion which is particularly
strong, since it allows one to fathom nodes of the decision tree basing oneself
on a value depending only on the current residual capacity, independently of the
variables currently fixed. In the resulting algorithm, /, is defined at Step 5, and
tested at Steps 2a and 5.

Also, it is useful to initially define a vector (m.) such that mz = min {j : w; < ¢},
so that, for each residual capacity ¢ produced by branch-and-bound, the next
feasible item type is immediately known. Vectors (/;) and (m;) clearly require
pseudo-polynomial space, hence, in the following implementation, their size is
limited by a constant parameter +. It is assumed that the item types are sorted
according to (5.19), and that v < w;. (Note that vector (m;) can be used only after
a forward move, i.e. when ¢ < w), while after a backtracking, say on item type i,
the next feasible item type is i +1.)

procedure MTC1:
input: n.c. (w;).v;
output: z. (x;);

begin

1. [initialize]
z=c+1;
Wher 1= 15

for k :=1to n do %} :=0;

compute the lower bound L = L, (Section 5.2) on the optimal solution value;
Jji=n;

whilej > 1 and w; < v do

begin
for h. =w; to min(y. w;_; — 1) do my, = j;
J=ji-1

end;

for i :=1to min(y.w, — 1) do [:= oc;
for h :=w, to y do /, :=0;
1= LC/WU;
=
=C— wiky;

=S R =

¢ > 0 then go to 2a;
=K,
forj :=1tondox; :=1%;
return ;
2a. [dominance criterion]

N

5 Change-making problem

148
if ¢ < 4 then
ifl; >z —Zthengoto5else;j:=m;
else
if ¢ < w, then go to 5 else find j = min{k > j :w; < ¢&};
2. [build a new current solution]

y = L@/wjj;
¢ :=C —ywy;
if z <Z+y+[¢/wj.] then go to 5;
if ¢ = 0 then go to 4;
if j = n then go to 5;
3. [save the current solution]

¢ =7,
f=Z2+y;
Xi=y;
j=j+1
go to 2a;
4. [update the best solution so far]
z:=Z+Yy;
fork :=1toj — 1 dox; :=%¢;
Xj =y,
fork :=j +1ton dox; :=0;
if z = L then return;
5. [backtrack]
find i = max{k <j : & > 0};
if no such i then return ;
if ¢ < min(y,w; — 1) then [; :==max(l;.z — 2);
C:=C+w;;
=71
.XA,‘ = XA,‘ — 1;
if z <Z+[¢/w;.] then (comment: remove all items of type i)
begin
¢c:=C¢+ W,‘)?,';
Z=7-2%;
XA,‘ = 0,
Jj=1i;
goto5
end;
Jji=i+1;
ifé <+ and [>z — Z then go to 5;
if ¢ —w; > w, then go to 2;
h:=1i;
6. [try to replace one item of type i with items of type /]
h=h+1;

ifz <%+ [é/wy] or h > nthengoto5;
if ¢ —w;, < w, then go to 6;
j=nh
goto?2
end.

5.6 An exact algorithm for large-size problems 149

Example 5.1 (continued)

Recall the instance

n =5,
w;) =(11,8,5,4, 1),
c =29.

Figure 5.1 gives the decision-tree produced by MTC1 (with y = 10). [

m=(5.554333.2.22) L=4
! =(0.0.0.0.0.0.0.0.0.0) z=30

7= 2 <E+14[3 /ws] 1 >z2-2 z=4=L
x=(2.0.1.0.2) x=(1.1.2.0.0)

Figure 5.1 Decision-tree of procedure MTCI for Example 5.1

The Fortran implementation of procedure MTC1 is included in that of procedure
MTC2, which is described in the next section.

5.6 AN EXACT ALGORITHM FOR LARGE-SIZE PROBLEMS

Computational experiments with algorithm MTC1 (Martello and Toth, 1980b) show
that, similarly to what happens for other knapsack-type problems (see Sections 2.9,
3.6.3, 4.2.3), many instances of CMP can be solved efficiently even for high
values of n and, in such cases, the number of item types used for the solution
is considerably smaller than n.

For CMP, however, the core problem does not consist of the most “favourable”
item types (those with highest weight), since the equality constraint often forces
the optimal solution to include also some items with medium and small weight.

An experimental analysis of the structure of the solutions found by MTC1 shows
two facts: (a) the optimal solution value is often equal to the value of bound L,
(Section 5.2); (b) many equivalent solutions usually exist. Hence we define the
core as

150 5 Change-making problem

C = {j], [,j,-,},
with
J1, j2, j3 = the three item types of maximum weight,

Jas--., js = any 1 — 3 other item types,

and the core problem as

minimize z = E Xj
jecC

subject to Z wix; =c,
jec

X; > 0 and integer, jeC.

Noting that j,,j» and j3 are the only item types needed to compute L,, the
following procedure attempts to solve CMP by sorting only a subset of the item
types. In input, 77 < n — 3 is the expected size of the core, v the parameter needed
by MTCI.

procedure MTC2:
input: n.c. (w)).v.7;
output: z. (x;);
begin
determine the three item types (ji.».j3) of maximum weight;
compute lower bound Lj;
C:={1..... ayU{ji.j2.j3};
sort the item types in C in order of decreasing weights;
solve the core problem exactly, using MTC1, and let z and (x;) define the

solution;
if z =L, thenforeach; € {I..... ni\C dox; :=0
else
begin
sort item types 1..... n in order of decreasing weights;
solve CMP exactly, using MTC1, and let z and (x;) define the
solution
end

end.

“Good"’values for 77 and vy were experimentally determined as

7 =min (nmax (500, {;—OJ).

~ = min(10000, w; — 1).

5.7 Computational experiments 151

The Fortran implementation of algorithm MTC2 is included in the present
volume.

5.7 COMPUTATIONAL EXPERIMENTS

In the present section we analyse the computational behaviour of the Fortran IV
implementations of algorithms for CMP on data sets having

w; uniformly random in [1, M].

In Table 5.1 we compare the dynamic programming approach of Wright
(Section 5.5.1), algorithm MTCI1 (Section 5.5.2) and the approximate algorithm
GREEDYUM (Section 5.3) on problems with M = 4n, for two values of c.
The recursive approach of Chang and Gill (Section 5.5) is not considered since
computational experiments (Martello and Toth, 1980b) showed that it is very much
slower than the Wright algorithm. For each value of n and ¢, we generated 100
problems admitting of a feasible solution. Each algorithm had a time limit of 250
seconds to solve them. The entries give the average running times (including sorting
times) obtained by the three algorithms on a CDC Cyber 730, the percentages of
approximate solutions which are sub-optimal, infeasible and optimal, respectively,
and the average running time of MTC1 when GREEDYUM finds the optimum.
The table shows that MTCI clearly dominates the Wright algorithm. The greedy
algorithm is about twice as fast as MTCI, but the quality of its solutions is rather
poor. In addition, for the instances in which it gives the optimal solution, the running

Table 5.1 w, uniformly random in [1, 4n]. CDC-Cyber 730 in seconds. Average values over
100 feasible problems

Greedy solutions

MTCl1
When
Sub- Not Greedy is
Wright MTC1 Greedy optimal feasible Optimal optimal

c n (time) (time) (time) (%) (%) (%) (time)
25 0.135 0.006 0.002 35 43 22 0.004

50 0451 0.011 0.006 35 38 27 0.009

10n 100 1.612 0.022 0.013 35 47 18 0.018
200 time 0.045 0.029 40 42 18 0.035

500 — 0.119 0.078 42 35 23 0.098

1000 — 0.241 0.155 33 40 27 0.202

25 0.166 0.006 0.002 35 43 22 0.004

50 0518 0011 0.006 32 45 23 0.009

> W 100 1.768 0.022 0.013 29 44 27 0.018
200 time 0.045 0.030 40 37 27 0.035

500 — 0.121 0.078 29 43 28 0.096

1000 — 0.240 0.154 24 41 35 0.204

152 5 Change-making problem

time of MTCI is only slightly higher. The running times of all the algorithms are
practically independent of the value of c.

Table 5.2 gives the average times obtained, for larger problems, by MTCI
and MTC2 (Section 5.6) on an HP 9000/840 (with option “-0” for the Fortran
compiler). The problems, not necessarily feasible, were generated with M = 4n
and ¢ =0.5 Z;'zl w;. The sorting times, included in the entries, are also separately
given. The table shows that, for n > 1000, i.e. when the core problem is introduced,
MTC2 is considerably faster than MTCI.

Table 5.3 analyses the behaviour of MTC2 when M varies, and shows that higher
values of M tend to produce harder problems. This can be explained by noting
that increasing the data scattering makes it more difficult to satisfy the equality
constraint. Hence, in order to evaluate MTC1 and MTC2 on difficult problems, we
set M = 10° for all values of n. Table 5.4 confirms the superiority of MTC2 also

Table 5.2 w; uniformly random in [, 4n]; ¢ = 0.5 Z;=|Wj' HP 9000/840 in seconds.
Average times over 20 problems

n Sorting MTC1 MTC2
50 0.003 0.007 0.003
100 0.006 0.010 0.008
200 0.013 0.021 0.019
500 0.036 0.054 0.051
1000 0.079 0.114 0.064
2 000 0.165 0.237 0.087
5000 0.468 0.595 0.121
10000 0.963 1.198 0.179
20000 2.073 12.860 0.370

Table 5.3 Algorithm MTC2. w; uniformly random in [1, M |; ¢ = 0.5 Z;'zle. HP 9000/840
in seconds. Average times over 20 problems

n M =4n M =8n M =12n
100 0.008 0.013 0.017
1 000 0.064 0.081 0.096
10000 0.179 0.309 4.743

Table 5.4 w, uniformly random in [1, 10°]; ¢ = 0.5 Zj”zle. HP 9000/840 in seconds.
Average times over 20 problems

n Sorting MTCl MTC2
50 0.004 1.205 1.172
100 0.007 0.754 0.744
200 0.012 0.862 0.855
500 0.037 2.321 2.306
1000 0.082 3.078 1.098
2000 0.171 7.778 1.654
5000 0.456 11.141 0.810
10000 0.948 time 1.939

20000 2.124 — 5.480

5.8 The bounded change-making problem 153
for this generation. Note that, for n > 1000, the time difference is considerably
higher than the sorting time, indicating that MTC2 takes advantage of the lesser
number of item types also in the branch-and-bound phase. For n = 10000, MTC1
could not solve the generated problems within 250 seconds.

5.8 THE BOUNDED CHANGE-MAKING PROBLEM

The Bounded Change-Making Problem (BCMP) is the generalization of CMP we
obtain by introducing

b; = upper bound on the availability of items of type j,

and formulating the problem as

minimize z =Y x (5.20)
j=1

subject to Z wix; =c, 5.21)
J=1
0 <x; < b; and integer, j=1,...,n. (5.22)

We will maintain the assumptions made in Section 5.1. In addition we will
assume, without loss of generality, that values b; (positive integer for all j) satisfy

> bw; >, (5.23)
j=1
biw; <ec, j=1,....,n. (5.24)

Violation of assumption (5.23) produces an infeasible or trivial problem, while for
each j not satisfying (5.24), we can replace b; with |c/w;].
By assuming that the item types are sorted so that

W > Wy > . > wy, (5.25)

the continuous relaxation of BCMP can easily be solved, as for the bounded
knapsack problem, through a straightforward adaptation of Theorem 2.1. Define
the critical item type s as

J
s =min{j : bewi > c},
i=1

154 5 Change-making problem

and

s—1
T=c—) bw. (5.26)
j=1

Then the optimal solution X of the continuous relaxation is

X; = b forj=1,...,s — 1,

X;=0 forj=s+1,...,n,
_ T
Xs = —,

WS

and the corresponding value produces a lower bound for BCMP:

s—1 —
c
LB =) b+ |—|.

l j=1 ' [Wj

A tighter bound, conceptually close to bound L, of Section 5.2, can be obtained
by noting that, in the optimal solution, either x; < |¢/w| or x; > |¢/ws|. By
defining

/
z

s—1 —
S b+ [iJ (5.27)
= Ws
¢’ =¢ (mod wy), (5.28)

the respective lower bounds are

1
LB =:'+ [¢ } (5.29)
W+l
/)
IB'=z' —1+ [c—i}—:—‘} (5.30)
S

Hence,
Theorem 5.4 (Martello and Toth, 1977¢c) The value
LB, = min (LB°, LB"),
where LB? and LB' are defined by (5.26)—(5.30), is a lower bound for BCMP.

LB, clearly dominates LBy, since LB; = z' + [¢//w,] < LB® and LB' =
z'+ (¢’ +ws_1 —ws)/ws] > LB;. The time complexity for the computation of LB,

5.8 The bounded change-making problem 155

or LB; is O(n) if the item types are already sorted according to (5.25). If this is
not the case, the computation can still be done in O(n) time, through an adaptation
of procedure CRITICAL_ ITEM of Section 2.2.2.

A greedy algorithm for BCMP immediately derives from procedure
GREEDYUM of Section 5.3, by replacing the definition of x; and z¢ with
X; :=min (|c/w;|, b;) and z¢# := z¢ +x;, respectively. In this case too, the worst-
case behaviour is arbitrarily bad, as shown by the counterexample of Section 5.3
with by =k, by =2, b3 = 1. To our knowledge, no further theoretical result on the
behaviour of greedy algorithms for BCMP is known.

Exact algorithms for BCMP can also be obtained easily from those for CMP.
In particular, a branch-and-bound algorithm MTCB derives from procedure MTC1
of Section 5.5.2 as follows. Apart from straightforward modifications at Step 1
(bus1 = +oc; L = LBy; £ = min(|c/w|, by); if & > O then go to 2), the
main modification concerns Steps 2 and 4. For BCMP it is worth building a new
current solution by inserting as many items of types j,j +1,... as allowed by their
bounds, until the first is found whose bound cannot be reached. In order to avoid
useless backtrackings, this solution is saved only if its value does not represent the
minimum which can be obtained with item type j. The altered steps are then as
follows.

2. [build a new current solution]

y =0
¢=¢;
i=j—-1
repeat
i=i+1;
y :=min(|¢/w;]. b;);
Y=y
C:=¢C —yw;;

if y =b;, thenw :=w,,| else w :=w;;
ifz <2+y'+[¢/w] then go to 5;
if ¢ = 0 then go to 4;
ifi=nthengoto5

until y < b;;

=2+ —y)

fork:=jtoi—1do & :=by;

J =1

4. [update the best solution so far]
z:=2+y/;
fork :=1toj — 1 do x; :=%;
fork:=jtoi —1dox;:=bj;
Xi =y
fork:=i+1tondox :=0;
if z =L then return;

The Fortran code of algorithm MTCB is included in the present volume.

156 5 Change-making problem

Table 5.5 Algorithm MTCB. ¢ = O.SZ]” w;. HP 9000/840 in seconds. Average times over

=1""J"

20 problems

w, uniformly random in [1, 4n] w, uniformly random in [1, 10%]

n b; in [1, 5] b; in [1, 10] b, in [1, 5] b; in [1, 10]
50 0.009 0.010 1.646 1.442
100 0.016 0.019 1.230 1.033
200 0.038 0.036 1.073 0.934
500 0.100 0.099 1.233 2.051
1000 0.213 0.210 9.894 11.377
2000 0.453 0.449 6.145 20.145
5000 1.207 1.201 18.622 35.799

10000 2.429 2.377 — —

Table 5.5 gives the results of computational experiments performed on the data
generation of Tables 5.2 and 5.4, with values b; uniformly random in ranges [1, 5]
and [1. 10]. The solution of BCMP appears harder than that of CMP. The times in
the first two columns are approximately twice as high as those obtained by MTC1
in Table 5.2. Increasing the range of values b; did not alter the difficulty. The times
in the third column are higher than those of MTC1 in Table 5.4. Larger values of
b; considerably increased in this case the difficulty, especially for large values
of n.

6

0-1 Multiple knapsack
problem

6.1 INTRODUCTION

The 0-1 Multiple Knapsack Problem (MKP) is: given a set of n items and a set of
m knapsacks (m < n), with

p; = profit of item j,
w; = weight of item j,
¢; = capacity of knapsack i,

select m disjoint subsets of items so that the total profit of the selected items is a
maximum, and each subset can be assigned to a different knapsack whose capacity
is no less than the total weight of items in the subset. Formally,

m h
maximize z = Z Zp,—x,j 6.1)

i=1 j=1

subject to ijx,-j <c¢, TeEM={l..,m} (6.2)
j=1
Zx,-, <1, jeN={l,..,n} 6.3)
i=1
xj=0orl, i €EM,j €N, (6.4)

where)
{ 1 if item j is assigned to knapsack i;
Xjj =

0 otherwise.

When m = 1, MKP reduces to the 0-1 (single) knapsack problem considered in

Chapter 2.
We will suppose, as is usual, that the weights w; are positive integers. Hence,
without loss of generality, we will also assume that

157

158 6 0-1 Multiple knapsack problem

p; and ¢; are positive integers, (6.5)
w; < maxgeM{ci} for j €N, (6.6)
¢; > minjey {w;} for i eM, (6.7)
ij > ¢ for ieM. (6.8)
j=1

If assumption (6.5) is violated, fractions can be handled by multiplying through
by a proper factor, while nonpositive values can easily be handled by eliminating all
items with p; < 0 and all knapsacks with ¢; < 0. (There is no easy way, instead, of
transforming an instance so as to handle negative weights, since the Glover (1965)
technique given in Section 2.1 does not extend to MKP. All the considerations in
this Chapter, however, easily extend to the case of nonpositive values.) Items j
violating assumption (6.6), as well as knapsacks i violating assumption (6.7), can
be eliminated. If a knapsack, say i*, violates assumption (6.8), then the problem
has the trivial solution x;.; = 1 forj € N. x; =0 fori € M\{i*} andj € N.
Finally, observe that if m > n then the (m — n) knapsacks of smallest capacity can
be eliminated.

We will further assume that the items are sorted so that

Byl > (6.9)
wi w2 Wn
In Section 6.2 we examine the relaxation techniques used for determining upper
bounds. Approximate algorithms are considered in Sections 6.3 and 6.6 . In Section
6.4 we describe branch-and-bound algorithms, in Section 6.5 reduction techniques.
The results of computational experiments are presented in Section 6.7.

6.2 RELAXATIONS AND UPPER BOUNDS

Two techniques are generally employed to obtain upper bounds for MKP: the
surrogate relaxation and the Lagrangian relaxation. As we show in the next section,
the continuous relaxation of the former also gives the value of the continuous
relaxation of MKP.

6.2.1 Surrogate relaxation

Given a positive vector (7, ...,7,) of multipliers, the standard surrogate
relaxation, S(MKP . 7), of MKP is

6.2 Relaxations and upper bounds 159

maximize i i pjxij (6.10)

i=l j=I

m

n m
subject to Z i Z wixy; < Z iCi (6.11)
j=1 i=1

i=1
You<l jEN, (6.12)
i=1

xj=0or1, i €M, jEN. (6.13)

Note that we do not allow any multiplier, say 77, to take the value zero, since this
would immediately produce a useless solution (x;; = 1 for j € N)) of value Z;-':l Dj-
The optimal vector of multipliers, i.e. the one producing the minimum value of
z(S(MKP, 7)) and hence the tightest upper bound for MKP, is then defined by the
following

Theorem 6.1 (Martello and Toth, 1981a) For any instance of MKP, the optimal
vector of multipliers for S(MKP .) is m; = k (k any positive constant) for alli € M .

Proof. Let 7 = arg min{x; : i € M}, and suppose that (x;}) defines an optimal
solution to S(MKP, 7). A feasible solution of the same value can be obtained by
setting x;; = 0 and x% =1 for each j € N such that x; =1 and i # 7 (since the only
effect is to decrease the left-hand side of (6.11)). Hence S(MKP, 7) is equivalent
to the 0-1 single knapsack problem

n
maximize E DjXzj
Jj=1

n m
subject to Z wixgj < [Z WiCi/WTJ ;
j=1 i=1

xjj=0orl, Jj EN.

Since |>°7, mici/mz| > Y01, ci, the choice m; = k (k any positive constant)
for all i € M produces the minimum capacity and hence the minimum value of
Z(S(MKP . 7). [

By setting 7; =k > Oforalli € M,andy; = ;. x; forallj € N, S(MKP .)
becomes

160 6 0-1 Multiple knapsack problem
n
maximize Z Py
Jj=1

n m
subject to ijyj < ZC,‘,
j=1 i=1

yj=0orl, jEN,

which we denote simply with S(MKP) in the following. Loosely speaking, this
relaxation consists in using only one knapsack, of capacity

c=Y ¢ (6.14)

The computation of upper bound z (S (MKP)) for MKP has a non-polynomial time
complexity, although many instances of the 0-1 knapsack problem can be solved
very quickly, as we have seen in Chapter 2. Weaker upper bounds, requiring O (n)
time, can however be computed by determining any upper bound on z(S (MKP))
through the techniques of Sections 2.2 and 2.3.

A different upper bound for MKP could be computed through its continuous
relaxation, C (MKP), given by (6.1), (6.2), (6.3) and

0<x <1, i€EM, jEN. (6.15)

This relaxation, however, is dominated by any of the previous ones, since it can be
proved that its value is equal to that of the continuous relaxation of the surrogate
relaxation of the problem, i.e.

Theorem 6.2 z(C(MKP)) = z(C(S(MKP))).

Proof. 1t is clear that, by setting m; = k > 0 for all i, C (S (MKP)), which is obtained
from (6.10)—(6.13) by relaxing (6.13) to (6.15), coincides with S (C (MKP)), which
is obtained from (6.1), (6.2), (6.3) and (6.15) by relaxing (6.2) to (6.11). Hence
we have z(C(S(MKP))) > z(C(MKP)). We now prove that z(C (MKP)) >
z(C (S (MKP))) also holds.

The exact solution (y;) of the continuous relaxation of S(MKP) can easily be
determined as follows. If Z;’=1 w; < ¢, where ¢ is given by (6.14), theny; = 1 for

j=1,...,n and z(C(S(MKP))) = Z;=1Pj~ Otherwise, from Theorem 2.1,

6.2 Relaxations and upper bounds 161

y; =1 for j=1,...,s -1,

y;=0 for j=s+1,...,n,

s—1

Vo= [e=D wi | /we.

Jj=1

where
J
s=min{j:2wk>c}, (6.16)
k=1
and
s—1 s—1
2 CSMKPY) =Y pi+ =D wi | pefws. (6.17)
j=1 j=1

It is now easy to show that there exists a feasible solution (x;;) to C(MKP) for
which > X = y; for all j € N. Such a solution, in fact, can be determined by
consecutively inserting items j = 1,2,... into knapsack 1 (and setting X, ; = 1,
X; = 0 for i # 1), until the first item, say j*, is found which does not fit
since the residual capacity ¢, is less than w;.. We then insert the maximum
possible fraction of w;. into knapsack 1 (by setting X ;. =C;/w;+) and continue
with the residual weight w;. = w;. — 7, and knapsack 2, and so on. Hence
z2(C(MKP)) > z(C(S(MKP))). [J

Example 6.1
Consider the instance of MKP defined by

n =6;
m =2;
(p;) = (110, 150, 70, 80, 30, 5);
(w;) = (40, 60, 30, 40, 20, 5);
(c;) = (65, 85).
The surrogate relaxation is the 0-1 single knapsack problem defined by (p;). (w;)

and ¢ = 150. Its optimal solution can be computed through any of the exact
algorithms of Chapter 2:

162 6 0-1 Multiple knapsack problem
(x)=(1,1,1,0,1,0), z(S(MKP)) = 360.
Less tight values can be computed, in O(n) time, through any of the upper
bounds of Sections 2.2, 2.3. Using the Dantzig (1957) bound (Theorem 2.1), we
get

s=4,T)=(,1,1,1,00),U =370 (= 2(C(MKP))).

This is also the value produced by the continuous relaxation of the given problem
since, following the proof of Theorem 6.2, we can obtain, from (X;),

(71,))=(1, 5,0,0,0,0),
(*2,))=(0, 5. 1, 3,0, 0).

Using the Martello and Toth (1977a) bound (Theorem 2.2), we get U, = 363. []

6.2.2 Lagrangian relaxation

Given a vector (Ay,..., A,) of nonnegative multipliers, the Lagrangian relaxation
L(MKP .)) of MKP is

maximize Zijx,j Z/\ (Zx,j) (6.18)

i=l j=1
subject to ijxij <, i €M, (6.19)

xj=0orl, i€M,jEN. (6.20)

Since (6.18) can be written as

maximize Z ijxu + Z Ajs 6.21)

i=l j=1

where
pi=pi—4, JEN, (6.22)

the relaxed problem can be decomposed into a series of m independent 0-1 single
knapsack problems (KP;. i =1, ... ,m), of the form

6.2 Relaxations and upper bounds 163

n
maximize z; = E DjXij
J=1
n
subject to E wix; < ¢,
J=1

x;=0orl, jEN.

Note that all these problems have the same vectors of profits and weights, so the
only difference between them is given by the capacity. Solving them, we obtain
the solution of L(MKP . }), of value

m

Z(LMKP 2))=Y zi+ Y N (6.23)
j=1

=1

For the Lagrangian relaxation there is no counterpart of Theorem 6.1, i.e. it is not
known how to determine analytically the vector (A;) producing the lowest possible
value of z(L(MKP.))). An approximation of the optimum (};) can be obtained
through subgradient optimization techniques which are, however, generally time
consuming. Hung and Fisk (1978) were the first to use this relaxation to determine
upper bounds for MKP, although Ross and Soland (1975) had used a similar
approach for the generalized assignment problem (see Section 7.2.1), of which
MKP is a particular case. They chose for (A;) the optimal dual variables associated
with constraints (6.3) in C(MKP). Using the complementary slackness conditions,
it is not difficult to check that such values are

_ p-wE i<
/\j = Ws (624)

0 ifj >s,

where s is the critical item of S (MKP), defined by (6.14) and (6.16). (For S(MKP),
Hung and Fisk (1978) used the same idea, previously suggested by Balas (1967)
and Geoffrion (1969), choosing for (7r;) the optimal dual variables associated with
constraints (6.2) in C(MKP), i.e. @; = ps/w; for all i. Note that, on the basis of
Theorem 6.1, this is an optimal choice.)

With choice (6.24), in each KP; (i = 1,...,m) we have p;/w; = ps/w, for
j < s and p;j/w; < ps/w, for j > s. It follows that z(C(L(MKP X)) =
(ps/we) X2y ¢i + 3/, Aj» so from (6.17) and Theorem 6.2,

2(C(L(MKP , 2))) = 2(C (S (MKP))) = z(C(MKP)),

i.e. both the Lagrangian relaxation with multipliers Xj and the surrogate relaxation

164 6 0-1 Multiple knapsack problem

with multipliers 7; = k > O for all i, dominate the continuous relaxation. No
dominance exists, instead, between them.

Computing z(L(MKP , \)) requires a non-polynomial time, but upper bounds on
this value, still dominating z(C (MKP)), can be determined in polynomial time,
by using any upper bound of Sections 2.2 and 2.3 for the m 0-1 single knapsack
problems generated.

Example 6.1 (continued)

From (6.24), we get
(Xj) = (30, 30, 10, 0, 0, 0, (p;) = (80, 120, 60, 80, 30, 5).
By exactly solving KP, and KP,, we have

(x,;) =0, 1,0,0,0, 1), z, = 125,
(02,))=(1,0,0,1,0, 1), , = 165.

Hence z(L(MKP, X)) = 360, i.e. the Lagrangian and surrogate relaxation produce
the same value in this case.

By using U, or U, (see Sections 2.2.1 and 2.3.1) instead of the optimal solution
values, the upper bound would result in 370 (= 130 + 170 + 70). []

It is worth noting that feasibility of the solution of L(MKP .)) for MKP can
easily be verified, in O(nm) time, by checking conditions (6.3) (for the example
above, x; 6 + X6 < 1 is not satisfied). This is not the case for S(MKP), for
which testing feasibility is an NP-complete problem. In fact, determining whether
a subset of items can be inserted into knapsacks of given capacities generalizes the
bin-packing problem (see Chapter 8) to the case in which containers of different
capacity are allowed.

We finally note that a second Lagrangian relaxation is possible. For a given
vector (py,..., fm) of positive multipliers, LIMKP, p) is

m
maximize Z ipjx,j — z"’: m Z": WiXij — ¢ (6.25)
i=1 Jj=1

i=l j=1
m

subject to ZXU <1, j EN,
i=1

xj=0o0r1, ieEM,jEN.

Note that, as in the case of S(MKP ,), we do not allow any multiplier to take

6.2 Relaxations and upper bounds 165

the value zero, which again would produce a useless solution value. By writing

(6.25) as
maximize Z Z(pj — HiwpXxi; + Z HiCis
i=1

i=l j=1

it is clear that the optimal solution can be obtained by determining i* = arg min{y; :
i € M}, and setting, for each j € N : x;o; = 1 if pj — pi»w; > 0, x;»; = 0
otherwise, and x; = 0 for all i € M \{i*}. Since this is also the optimal solution of
C (L(MKP , p)), we have z(L(MKP , n)) > z(C (MKP)), i.e. this relaxation cannot
produce, for MKP, a bound tighter than the continuous one. (Using f; = p;s/ws
for all i € M, we have z(L(MKP ,71)) = Zj;ll(pj — (ps/ws)wj) + cpsfws =
z(C (MKP)), with ¢ and s given by (6.14) and (6.16), respectively.)

6.2.3 Worst-case performance of the upper bounds
We have seen that the most natural polynomially-computable upper bound for MKP
is
U = |2(C(MKP))| = |2(C(S(MKP)))| = |2(C (LIMKP . })))).
Theorem 6.3 p(U;)=m + 1.
Proof. We first prove that p(U,) < m + 1, by showing that
2(C(S(MKP))) < (m +)z(MKP).

Consider the solution of C(S(MKP)) and let us assume, by the moment, that
2;1:1 w; > Z:":l ¢;. Let s; denote the critical item relative to knapsack i (i € M)
defined as

K i
s; =min ¢ k : ij > Zc; . (6.26)
Jj=1 I=1

Note that, from Theorem 6.2, the only fractional variable in the solution is ¥, with
s = s,,;. Hence the solution value can be written as

s1—1 so—1 Sm—1
ZCSMKP)) =Y pi+ps+ Y pi+Pu+-t Y P
j=1 j=s1+1 J=Ssm—1+1

le=3w Z—Ss, (6.27)

166 6 0-1 Multiple knapsack problem
from which we have the thesis, since

(a) Selecting items {s;_; + 1,...,5; — 1} (where sp = 0) for insertion into
knapsack i (i = 1, ,m), we obtain a feasible solution for MKP, so
2(MKP) > 377 1Z-S,_.+|P/,

(b) From assumption (6.6), z(MKP) > p, for all i € M, hence also z(MKP) >
(c - Zj:l Wj)Ps [Ws.

If 37w < >, ¢ the result holds a fortiori, since some terms of (6.27) are
null.

To see that m + 1 is tight, consider the series of instances with: n > 2m; ¢ =
2k (k>2)’(«2=~--=cm_l" PL=...=Pm+1 = k,wi=...=Wyu =k+1; Pm+2 =
=pp = Lwger = ... = w, = k We have s < m + 1,z(C(S(MKPY))) =
(m + Dk(k/k + 1)), z(MKP) = k + (m — 1), so the ratio U;/z(MKP) can be

arbitrarily close to (m + 1), for k sufficiently large. []

Any upper bound U, computable in polynomial time by applying the bounds
of Sections 2.2 and 2.3 to S(MKP) or to L(MKP ,X), dominates U;, hence
p(U) < m + 1. Indeed, this value is also tight, as can be verified through counter-
examples obtained from that of Theorem 6.3 by adding a sufficiently large number
of items with p; =k and w; = k + 1.

Finally note that, obviously, p(U) < m + 1 also holds for those upper bounds
U which can be obtained, in non-polynomial time, by exactly solving S (MKP) or
L(MKP ,\).

6.3 GREEDY ALGORITHMS

As in the case of the 0-1 single knapsack problem (Section 2.4), also for MKP the
continuous solution produces an immediate feasible solution, consisting (see (6.26),
(6.27)) of the assignment of items s;_1+1,...,s; — 1 to knapsack i (i =1, ... ,m)

and having value
z' = Z Z i (6.28)

Since z/ < z < U, < z/+) ., ps, where z = z(MKP), the absolute error of
z' is less than Y-, ps,. The worst-case relative error, instead, is arbitrarily bad,
as shown by the series of instances with n =2m,c; =k >m fori =1, ... ,m,
pi =w; =1and pj,y =wj =k forj=1,3,....,n — 1, for which z' = m and
z = mk, so the ratio z’/z is arbitrarily close to O for k sufficiently large.

In this case too we can improve on the heuristic by also considering the solution

consisting of the best critical item alone, i.e.

6.4 Exact algorithms 167
z" = max (z/. max;em { Py, }).

The worst-case performance ratio of z” is 1/(m + 1). Since, in fact, z* > z’ and
" > pg fori=1,...,m,wehave, fromz < z'+3 1 ps, thatz < (m + 1)z". The
series of instances with n =2m +2,c; = 2k(k > m),¢c; =k fori =2,... ,m,p; =
w; =1 and pj, = wj, =k forj =1, 3,...,n— 1 proves the tightness, since
=k + m + landz = (m + 1), so the ratio z”/z is arbitrarily close to
1/(m + 1) for k sufficiently large. Notice that the “improved” heuristic solution
z8 = max(z’, max;cn { pj}) has the same worst-case performance.

For the heuristic solutions considered so far, value z’ can be obtained, without
solving C (MKP), by an O(n) greedy algorithm which starts by determining the
critical item s = s, through the procedure of Section 2.2.2, and re-indexing the
items so that j < s (resp. j > s) if p;/w; > ps/w; (resp. p; /w; < ps/ws). Indices
i and j are then initialized to 1 and the following steps are iteratively executed:
(1) if w; < ¢; (C; the residual capacity of knapsack i), then assign j to i and set
Jj =Jj +1; (2) otherwise, (a) reject the current item (by setting j =j + 1), (b) decide
that the current knapsack is full (by setting i =i + 1), and (c) waste (!) part of the
capacity of the next knapsack (by setting ¢; = ¢; — (w;_ —C;_1)). Clearly, this is a
“stupid” algorithm, whose average performance can be immediately improved by
eliminating step (c). The worst-case performance ratio, however, is not improved,
since for the tightness counter-example above we still have z8 =k + m + 1.
Trying to further improve the algorithm, we could observe that, in case (2), it
rejects an item which could fit into some other knapsack and “closes” a knapsack
which could contain some more items. However, if we restrict our attention to O (n)
algorithms which only go forward, i.e. never decrease the value of j or i, then by
performing, in case (2), only step (a) or only step (b), the worst-case performance is
not improved. If just j is increased, then for the same tightness counter-example we
continue to have z& = k+m+1. If just i is increased, then for the series of instances
withn =m+3,c, =2k k > 1),c;=kfori=2,... . m,pr=wi=pr=wr=k+1
and pj =w; =k forj=3,... ,n, we have z = (m + 1)k and z& =k + 1.

Other heuristic algorithms which, for example, for each item j perform a search
among the knapsacks, are considered in Section 6.6.

6.4 EXACT ALGORITHMS

The optimal solution of MKP is usually obtained through branch-and-bound.
Dynamic programming is in fact impractical for problems of this kind, both as
regards computing times and storage requirements. (Note in addition that this
approach would, for a strongly NP-hard problem, produce a strictly exponential
time complexity.)

Algorithms for MKP are generally oriented either to the case of low values of the
ratio n/m or to the case of high values of this ratio. Algorithms for the first class
(which has applications, for example, when m liquids, which cannot be mixed,

168 6 0-1 Multiple knapsack problem

have to be loaded into n tanks) have been presented by Neebe and Dannenbring
(1977) and by Christofides, Mingozzi and Toth (1979). In the following we will
review algorithms for the second class, which has been more extensively studied.

6.4.1 Branch-and-bound algorithms

Hung and Fisk (1978) proposed a depth-first branch-and-bound algorithm in which
successive levels of the branch-decision tree are constructed by selecting an item
and assigning it to each knapsack in turn. When all the knapsacks have been
considered, the item is assigned to a dummy knapsack, m+1, implying its exclusion
from the current solution. Two implementations have been obtained by computing
the upper bound associated with each node as the solution of the Lagrangian
relaxation, or the surrogate relaxation of the current problem. The corresponding
multipliers, X and 7, have been determined as the optimal dual variables associated
with constraints (6.3) and (6.2), respectively, in the continuous relaxation of the
current problem (see Section 6.2.2). The choice of the item to be selected at each
level of the decision-tree depends on the relaxation employed: in the Lagrangian
case, the algorithm selects the item which, in the solution of the relaxed problem,
has been inserted in the highest number of knapsacks; in the surrogate case, the
item of lowest index is selected from among those which are still unassigned (i.e.,
at each level j, item j is selected). The items are sorted according to (6.9), the
knapsacks so that
C12C2...2Cp.

Once the branching item has been selected, it is assigned to knapsacks according to
the increasing order of their indices. Figure 6.1 shows the decision nodes generated,
when m = 4, for branching item j.

x5, =1(x; ;=x2 ,=x3 ,=x4 ,=0)

Figure 6.1 Branching strategy for the algorithms of Hung and Fisk (1978)

Martello and Toth (1980a) proposed a depth-first branch-and-bound algorithm
using a different branching strategy based on the solution, at each decision node,
of the current problem with constraints (6.3) dropped out. From (6.18)—(6.20) it is
clear that the resulting relaxed problem coincides with a Lagrangian relaxation with

6.4 Exact algorithms 169

Aj=0forj =1,...,n. In the following, this is denoted by L(MKP .0). For the
instance of Example 6.1, we obtain: (x; ;}=(0, 1, 0,0, 0, 1), z; =155, (x2 ;) =(1,
0,0, 1,0, 1), z = 195, so z(L(MKP,0)) = 350. In this case L(MKP,0) gives a
better result than L(MKP, X). It is not difficult, however, to construct examples
for which z(L(MKP,))) < z(L(MKP.,0)), i.e. neither of the two choices for A
dominates the other. In general, one can expect that the choice A = X produces
tighter bounds. However, use of A = (0,...,0) in a branch-and-bound algorithm
gives two important advantages:

(a) if no item is assigned to more than one knapsack in the solution of LIMKP , 0),
a feasible and optimal solution of the current problem has been found,
and a backtracking can be immediately performed. If the same happens for
L(MKP,)), with A # (0,...,0), the solution is just feasible (it is also optimal
only when the corresponding value of the original objective function (6.1)
equals z(L(MKP, A)));

(b) since (;) does not change from one level to another, the computation of the
upper bounds associated with the decision nodes involves the solution of a
lesser number of different 0-1 single knapsack problems.

The strategy adopted in Martello and Toth (1980a) is to select an item for
branching which, in solution (£;) to the current L(MKP,0), is inserted into
m > 1 knapsacks (namely, that having the maximum value of (p;/w;) ZieM X
is selected). m nodes are then generated, by assigning the item in turn to m — 1
of such knapsacks and by excluding it from these. Suppose that, in the case of
Figure 6.1, we have, for the selected item j, & ; = &, ; = %3 ; = 1 and £4 ; = 0.
Figure 6.2 shows the decision nodes generated.

Figure 6.2 Branching strategy for the Martello and Toth (1980a) algorithm

In order to compute the upper bound associated with node k; it is sufficient
to solve two single knapsack problems: the former for knapsack 2 with condition
X ; = 0, the latter for knapsack 3 with condition x3 ; = O (the solutions for
knapsacks 1 and 4 are unchanged with respect to those corresponding to the father
node k). The upper bound associated with node &, can now be computed by solving
only the single knapsack problem for knapsack 1 with condition x; ; = 0, the

170 6 0-1 Multiple knapsack problem

solution of knapsack 3 with condition x3 ; = 0 having already been computed.
Obviously, no single knapsack need now be solved to compute the upper bound
associated with node k3. In general, it is clear that m — 1 single knapsacks have to be
solved for the first node considered, then one for the second node and none for the
remaining m — 2 nodes. Hence, in the worst case (7 = m), only m single knapsack
problems have to be solved in order to compute the upper bounds associated with
the nodes which each node generates.

In addition we can compute, without solving any further single knapsack
problem, the upper bound corresponding to the exclusion of the branching item
j from all the m knapsacks considered: if this bound is not greater than the best
solution so far, it is possible to associate a stronger condition with the branch
leading to the mth node by assigning the object to the mith knapsack without
changing the corresponding upper bound. In the example of Figure 6.2, condition
X j =xp j =0 would be replaced by x3 ; = 1.

A further advantage of this strategy is that, since all the upper bounds associated
with the m generated nodes are easily computed, the nodes can be explored in
decreasing order of their upper bound values.

6.4.2 The “bound-and-bound’’ method

In Martello and Toth (1981a), MKP has been solved by introducing a modification
of the branch-and-bound technique, based on the computation at each decision node
not only of an upper bound, but also of a lower bound for the current problem. The
method, which has been called bound-and-bound, can be used, in principle, to solve
any integer linear program. In the next section we describe the resulting algorithm
for MKP. Here we introduce the method for the general 0-1 Linear Programming
Problem (ZOLP)

maximize E DX
jen

subject to Za,jxj < b;, i1eEM,
JEN

xi=0orl, JEN.

Let us suppose, for the sake of simplicity, that all coefficients are non-negative.
We define a partial solution S as a set, represented as a stack, containing the indices
of those variables whose value is fixed: an index in S is labelled if the value of
the corresponding variable is fixed to 0, unlabelled if it is fixed to 1. The current
problem induced by S, ZOLP(S), is ZOLP with the additional constraints x; = 0
(j €8,/ labelled), x; =1 (j €S, unlabelled).

Let U(S) be any upper bound on z(ZOLP(S)). Let H be a heuristic procedure
which, when applied to ZOLP(S), has the following properties:

6.4 Exact algorithms 171

(i) a feasible solution (%;) is always found, if one exists;

(ii) this solution is maximal, in the sense fthat no %; having value O can be set to
1 without violating the constraints.

The value of the solution produced by H, L(S) = ZJ. en Pi%j, 1s obviously a
lower bound on z(ZOLP(S)).

A bound-and-bound algorithm for the optimal solution of ZOLP works as
follows.

procedure BOUND. AND. BOUND:
input: N.M . (p;). (a;). (b;);
output: z. (x;);
begin
1. [initialize]
S =0
Z:=—¢;
2. [heuristic]
apply heuristic procedure H to ZOLP(S);
if ZOLP(S) has no feasible solution then go to 4;
if L(S) > z then
begin
z:=L(S);
foreach j € N do x; :=X;;
if z=U(S) then go to 4
end;
3. [define a new current solution]
let j be the first index in N\S such that %; = 1;
if no such j then go to 4 ;
push j (unlabelled) on S;
if U(S) > z then go to 3;
4. [backtrack]
while S # @ do
begin
let j be the index on top of S;
if j is labelled then pop j from §;
else
begin
label j;
if U(S) > z then go to 2 else go to 4
end
end
end.

The main conceptual difference between this approach and a standard depth-first
branch-and-bound one is that the branching phase is here performed by updating
the partial solution through the heuristic solution determining the current lower
bound. This gives two advantages:

172 6 0-1 Multiple knapsack problem

(a) For all § for which L(S) = U(S), (%;) is obviously an optimal solution to
ZOLP(S), so it is possible to avoid exploration of the decision nodes descending
from the current one;

(b) For all § for which L(S) < U(S), S is updated through the heuristic
solution previously found by procedure H, so the resulting partial solution
can generally be expected to be better than that which would be obtained by a
series of forward steps, each fixing a variable independently of the foHowing
ones.

On the other hand, in case (b) it is possible that the computational effort spent
to obtain L(S) through H may be partially useless: this happens when, after few
iterations of Step 3, condition U (S) < z holds.

In general, the bound and bound approach is suitable for problems having the
following properties:

(i) a “fast” heuristic procedure producing “good” lower bounds can be found;

(ii) the relaxation technique utilized to obtain the upper bounds leads to solutions
whose feasibility for the current problem is difficult to check or is seldom
verified.

6.4.3 A bound-and-bound algorithm

Martello and Toth (1981a) have derived from the previous framework an algorithm
for MKP which consists of an enumerative scheme where each node of the decision-
tree generates two branches either by assigning an item j to a knapsack i or by
excluding j from i. For the sake of clarity, we give a description close to that of
the general algorithm of the previous section, although this is not the most suitable

for effective implementation. Stack Sy (k =1, ... ,m) contains those items that are
currently assigned to knapsack k or excluded from it.
Let S = {Si,...,S»}. At each iteration, i denotes the current knapsack and

the algorithm inserts in / the next item j selected, for knapsack i, by the current
heuristic solution. Only when no further item can be inserted in i is knapsack i + 1
considered. Hence, at any iteration, knapsacks 1,...,i — 1 are completely loaded,
knapsack i is partially loaded and knapsacks i + 1,...,m are empty.

Upper bounds U = U(S) are computed, through surrogate relaxation, by
procedure UPPER. Lower bounds L = L(S) and the corresponding heuristic
solutions ¥ are computed by procedure LOWER, which finds an optimal solution
for the current knapsack, then excludes the items inserted in it and finds an optimal
solution for the next knapsack, and so on. For both procedures, on input i is
the current knapsack and (£;) (k =1, ...,i; j = 1,...,n) contains the current
solution.

6.4 Exact algorithms 173

procedure UPPER:
input: n.m. (p;). ;). (c). G j)- (Se). i
output: U;
begin
T o= (i = Lges, Wiki) + 2 O
N:={j:%;=0fork=1,...,i}
determine the optimal solution value z of the 0-1 single knapsack problem
defined by the items in N and by capacity c;

U =2 ket 2jes, Pifkj + 7
end.

procedure LOWER:
input: n.m.(p;). (w)). (c). Xij). (Sk). i,
output: L. (¥);
begin A
Li=%7, Zjesk Pifkj;
N :={j :&%;=0fork=1,...,i};

N :=N'\S;;

C.=¢ — ZjES, Wj.i’,'j;
k:=1i;

repeat

determine the optimal solution value z of the 0-1 single knapsack problem
defined by the items in N and by capacity ¢, and store the solution
vector in row k of ¥;

L:=L+7;
N =N\{j %;=1}
N =N’;
k=k+1;
Ei=Ck
until k > m

end.

The bound-and-bound algorithm for MKP follows. Note that no current solution
is defined (hence no backtracking is performed) for knapsack m since, given X; for
k=1,...,m— 1, the solution produced by LOWER for knapsack m is optimal.
It follows that it is convenient to sort the knapsacks so that

a<a<L...<nm.
The items are assumed to be sorted according to (6.9).

procedure MTM:
input: n.m. (p;). (w)), (¢);
output: z. (x;);
begin
1. [initialize]
for k :=1tom do S, :=@;

174 6 0-1 Multiple knapsack problem

fork :==1tom doforj:=1ton do &, :=0;
z:=0;
i:=1;
call UPPER yielding U;
UB :=U;
2. [heuristic]
call LOWER yielding L and ¥;
if L > z then
begin
z:=L;
for k :=1tom do forj :=1to n do x;; := X ;;
fork:=itomdoforj:=1ton do
iffkj =1 then Xij = 1;
if z = UB then return ;
ifz=U thengo to 4
end;
3. [define a new current solution]
repeat
[:={l:% =1}
while / # @ do
begin
letj=min{l : 1 €1};
I=I\{j};
push j on S;;
X;=1
call UPPER vyielding U ;
if U <z thengoto4
end;
i=i+1
until i =m;
i=m-—1;
4. [backtrack]
repeat
while S;#3 do
begin
let j be the item on top of S;;
if ; = 0 then pop j from S;;
else
begin
fjj = 0;
call UPPER vyielding U ;
if U > z then go to 2
end

end;
1=i—-1
until / =0
end.

6.4 Exact algorithms 175

The Fortran implementation of procedure MTM (also presented in Martello
and Toth (1985b)) is included in the present volume. With respect to the above
description, it also includes a technique for the parametric computation of upper
bounds U . In procedures UPPER and LOWER, the 0-1 single knapsack problems
are solved through procedure MT1 of Section 2.5.2. (At each execution, the items
are already sorted according to (6.9), so there would be no advantage in using
procedure MT2 of Section 2.9.3.)

Example 6.2
Consider the instance of MKP defined by

n =10

m =2;
(pj) =(78, 35, 89, 36, 94, 75, 74, 79, 80, 16);
(wy) =18, 9,23, 20,59, 61, 70, 75, 76, 30);
(c;) = (103, 156).

Applying procedure MTM, we obtain the branch decision-tree of Figure 6.3. At
the nodes, Z gives the current solution value, (&) the current residual capacities.

=z=451
gox=(l 0101700000,
¥=x=(g [g0010010

;?1'1=0

U=451<z 2=UB

Figure 6.3 Decision-tree of procedure MTM for Example 6.2

176 6 0-1 Multiple knapsack problem

The value of U is not given for the nodes for which the parametric computation
was able to ensure that its value was the same as for the father node. The optimal

solution is
) 10010000
Xij 0110001 0)/)

z =452.1]

O =
(=R

A modified version of procedure MTM, in which dominance criteria among
nodes of the decision-tree are applied, has been proposed by Fischetti and Toth
(1988). Its performance is experimentally better for low values of the ratio n/m.

6.5 REDUCTION ALGORITHMS

The size of an instance of MKP can be reduced, as for the 0-1 knapsack
problem (Section 2.7), by determining two sets, J 1 and J 0, containing those items
which, respectively, must be and cannot be in an optimal solution. In this case,
however, only J 0 allows one to reduce the size of the problem by eliminating the
corresponding items, while J 1 cannot specify in which knapsack the items must
be inserted, so it only gives information which can be imbedded in an implicit
enumeration algorithm.

Ingargiola and Korsh (1975) presented a specific reduction procedure, based on
dominance between items. Let jDk indicate that item j dominates item k, in the
sense that, for any feasible solution that includes & but excludes j, there is a better
feasible solution that includes j and excludes k. Consequently, if we can determine,
for j =1,...,n, aset D; of items dominated by j, we can exclude all of them
from the solution as soon as item j is excluded. If the items are sorted according
to (6.9), D; obviously contains all items k > j such that wy > w; and p; < p;,
plus other items which can be determined as follows.

procedure |IKRM:
input: n.(pr). (We).J;

output: D;;
begin
Di={k:k>j we>w; and pr <p;};
repeat
d :=|Dj|;

for each k € {1 : pi/wi < p;/w }\(D; U {j}) do
if3ACD; twj+) ,cawa <w and
pj+ ZaeApa 2 Pk
then D; :=D; U {k}
until ‘Dj| =d
end.

6.6 Approximate algorithms 177

The items added to D; in the repeat-until loop are dominated by j since, for
any solution that includes k but excludes j and, hence, all a € A, there is a better
solution that includes {j} UA and excludes k. Once sets D; (j =1, ... ,n) have
been determined, if a feasible solution of value, say, z is known, a set of items
which must be in an optimal solution is

J1=¢j: Z Pk <7,
kEN\({j}uD))

since the exclusion of any item j € J 1, and hence of all items in D;, would not
leave enough items to obtain a better solution. Observe now that, for any item &,
set

Io={j:jDk.j ¢J1)

contains items which must be included in any solution including k. Hence a set of
items which must be excluded from an optimal solution is

JO= k:wk+2wj > Zc,-— ij

J€k ieM jeJ1

The time complexity of IKRM is O(n?y(n)), where ¢(n) is the time required
for the search of a suitable subset A C D;. Exactly performing this search,
however, requires exponential time, so a heuristic search should be used to obtain
a polynomial algorithm. In any case, the overall time complexity for determining
J1 and JO is O(n3¢(n)), so the method can be useful only for low values of n or
for very difficult problems.

6.6 APPROXIMATE ALGORITHMS

6.6.1 On the existence of approximation schemes

Let P be a maximization problem whose solution values are all positive integers.
Let length(l) and max(l) denote, for any instance / € P, the number of symbols
required for encoding / and the magnitude of the largest number in /, respectively.

Let z(I) denote the optimal solution value for /. Then

Theorem 6.4 (Garey and Johnson, 1978) If P is NP-hard in the strong sense and
there exists a two-variable polynomial q such that, for any instance I € P,

z(I) < q(length(l), max(l)).

then P cannot be solved by a fully polynomial time approximation scheme unless

P=NP.

178 6 0-1 Multiple knapsack problem

Proof. Suppose such a scheme exists. By prefixing 1/¢ = g(length(I), max(I)),
it would produce, in time polynomial in length(I) and 1/¢ (hence in pseudo-
polynomial time) a solution of value z” (/) satisfying (z(/) — z"(I))/z"() < ¢ <
1/z(), e z() — ") < 1, hence optimal. But this is impossible, P being NP-
hard in the strong sense. [] (The analogous result for minimization problems also
holds.)

Theorem 6.4 rules out the existence of a fully polynomial-time approximation
scheme for MKP, since the problem is NP-hard in the strong sense (see Section 1.3)
and its solution value satisfies z < n max; { p; } +1. Note that the same consideration
applies to MKP in minimization form (defined by minimize (6.1), subject to:
(6.2) with < replaced by >, (6.3) and (6.4)), since its solution value satisfies
z > mm]{p,} - 1.

As for the existence of a polynomial-time approximation scheme, the following
general property can be used:

Theorem 6.5 (Garey and Johnson, .1979) Let P be a minimization
(resp. maximization) problem whose solution values are all positive integers and
suppose that, for some fixed positive integer k, the decision problem “Givenl € P,
isz(I) < k (resp. z(I) > k) ?” is NP-complete. Then, if P # NP, no polynomial-
time algorithm for P can produce a solution of value z"(I) satisfying

M) 1 z() 1
D < 1+; (resp.) < 1+E>

and P cannot be solved by a polynomial-time approximation scheme.

Proof. We prove the thesis for the minimization case. Suppose such an algorithm
exists. If z(I) < k then, trivially, z(/) < k. Otherwise, 2"dy > k+1, so
z(I) > z"(I)k /(k +1) > k. Hence a contradiction, since the algorithm would solve
an NP-complete problem in polynomial time. (The proof for the maximization case
is almost identical.) []

We can use Theorem 6.5 to exclude the existence of a polynomial-time
approximation scheme for MKP in minimization form. We use the value & = 1.
Given any instance (w)..... wy) of PARTITION (see Section 1.3), define an
instance of MKP in minimization form having p; = 1. p, = ... = p, = 0, an
additional item with p,y; = 2 and wpy = Z;=1 wj, and two knapsacks with
= = % 7:1 w;. Deciding whether the solution value is no greater than 1
is NP-complete, since the answer is yes if and only if the answer for the instance
of PARTITION is yes.

For MKP in maximization form, instead, no proof is known, to our knowledge,
for ruling out the existence of a polynomial-time approximation scheme, although
no such scheme is known.

6.6 Approximate algorithms 179
6.6.2 Polynomial-time approximation algorithms

In Section 6.3 we have examined the worst-case performance of an O(n) greedy
algorithm for MKP. In Section 6.4.3 we have introduced an approximate algorithm
(LOWER) requiring exact solution of m single knapsack problems, hence, in the
worst case, a non-polynomial running time. A different non-polynomial heuristic
approach has been proposed by Fisk and Hung (1979), based on the exact solution
of the surrogate relaxation, S (MKP), of the problem. Let X5 denote the subset of
items producing z (S (MKP)). The algorithm considers the items of X in decreasing
order of weight, and tries to insert each item in a randomly selected knapsack or, if
it does not fit, in any of the remaining knapsacks. When an item cannot be inserted
in any knapsack, for each pair of knapsacks it attempts exchanges between items
(one for one, then two for one, then one for two) until an exchange is found which
fully utilizes the available space in one of the knapsacks. If all the items of X are
inserted, an optimal solution is found; otherwise, the current (suboptimal) feasible
solution can be improved by inserting in the knapsacks, in a greedy way, as many
items of N\Xs as possible.

Martello and Toth (1981b) proposed a polynomial-time approximate algorithm
which works as follows. The items are sorted according to (6.9), and the knapsacks
so that

1< <... < ey (6.29)
An initial feasible solution is determined by applying the greedy algorithm
(Section 2.4) to the first knapsack, then to the second one by using only the
remaining items, and so on. This is obtained by calling m times the following
procedure, giving the capacity ¢; = ¢; of the current knapsack and the current
solution, of value z, stored, for j =1, ... ,n, in

{ 0 if item j is currently unassigned;
Yi=

index of the knapsack it is assigned to, otherwise.

procedure GREEDYS:
input: n. (pj). (Wj). zZ. (yj)4 i.Ci;
output: z. (y;);
begin
forj :=1ton do
if yi = 0 and Wi < ¢; then

begin
y =i
Ci '=Cp —Wj;
zZ =z +pj
end

end.

After GREEDYS has been called m times, the algorithm improves on the solution

180 6 0-1 Multiple knapsack problem

through local exchanges. First, it considers all pairs of items assigned to different
knapsacks and, if possible, interchanges them should the insertion of a new item
into the solution be allowed. When all pairs have been considered, the algorithm
tries to exclude in turn each item currently in the solution and to replace it with
one or more items not in the solution so that the total profit is increased.

Computational experiments (Martello and Toth, 1981b) indicated that the
exchanges tend to be much more effective when, in the current solution, each
knapsack contains items having dissimilar profit per unit weight. This, however,
is not the case for the initial solution determined with GREEDYS. In fact, for
the first knapsacks, the best items are initially inserted and, after the critical item
has been encountered, generally other “good” items of smaller weight are selected.
It follows that, for the last knapsacks, we can expect that only “bad” items are
available. Hence, the exchange phases are preceded by a rearrangement of the
initial solution. This is obtained by removing from the knapsacks all the items
currently in the solution, and reconsidering them according to increasing profit
per unit weight, by trying to assign each item to the next knapsack, in a cyclic
manner. (In this way the items with small weight are considered when the residual
capacities are small.)

The resulting procedure follows. It is assumed that items and knapsacks are
sorted according to (6.9) and (6.29).

procedure MTHM:
input: n.m. (p;). ;). (¢;);
output: z. (y;);
begin
1. [initial solution]
z:=0;
forj:=1ton doy :=0;
fori:=1tom do

begin
Ci =¢i;
call GREEDYS
end;
2. [rearrangement]
z :=0;
fori :=1tomdoc; :=c¢;
i:=1;
forj :=n to 1 step-1 do if y; > O then
begin
let / be the first index in {i..... m}pu{l.... i — 1} such that
wj < €5
if no such / then y; := 0 else
begin
y =1
Cl =01 — Wy,
z =z +p;;

ifl<mtheni:=/+1elsei:=1

6.6 Approximate algorithms 181

end
end;
for i :=1 to m do call GREEDYS;
3. [first improvement]
forj :=1ton doif y; > O then
fork:=j+1ton doif 0 <y, #y then
begin
h = arg max{w;. wi };
[:=arg min{w;. wi };
d:=w, —wy;
ifd <7, and ¢, +d > min{w, : y, =0} then
begin
t:=argmax{p, :y,=0andw, <7, +d};
Cy, = Cy, +d — wy;
EYI = E,V/ —d;

Yt = Yhs
Yh =Y
Yi = Yr;
z:=z+p;

end;
4. [second improvement]
for j := n to 1 step-1 do if y; > O then
begin
C =7y,
Y =0;
fork :=1ton do
if Yk = 0 and wy < ¢ then
begin
Y =Y U{k};
C:=C— W
end;
if ZkEY Pk > Dj then
begin
foreach £k € Y do y; :=y;;
Cy, =,
¥ =0;
=24 ey Pe— D)
end

+Wj;

end
end.

No step of MTHM requires more than O(n?) time. This is obvious for Steps
1 and 2 (since GREEDYS takes O(n) time) and for Step 4. As for Step 3, it is
enough to observe that the updating of min{w, : y, = 0} and the search for ¢ (in
the inner loop) are executed only when a new item enters the solution, hence O (n)

times in total.
The Fortran implementation of MTHM is included in the present volume. With

182 6 0-1 Multiple knapsack problem

respect to the above description: (a) at Step 1 it includes the possibility of using, for
small-size problems, a more effective (and time consuming) way for determining
the initial solution; (b) Step 3 incorporates additional tests to avoid the examination
of hopeless pairs; (c) the execution of Step 4 is iterated until no further improvement
is found. (More details can be found in Martello and Toth (1981b).)

Example 6.3
Consider the instance of MKP defined by

n =9;
m =2;
(p;) = (80, 20, 60, 40, 60, 60, 65, 25, 30);
(w;) = (40, 10, 40, 30, 50, 50, 55, 25, 40);
(¢;) = (100, 150).
After Step 1 we have
() =(1,1,1,2,2,2,0,0,0),
z =320.
Step 2 changes (y;) to
(y) =,1,2,1,2,1,0,0, 0), with (¢;) = (10, 20).
Step 3 interchanges items 1 and 4, and produces
(y) =(,1,2,2,2,1,0, 2, 0), with (¢;) = (0, 5),
z =345.
Step 4 excludes item 5, and produces
(y) =(1,1,2,2,0,1,2,2,0), with (¢;) = (0, 0),
z =350,

which is the optimal solution. []

6.7 COMPUTATIONAL EXPERIMENTS

Tables 6.1 and 6.2 compare the Fortran IV implementations of the exact algorithms
of the previous sections on randomly generated test problems, using uncorrelated
items with

6.7 Computational experiments 183

Table 6.1 Uncorrelated items; dissimilar capacities. CDC-Cyber 730 in seconds. Average
times over 20 problems

m n HF MT MTM IKRM + MTM
25 0.221 0.143 0.076 0.119
2 50 0.694 0.278 0.112 0.333
100 1.614 1.351 0.159 1.297
200 6.981 7.182 0.223 6.551
25 4412 9.363 0.458 0.463
3 50 54.625 17.141 0.271 0.472
100 — — 0.327 1.542
200 — — 0.244 6.913
25 time limit time limit 1.027 0.921
4 50 — — 0.952 1.102
100 — — 0.675 1.892
200 — — 0.518 7.084

Table 6.2 Uncorrelated items; similar capacities. CDC-Cyber 730 in seconds. Average
times over 20 problems

m n HF MT MTM IKRM + MTM
25 0.280 0.141 0.191 0.215
2 50 0.671 0.473 0.329 0.490
100 1.666 0.810 0.152 1.295
200 6.109 4991 0.313 6.733
25 3.302 1.206 1.222 1.101
3 50 44.100 2.362 0.561 0.757
100 — 6.101 0.428 1.622
200 — 39.809 0.585 7.190
25 13.712 6.341 3.690 3.351
4 50 time limit 26.100 12.508 9.516
100 — — 3936 3.064
200 — — 9.313 7.412

p; and w; uniformly random in [10, 100],

and two classes of capacities: dissimilar capacities, having

n i—1
¢; uniformly random in |0, | 0.5 Zw, - ch fori=1,...,m—1,
j=1 k=1

and similar capacities, having

184 6 0-1 Multiple knapsack problem

¢; uniformly random in O.4ij/m, 0.6ij/m fori=1,...,m—1.
j=1 j=1

For both classes, the capacity of the mth knapsack was set to

n m—1
C,,,=0.5§ w; — g Ci.
j=1 i=1

Whenever an instance did not satisfy conditions (6.5)—(6.8), a new instance
was generated. The entries in the tables give average running times, expressed in
seconds, comprehensive of the sorting times.

For each value of m and n, 20 instances were generated and solved on a CDC-
Cyber 730. Each algorithm had a time limit of 300 seconds to solve the 80 instances
generated for each value of m. When this limit was reached, we give the average
time only if the number of solved instances was significant.

Tables 6.1 and 6.2 compare, on small-size problems, the branch-and-bound
algorithms of Hung and Fisk (1978) and Martello and Toth (1980a) (Section 6.4.1)
and the bound-and-bound algorithm MTM (Section 6.4.3). Three implementations
of the Hung and Fisk (1978) algorithm are possible, according to the relaxation
used (Lagrangian, surrogate, or a combination of the two). In addition, the algorithm
can be run with or without previous application of the Ingargiola and Korsh (1975)
reduction procedure IKRM (Section 6.5). Each entry in columns HF gives the
lowest of the six average times obtained. Similarly, columns MT give the lowest of
the four times obtained for the Martello and Toth (1980a) algorithm (Lagrangian or
combination of Lagrangian and surrogate relaxation, with or without the application
of IKRM). The last two columns refer to algorithm MTM, without and with the
application of IKRM, respectively. For all the algorithms, the solution of the 0-1
single knapsack problems was obtained using algorithm MT1 of Section 2.5.2.

The tables show that MTM is the fastest method, and that use of the reduction
procedure generally produces a considerable increase in the total computing
time (except for very difficult problems). MT is generally faster than HF. The
different capacity generations have little effect on HF and MT. For MTM,
instead, problems with dissimilar capacities are considerably easier. This can be
explained by observing that the algorithm generates no decision nodes for the last
knapsack, so it is at an advantage when one of the capacities is much greater
than the others. We used problems with dissimilar capacities to test MTM on
larger instances.

Table 6.3 compares the exact algorithm MTM with the approximate algorithm
MTHM. In addition, we analyse the behaviour of MTM when used to produce
approximate solutions, by halting execution after B backtrackings (with B = 10 or
50). For each approximate algorithm we give, in brackets, the average percentage
error. The table shows that the time required to find the exact solution increases
much more steeply with m than with » and tends to become impractical for m > 10.

6.7 Computational experiments 185

Table 6.3 Uncorrelated items; dissimilar capacities. CDC-Cyber 730 in seconds. Average
times (average percentage errors) over 20 problems

MTM exact MTHM MTM (B = 10) MTM (B = 50)
m n time time (% error) time (% error) time (% error)
50 0.082 0.013(0.170) 0.049(0.028) 0.070(0.004)
100 0.129 0.031(0.147) 0.089(0.018) 0.127(0.000)
2 200 0.153 0.057(0.049) 0.143(0.000) 0.152(0.000)
500 0.243 0.132(0.020) 0.242(0.000) 0.242(0.000)
1000 0.503 0.266(0.003) 0.502(0.000) 0.502(0.000)
50 1.190 0.018(0.506) 0.157(0.344) 0.434(0.312)
100 1.014 0.040(0.303) 0.268(0.076) 0.601(0.027)
5 200 1.178 0.074(0.148) 0.327(0.018) 0.687(0.012)
500 0.862 0.186(0.031) 0.659(0.001) 0.705(0.001)
1000 1.576 0.391(0.016) 1.231(0.001) 1.576(0.000)
50 3.852 0.035(0.832) 0.162(0.287) 0.477(0.211)
100 7.610 0.057(0.437) 0.324(0.174) 0.950(0.092)
10 200 32.439 0.106(0.219) 0.659(0.060) 1.385(0.039)
500 5.198 0.535(0.078) 1.760(0.009) 3.836(0.003)

1000 9.729 0.870(0.031) 3.846(0.003) 7.623(0.001)

When used as a heuristicc MTM gives solutions very close to the optimum; the
running times are reasonable and increase slowly with n and m. MTHM is faster
than MTM but its solutions are clearly worse.

Tables 6.4 and 6.5 show the behaviour of approximate algorithms (MTM halted
after 10 backtrackings and MTHM) on very large-size instances. The Fisk and Hung
(1979) algorithm is not considered, since extensive computational experiments
(Martello and Toth, 1981b) showed that it is generally dominated by MTHM. All
runs were executed on an HP 9000/840 with option “-0” for the Fortran compiler.
We used the same capacity generations as in the previous tables. For all data
generations, for n > 5000 the execution of MTHM was halted at the end of
Step 3, so as to avoid the most time consuming phase (this is possible through an
input parameter in the corresponding Fortran implementation).

Table 6.4 refers to uncorrelated items, obtained by generating

p; and w; uniformly random in [1, 1000].

The percentage errors were computed with respect to the optimal solution value
for m < 5, with respect to the initial upper bound determined by MTM for larger
values. With few exceptions in the case of very large problems, both algorithms
require acceptable computing times. The approximation obtained is generally very
good. The times of MTM (B = 10) are one order of magnitude larger than those of
MTHM, but the errors produced are one order of magnitude smaller. Computational
experiments on weakly correlated items (w; uniformly random in [1, 1000], p;
uniformly random in [w; — 100. w; +100]) gave similar results, both for computing
times and percentage errors.

186 6 0-1 Multiple knapsack problem

Table 6.4 Uncorrelated items. HP 9000/840 in seconds. Average times (average percentage
errors) over 20 problems

Dissimilar capacities Similar capacities

m n MTHM MTM (B = 10) MTHM MTM (B = 10)
200 0.266(0.0694) 0.131(0.0049) 0.277(0.0441) 0.157(0.0081)

S00 0.085(0.0208) 0.382(0.0006) 0.086(0.0197) 0.387(0.0011)

2 1000 0.177(0.0048) 0.877(0.0001) 0.173(0.0059) 0.728(0.0002)
2000 0.359(0.0017) 1.354(0.0001) 0.392(0.0023) 1.638(0.0000)

5000 0.806(0.0009) 3.716(0.0000) 0.802(0.0007) 3.346(0.0000)

10000 1.730(0.0004) 4.962(0.0000) 1.691(0.0003) 5.250(0.0000)

200 0.418(0.1796) 0.283(0.0235) 0.529(0.2152) 0.328(0.0275)

500 0.104(0.0278) 0.942(0.0037) 0.109(0.0408) 1.022(0.0069)

5 1000 0214(0.0105) 2.009(0.0014) 0.203(0.0146) 1.976(0.0012)
2000 0.455(0.0038) 3.510(0.0003) 0.409(0.0048) 3.994(0.0003)

5000 0.968(0.0010) 7.348(0.0000) 0.888(0.0011) 9.849(0.0000)

10000 1.998(0.0004) 9.138(0.0000) 1.843(0.0005) 23.932(0.0000)

200 0.064(0.1826) 0.500(0.0582) 0.052(0.3051) 0.046(0.1024)

500 0.154(0.0344) 1.172(0.0094) 0.132(0.0762) 1.373(0.0135)

10 1000 0.3000.0143) 2.517(0.0022) 0.262(0.0189) 2.561(0.0032)
2000 0.685(0.0041) 6.608(0.0004) 0.531(0.0079) 7.030(0.0008)

5000 1.273(0.0009) 8.502(0.0000) 1.143(0.0022) 14.127(0.0001)

10000 2.527(0.0004) 15.773(0.0000) 2.294(0.0007) 45.760(0.0000)

200 0.100(0.1994) 0.706(0.0865) 0.088(0.9004) 0.614(0.2619)

500 0.245(0.0471) 1.671(0.0181) 0.198(0.1393) 1.783(0.0327)

20 1000 0.426(0.0136) 4.285(0.0051) 0.403(0.0448) 4.065(0.0075)
2000 0.796(0.0059) 7.332(0.0012) 0.754(0.0113) 11.717(0.0016)

5000 1.676(0.0015) 17.980(0.0002) 1.659(0.0028) 27.829(0.0002)

10000 3.191(0.0005) 30.608(0.0000) 3.466(0.0010) 84.605(0.0000)

200 0.188(0.2865) 1.218(0.1923) 0.179(2.4654) 0.995(1.1246)

500 0.446(0.0752) 3.501(0.0477) 0.378(0.4732) 2.748(0.0808)

40 1000 0.910(0.0255) 7.575(0.0137) 0.696(0.1219) 6.049(0.0173)
2000 1.411(0.0081) 12.68%(0.0039) 1.289%(0.0364) 13.608(0.0041)

5000 3.085(0.0022) 27.718(0.0009) 2.761(0.0065) 44.538(0.0004)

10000 5.733(0.0008) 37.310(0.0004) 5.364(0.0020) 124.637(0.0001)

Table 6.5 shows the behaviour of MTHM on strongly correlated items, obtained
with

w; uniformly random in [1, 1000],
pj =w; +100.

MTM was not run since it requires the exact solution of 0-1 single
knapsack problems, which is practically impossible for this data generation (see
Section 2.10.1). The percentage errors were computed with respect to an upper

6.7 Computational experiments 187

bound on the solution value of the surrogate relaxation of the problem (we used
upper bound U, of Section 2.3.1). The computing times are slightly higher than
for uncorrelated items; the percentage errors are higher for large values of #.

Table 6.5 Algorithm MTHM. Strongly correlated items. HP 9000/840 in seconds. Average
times (average percentage errors) over 20 problems

m n Dissimilar capacities Similar capacities
200 0.124(0.0871) 0.114(0.0803)
500 0.829(0.0422) 0.460(0.0278)
2 1000 1.546(0.0157) 1.078(0.0138)
2000 5.333(0.0069) 7.498(0.0083)
5000 0.823(0.0236) 0.805(0.0191)
10000 1.618(0.0144) 1.571(0.0110)
200 0.165(0.1085) 0.130(0.1061)
500 0.683(0.0364) 0.373(0.0313)
5 1000 1.832(0.0155) 1.214(0.0133)
2000 3.500(0.0072) 6.662(0.0076)
5000 1.068(0.0272) 0.917(0.0245)
10000 2.173(0.0142) 1.919(0.0097)
200 0.158(0.1466) 0.091(0.1498)
500 0.636(0.0383) 0.668(0.0443)
10 1000 1.583(0.0167) 1.217(0.0132)
2000 9.943(0.0090) 7.862(0.0079)
5000 1.697(0.0278) 1.214(0.0255)
10000 3.246(0.0134) 2.507(0.0112)
200 0.154(0.6698) 0.194(0.3539)
500 0.491(0.0624) 0.480(0.0558)
20 1 000 1.172(0.0187) 1.833(0.0195)
2000 7.293(0.0091) 5.728(0.0082)
5000 2.624(0.0237) 1.802(0.0285)
10000 5.307(0.0096) 3.686(0.0179)
200 0.249(4.2143) 0.446(2.3671)
500 0.807(0.4680) 1.369(0.1365)
40 1000 1.460(0.0491) 3.477(0.0302)
2000 6.481(0.0137) 9.776(0.0108)
5000 4.799(0.0241) 2.986(0.0432)
10000 9.695(0.0141) 6.031(0.0186)

7

Generalized assignment
problem

7.1 INTRODUCTION

The Generalized Assignment Problem (GAP) can be described, using the
terminology of knapsack problems, as follows. Given n items and m knapsacks,
with

pij = profit of item j if assigned to knapsack i,
wy; = weight of item j if assigned to knapsack i,
¢; = capacity of knapsack i,

assign each item to exactly one knapsack so as to maximize the total profit assigned,
without assigning to any knapsack a total weight greater than its capacity, i.e.

maximize z = Zm: Zn:pijx,j (7.1)

i=l j=1

subject to Zw,-jx,j <, ieM={1,...,m}, 7.2)
j=1
> x=1, jeN={1,...,n}, (7.3)
i=1
x;=0orl, i€M,jeN, (7.4)

where
{ 1 if item j is assigned to knapsack i;
X5 =

0 otherwise.

The problem is frequently described in the literature as that of optimally assigning
n tasks to m processors (n jobs to m agents, and so on), given the profit p; and
the amount of resource w;; corresponding to the assignment of task j to processor
i, and the total resource ¢; available for each processor i.

189

190 7 Generalized assignment problem

The minimization version of the problem can also be encountered in the
literature: by defining ¢;; as the cost required to assign item j to knapsack i,

MINGAP is
minimize v = Z z CijXij 7.5)

i=l j=1

subject to (7.2), (1.3), (71.4).

GAP and MINGAP are equivalent. Setting p;; = —c;; (or cj; = —p;;) foralli e M
and j € N immediately transforms one version into the other. If the numerical data
are restricted to positive integers (as frequently occurs), the transformation can be
obtained as follows. Given an instance of MINGAP, define any integer value ¢
such that

I > max;epm jEN{Cij} (76)
and set
pij =1t —¢j fori e M,j €N. a.n
From (7.5) we then have
j=1 i=1 i=1 j=1

where, from (7.3), the first term is independent of (x;). Hence the solution (x;)
of GAP also solves MINGAP. The same method transforms any instance of GAP
into an equivalent instance of MINGAP (by setting ¢;; =7 —p;; fori € M, j €N,
with 7 > max;ecm jEN{pij})‘

Because of constraints (7.3), an instance of the generalized assignment problem
does not necessarily have a feasible solution. Moreover, even the feasibility

question is NP-complete. In fact, given an instance (wy,...,w,) of PARTITION
(see Section 1.3), consider the instance of GAP (or MINGAP) having m = 2, w; ; =
wyj=wjandpy j=py;=1forj=1,...,n,and c;=c; =13 ;’:1 w;. Deciding

whether a feasible solution (of value n) to such instance exists is an NP-complete
problem, since the answer is yes if and only if the answer to the instance of
PARTITION is yes.

The following version of the problem (LEGAP), instead, always admits a feasible
solution.

n

maximize £ = i Z[),-jx,-j (7.8)

i=1 j=I

subject to (7.2), (7.4) and

Y <l jeN (7.9)
i=1

7.1 Introduction 191

LEGAP too is equivalent to GAP. Given any instance of LEGAP, an equivalent
instance of GAP will have an additional knapsack of capacity c,+; = n, with
Pm+lj = 0 and wyyy ; = 1 for j € N, while p; = p;j fori € M and j € N.
(Knapsack m + 1 gives no extra profit and always allows a feasible solution, so
z =2.) Conversely, given any instance of GAP, we can define an integer constant
q such that

q > ZmaxiEM{py},
JEN
and set
ﬁl.jzpij-f-q fOI‘lEM,]eN

With these profits, any set of n items has a higher value than any set of £ < n items.
Hence, by solving LEGAP we obtain the solution for GAP (of value z = 2 — ng)
if (7.3) is satisfied, or we know that the instance of GAP has no feasible solution
if Y7, x;; =0 for some j.

LEGAP is a generalization of the 0-1 multiple knapsack problem (Chapter 6), in
which p; =p; and wy =w; foralli € M and j € N (i.e. the profit and weight of
each item are independent of the knapsack it is assigned to). Lagrangian relaxations
for LEGAP have been studied by Chalmet and Gelders (1977).

The best known special case of generalized assignment problem is the Linear
Min-Sum Assignment Problem (or Assignment Problem), which is a MINGAP
withn =m, c; =1 and w; =1 foralli € M and j € N (so, because of (7.3),
constraints (7.2) can be replaced by Zj'.'zl x; =1 for i € M). The problem can
be solved in O(n3) time through the classical Hungarian algorithm (Kuhn (1955),
Lawler (1976); efficient Fortran codes can be found in Carpaneto, Martello and Toth
(1988)). The assignment problem, however, is not used in general as a subproblem
in algorithms for the generalized case.

Another special case arises when w; = w; for all i € M and j € N. Implicit
enumeration algorithms for this case have been presented by De Maio and Roveda
(1971) and Srinivasan and Thompson (1973).

Facets of the GAP polytope have been studied by Gottlieb and Rao (1989a,
1989b).

We will suppose, as is usual, that the weights w; of any GAP instance are
positive integers. Hence, without loss of generality, we will also assume that

p;j and ¢; are positive integers, (7.10)
[{i :wy <ci}[>1 for j €N, (7.11)
Ci Z minjeN{w,j} for i e M. (712)

If assumption (7.10) is violated, (a) fractions can be handled by multiplying
through by a proper factor; (b) knapsacks with ¢; < 0 can be eliminated; (c) for
each item j having min;ep {p;} < 0, we can set p; = py + |miniey {p;}| + 1

192 7 Generalized assignment problem

for i € M and subtract |min;ep {p; }| + 1 from the resulting objective function
value. As is the case for the 0-1 multiple knapsack problem, there is no easy way of
transforming an instance so as to handle negative weights, but all our considerations
easily extend to this case too. If an item violates assumption (7.11) then it cannot
be assigned, so the GAP instance is infeasible. Knapsacks violating assumption
(7.12) can be eliminated from the instance.

In Section 7.2 we introduce various types of relaxations. Exact and approximate
algorithms are described in Sections 7.3 and 7.4, reduction procedures in Section
7.5. Section 7.6 presents the results of computational experiments.

7.2 RELAXATIONS AND UPPER BOUNDS
The continuous relaxation of GAP, C (GAP), given by (7.1)—-(7.3) and

x; > 0. ie€M,jeN, (7.13)
is rarely used in the literature since it does not exploit the structure of the problem
and tends to give solutions a long way from feasibility.

7.2.1 Relaxation of the capacity constraints

Ross and Soland (1975) have proposed the following upper bound for GAP. First,
constraints (7.2) are relaxed to

wix;y <ci, i €EM,j€N.

and the optimal solution X to the resulting problem is obtained by determining, for
eachj €N,

i(j)y=argmax {p;:i e M, wy; <¢}

and setting £;¢;, ; = 1 and £; = 0 for all i € M\{i(j)}. The resulting upper bound,
of value

Uo= > piciJ» (7.14)
j=1
is then improved as follows. Let
Nj={j€Niff,'j=1}, i EM,

di=§ Wij — Ci, i EM,
JEN;

7.2 Relaxations and upper bounds 193
M'={i €M :d; >0},
N'=[J N
ieEM!’

Given a set S of numbers, we denote with max, § (resp. min, §) the second
maximum (resp. minimum) value in S, and with arg max; S (resp. arg min; S) the
corresponding index. Since M’ is the set of those knapsacks for which the relaxed
constraint (7.2) is violated,

qj =picj.; —maxa{py i € M,w; <ci}, jEN'

gives the minimum penalty that will be incurred if an item j currently assigned to
a knapsack in M’ is reassigned. Hence, for each i € M’, a lower bound on the
loss of profit to be paid in order to satisfy constraint (7.2) is given by the solution
to the O-1 single knapsack problem in minimization form (see Section 2.1), KP}
(i € M), defined by

minimize v; = Z q;Yij
jENl
subject to Z wijyij > di,
jENl
yj=0orl, j € N;

where y; = 1 if and only if item j is removed from knapsack i. The resulting Ross
and Soland (1975) bound is thus

Uy = U — Zv,. (7.15)

iEM’

This bound can also be derived from the Lagrangian relaxation, L(GAP . }), of
the problem, obtained by dualizing constraints (7.3) in much the same way as
described in Section 6.2.2 for the 0-1 multiple knapsack problem. In this case too
the relaxed problem,

m n n m
maximize E E DijXij — E Aj E X —1
=1 j=1 Jj=1 i=1

subject to (12), (1.4),

separates into m 0-1 single knapsack problems (KP?,i =1, ... ,m) of the form

n
maximize z; = g DijXij
j=1

194 7 Generalized assignment problem

n
subject to Z WijXij <c¢i,
J=1

X,‘j=00r 1, jEN,

where p; = p; — A; , and its solution value is

m

z(L(GAP,A)):Zzi+Z/\j. (7.16)
j=1

i=1
It is now easy to see that, by choosing for); the value
X =maxy{p;:i €M. wy <c}, jEN,

we have z(L(GAP,))) = U,. In fact, by transforming each KPil into an equivalent
maximization form (as described in Section 2.1), and noting that, in each KPi’\,
Py <0ifj ¢ N; and wy < ¢;, we have v; =3°.\ g; —z; (i € M'). Hence, from
(7.14) and (7.15),

U1=Zpi(j)j— Zpi(i)j+zxf+zz";

JEN JEN' JEN' ieEM’

observing that, for i ¢ M/’, by definition we have ZjeN! wi < ¢, hence

zi =) jen, Dij» the Lagrangian solution value (7.16) can be written as
ZWGAP,) =Y i+ Y Y (i = A+ DA
ieM’ ieM\M' jEN, JEN
=D at D b= Y NN
ieM’ JEN\N! JEN\N'! JEN
=U,.
Example 7.1

Consider the instance of GAP defined by

n =17,

m =2;

oy — (69 421036

Pi? =\4 8 91 7 5 4)
4121 43 8 1

(W"f')‘(9 98 1 3 8 7)’("')=(22)‘

7.2 Relaxations and upper bounds 195
The initial bound is Uy = 47. Then we have

Ny ={1,2,4,5,7}, N, ={3,6}, (d)=(7, —6);
M'={1},N'={1,2,4,5,7});
a1 =2, @=1, q4=1, qgs=3, q7=2.

Solving KP| we obtain
Vi =2’ ()’1 j) = (09 09) Os Os) 1)9
so the resulting bound is

U1=U0—V|=45.[]

7.2.2 Relaxation of the semi-assignment constraints
Martello and Toth (1981c) have obtained an upper bound for GAP by removing
constraints (7.3). It is immediate to see that the resulting relaxed problem coincides

with L(GAP . 0), hence it decomposes into a series of 0-1 single knapsack problems,
KP? (i € M), of the form

n
maximize z; =E DijXij
J=1

n
subject to Z wiix; < ¢,
j=1

xj=0o0rl, J EN.

In this case too, the resulting upper bound, of value

Uy = zm:a, (7.17)

i=1

can be improved by computing a lower bound on the penalty to be paid in order
to satisfy the violated constraints. Let

N0={jeN:Zx,-,»=0},

ieEM

196 7 Generalized assignment problem
N>={jeN:Zx,~,>1}
ieM
be the sets of those items for which (7.3) is violated, and define
M>(Hy={ieM x;=1} forall j e N7;

we can compute, using any of the methods of Sections 2.2-2.3,

u) = upper bound on z if x; =0. j EN”,i € M>(j),

u;; = upper bound on z; if x; =1, jeN’ ieM

and determine, for each item j € N° UN>, a lower bound [; on the penalty to be
paid for satisfying (7.3):

min; ey {z — min (z;. 1)} if j € NO;
I = .
' Piem> (i — min @i u)
—max, ey > (j){z; — min (z,-_ug.)} ifjenN>.

The improved upper bound is thus

Uz = Ug — max;eyoun> {1 }. (7.18)

Example 7.2
Consider the instance of GAP defined by

n =5;
m =2;
oy = (733 8 T,
Pi) =\s 3 8 4 1)
oy = (828 91
Wi) \2 2 6 4 4)

The solutions to KP? and KP? are

Z1

17, (x1;)=(1,1,0,0, 1)
9, () =(1,0,0,1,0),

)

7.2 Relaxations and upper bounds 197
so Ug = 26 and

NO={3},N>={1}, M>(1)={1.2}.

1

We compute ug and u} through the Dantzig bound (Section 2.2.1), but, for uy,

we skip those items k£ for which wy > ¢; — w;;. Hence
64
u =7+3+ [?} = 17;

40
ugl =3+ l?J =09

u, =3+ (7 +3+0))=13;
u21.3 = 8.

It follows that /; = 0 and /3 = min {4. 1} = 1, so the resulting upper bound is
Upy=Up—1 =25

For this instance the Ross—Soland bound initially gives Uy = 33, and, after the
solution of KP!, U, = 31. Hence Uy > U, > Uy > U,. On the other hand,
computing the Martello-Toth bound for Example 7.1 gives Uy = 54, L = 2,
L=11s=51=11;=2and U, =49, ie. U < Uy < U < Uy. Thus while,
obviously, Uy > U and U > Us, no dominance exists between the other pairs of
these bounds. []

7.2.3 The multiplier adjustment method

Fisher, Jaikumar and Van Wassenhove (1986) have developed an upper bound,
based on the Lagrangian relaxation L(GAP . \) and dominating the bound proposed
by Ross and Soland (1975). Obviously, the continuous and integer solutions of a
knapsack problem may differ; this implies (see Fisher (1981)) that, for the optimal
Lagrangian multiplier A*,

z(L(GAP . \")) < z(C (GAP));

there is no analytical way, however, to determine A*. One possibility is the
classical subgradient optimization approach. The novelty of the Fisher-Jaikumar—
Van Wassenhove bound consists of a new technique (multiplier adjustment method)
for determining “good” multipliers. The method starts by setting

Aj=maxy {py:i EM,w; <¢}, jEN;

as shown in Section 7.2.1, the corresponding Lagrangian relaxation produces the
value U; of the Ross—Soland bound. Note, in addition, that, with this choice, we

198 7 Generalized assignment problem

have, for each j € N, p; (= pj — A;) > 0 for at most one i € M, so there is an
optimal Lagrangian solution for this A which satisfies > ' x; < 1 forall j € N.
If some constraint (7.3) is not satisfied, it is, under certain conditions, possible to
select a j* for which) ", x;» = 0 and decrease A;» by an amount which ensures
that in the new Lagrangian solution) ", x;» = 1, while > -, x; < 1 continues to
hold for all other j. This phase is iterated until either the solution becomes feasible
or the required conditions fail.

The following procedure, ADJUST, is an efficient implementation of the
multiplier adjustment method. After the initial solution has been determined, a
heuristic phase attempts to satisfy violated constraints (7.3) through pairs (i.j)
such that p;; — A; = 0. The adjustment phase then considers items j* violating (7.3)
and computes, for i € M, the least decrease A;» required in A+ for item j* to be
included in the optimal solution to KP. If an item j* is found for which

(a) min2 {Aljt,...,A;,,j*} >0;

(b) decreasing A;» by min {Aje, .. Ay ,-‘} the new Lagrangian solution
satisfies Y 1 x; < 1forallj €N,

then such updating is performed (decreasing the current upper bound value by
min{A; j+,...,An,;+}) and a new heuristic phase is attempted. If no such j*
exists, the process terminates.

The output variables define the upper bound value

m
U3 = E zZ; +
i=1 J

n

A (7.19)
1

if opt = “yes”, this value is optimal and (x;;) gives the corresponding solution.

procedure ADJUST :
input: n.m. (py). wy). (¢;);
output: (z;), (A)), (x;), Us, opt;

begin
comment: initialization;
N :={l..... n};
M={1..... m};

for i :=1tomdo forj:=1ton dox; :=0;
forj:=1tondo) =maxy{p;:i €M, w; <c};
Us = ZjeN Ajs
fori :=1tom do
begin
N :={j EN 1D — A > 0};
set x;;(j € N;) to the solution to
max z; =3 iy (Pij — AjX;
subjectto >y wyx; < i,
X,‘j=0 or 1. j €éN;;

7.2 Relaxations and upper bounds 199

U3 = U3 +z;
end;
opt := “no”;
if) ;cn X =1forallj €N then opt = “yes”
else
repeat

comment: heuristic phase;
W =4GJ): Y iem Xy =0. py — Xy =0}
for each (i.j) € 1/, in order of decreasing p;;, do
if) pem g =0and wy + 57y waxy < ¢; then x; = 1;
comment: adjustment ;
if > i Xy = 1forallj €N then opt := “yes”
else
begin
J={J €N) hem i =0}
found := “no”;
repeat
let j* be any index in J;
J=J\{j"};
Mj+ ={i €M :wy» <c;};
for each i € M;. do
begin
Ni={j eN\{j*}:pj — A >0.wy <c¢i —wy»};
determine the solution to
(KP;) max z; = jENz(p’j — Aj)y]
subject to ZjEN, wiy; < ¢ — wij-,
Yj =0 or l.jeN,‘;
Ajjr = z; — (G + (pis — Aj»))
end;
if minz{A[j‘ 1€ Mj'} > 0 then
begin
i*=argmin {Ay. 11 € M+ };
let (y;). j € N;-, be the solution found for KP;»;
for each j € N\N;. do y; := 0;
yi» = 1;
iijj + 3 iem\(i+y Xy < 1forallj €N then
begin
found = “yes”;
/\j: = /\j: - minz{A,j. 1€ Mj.};
replace row i* of x with (y;);
Zi» = f,w +(p,~»j‘ — /\j*);
U3 = U3 — Ajnja
end
end
until J = @ or found = “yes”
end
until opt = “yes” or found = “no”
end.

200 7 Generalized assignment problem

Example 7.2 (continued)

The initial solution is obtained by setting

V) =6,3,3,4,1):

21

10, (x1,;) = (0, 0,0, 1, 1);

5, (2.;)=1(0,0,1,0,0);

22

Uy =16+ (10 + 5) = 31 = Uy.

The heuristic phase has no effect, hence J = {1.2}. For j* = 1 we obtain

M, ={1,2}
Ny ={5},51=6,ys=1, A1 =2;

N, =9,%,=0, Ay, =5,

hence i* = 1. Replacing (x; ;) with (1, 0, 0, 0, 1), condition ZieM x;; < 1 continues
to hold for all j € N, so we have

O =(0,3,3,4,1);
Z] = 13,(X1,’)=(1, 0,0,0, 1)
Uz =29.

The heuristic phase sets x; 2 = 1, hence J = {4}. For j* = 4 we have

M4 ={1. 2},
Ni ={5},21=6,y5=1, Ar4=3;

N2 = {1}’ 22 =59 V1= 19 A2A4 =09

so the execution terminates with U3 = 29. For this instance we have U; < U,(= 31),
but Uz > Uy (= 26) > U, (= 25). On the other hand, applying procedure ADJUST
to the instance of Example 7.1, we initially have Uz = 45, then the first adjustment
improves it to 43 and the second to 42 (with two further adjustments producing no
improvement). Hence Us = 42 < U, (=49) < Uy (= 54). (]

Examples 7.1 and 7.2 prove that no dominance exists between the Fisher—
Jaikumar—Van Wassenhove bound (U3) and the Martello~Toth bounds (U, and

7.2 Relaxations and upper bounds 201

U,), nor between the Ross—Soland (Uy and U,) and the Martello-Toth bounds. As
already shown, the only dominances among these bounds are Uz < U, < Uy and
U, < U.

7.2.4 The variable splitting method

Jornsten and Nasberg (1986) have introduced a new way of relaxing GAP in
a Lagrangian fashion. (A general discussion on this kind of relaxation can be
found in Guignard and Kim (1987).) By introducing extra binary variables y;
(i € M. j € N) and two positive parameters « and /3, the problem is formulated,
through variable splitting, as

maximize a Z Zp,,x,, +4 Z Zp,,y,, (7.20)

i=l j=1 i=l j=1

subject to Zw,-jx,-j <g¢, IeM, (7.21)
> vi=1, jEN, (1.22)
Xij = Yij, ieM,j€eEN, (7.23)
xj=0orl, ieM,j€eN, (7.24)
yj =0orl, ieM,jEN. (7.25)

We denote problem (7.20)—(7.25) by XYGAP. It is immediate that XYGAP is
equivalent to GAP in the sense that the corresponding optimal solution values,
z(XYGAP) and z(GAP), satisty

2(XYGAP) = (a + 3) z(GAP). (7.26)

The new formulation appears less natural than the original one, but it allows a
relaxation of constraints (7.23) through Lagrangian multipliers (y;). The resulting
problem, L(XYGAP ,),

maximize o Z Zp,,x,, + 73 Z Zp,,y;, + Z Z pijx — yi) (71.27)

i=1 j=1 =] j=1 i=1 j=1

subject to (7.21), (7.22), (7.24), (7.25),

202 7 Generalized assignment problem

keeps both sets of GAP constraints, and immediately separates into two problems,
one, XGAP(y), in the x variables and one, YGAP(y), in the y variables. The
former,

maximize z(XGAP() =% > (apy +)X

i=l j=1

n
subject to Z wiix; < ¢i, i €M,
j=1
xj=0orl, ieEM,jeEN,

has the same structure as L(GAP.)\) (Section 7.2.1), hence separates into m 0-1
single knapsack problems (KP/. i =1, ... ,m) of the form

n

maximize %= E (apyj + pij)x;;
j=1
n

subject to E wiixi; < ¢y
J=1

xj=0o0rl, jEN;
the latter

maximize z(YGAP(10) = > > (Bpyj — my)yi

i=1 j=1
m

subject to nyf =1, J €N,
i=1

yij =0orl, i€EM,jEN,

has the same structure as the initial Ross—Soland relaxation (Section 7.2.1), hence

its optimal solution is
1 ifi=i(j)
Yij = { fOI'j EN.
0 otherwise,

where
i(j)=arg max {Bp; —py; i €M, w; <ci}.

By solving problems KP/ (i € M), we obtain the solution to L(XYGAP.), of
value

7.2 Relaxations and upper bounds 203

Z(LXYGAP, 1) =D 2+ > (Bpisy j — i) (7.28)

i=1 j=1
hence the upper bound
Us = |z(LXYGAP, 1)) /(e + B)]. (7.29)

Jornsten and Niasberg (1986) have proved that, for o« + 3 = 1 and for the optimal
Lagrangian multipliers A*. p*,

Z(L(XYGAP , 1)) < z(L(GAP, *)).
However, there is no analytical way to determine y*, and the multiplier adjustment
method of Section 7.2.3 does not appear adaptable to XYGAP. Jomsten and
Nisberg have proposed using a subgradient optimization algorithm to determine a

“good” u. At each iteration, the current y is updated by setting p;; = p; + t(yij —
x;) (i €M, j € N), where t is an appropriate positive step.

Example 7.2 (continued)

Using e = 3 = % and starting with p; =0 foralli € M. j € N, we obtain
) = 1 1 0 0 1
Y)=1 0 0 1 o)
i.e., the same solution found for U (Section 7.2.2), and
(yii) = 1 1 0 1 1
Y=o o 1 0 o)

i.e., the same solution found for Uy. The initial upper bound value is thus
Uy =|13+165] =29 (= Uy).

Assuming that the initial step is # = 1, we then have
i) = 0O 0 0 1 0)
F)= 21 0 1 -1 0)

(apij + pij) = (

1 0 1
(""f)‘(o 0 1 0 o)’

(ST IPCI S TR
[T ST}
p— 9]

= NI

\——/

NIWwW Nt

—_
=

204 7 Generalized assignment problem

SEREERE
7 3

(Bpij — pij) = (),

1

73 3 3 3

—
o
—
—

1

and the upper bound becomes
Us=|135+14.5] =28.

Further improvements could be obtained by iterating the procedure. []

7.3 EXACT ALGORITHMS

The most commonly used methods in the literature for the exact solution of GAP
are depth-first branch-and-bound algorithms.

In the Ross and Soland (1975) scheme, upper bound U, (see Section 7.2.1)
is computed at each node of the branch-decision tree. The branching variable is
selected through the information determined for computing U, . In fact, the variable
chosen to separate, x;-;», is the one, among those with y; =0 (i e M', j € N') in
the optimal solution to problems KP! (i € M'), for which the quantity

qj
wii/ (ci = Z:=1 Wikxik)

is a maximum. This variable represents an item j* which is “well fit” into knapsack
i*, considering both the penalty for re-assigning the item and the residual capacity
of the knapsack. Two branches are then generated by imposing x;»;» = 1 and
Xixj*» = 0.

In the Martello and Toth (1981c) scheme, upper bound min (U, . U,) (see Sections
7.2.1,7.2.2) is computed at each node of the branch-decision tree. In addition, at the
root node, a tighter upper bound on the global solution is determined by computing
min (U3, U,) (see Section 7.2.3). The information computed for U, determines the
branching as follows. The separation is performed on item

j*=argmax {/; :j EN°UN>},

i.e. on the item whose re-assignment is likely to produce the maximum decrease
of the objective function. If j* € N° m nodes are generated by assigning
j* to each knapsack in turn (as shown in Figure 7.1(a)); if j* € N>, with
M>(j*) = {i1,i2,...,im}, m — 1 nodes are generated by assigning j* to knapsacks
i1,...,im_1 in turn, and another node by excluding j* from knapsacks ij,. .., im_|

(as shown in Figure 7.1(b)). With this branching strategy, m single knapsack

7.3 Exact algorithms 205

problems KP? must be solved to compute the upper bound associated with the root
node, but only one new KP? for each other node of the tree. In fact if j* € N,
imposing x;» = 1 requires only the solution of problem KP?, the solutions to
problems KP? (i # k) being unchanged with respect to the generating node; if
j* € N>, the strategy is the same as that used in the Martello and Toth (1980a)
algorithm for the 0-1 multiple knapsack problem (see Section 6.4.1), for which
we have shown that the solution of 7 problems KP? produces the upper bounds
corresponding to the m generated nodes.

Figure 7.1(a) Branching strategy when j* € N©

—l'j*=0

Figure 7.1(b) Branching strategy when j* € N¢

The execution of the above scheme is preceded by a preprocessing which: (a)
determines an approximate solution through a procedure, MTHG, described in the
next section; (b) reduces the size of the instance, through two procedures, MTRG1
and MTRG?2, described in Section 7.5. (Example 7.3 of Section 7.5 illustrates
the branching scheme.) At each decision node, a partial reduction is performed,

206 7 Generalized assignment problem

by searching for unassigned items which can currently be assigned to only one
knapsack. The Fortran implementation of the resulting algorithm (MTG) is included
in the present volume.

In the Fisher, Jakumar and Van Wassenhove (1986) scheme, upper bound Uj;
(Section 7.2.3) is computed at each node of the branch-decision tree. The branching
variable is an x;»;+ corresponding to a w;.;» which is maximum over all variables
that have not been fixed to O or 1 at previous branches. Two nodes are then
generated by fixing x;»;» =1 and x;+;» = 0.

No scheme has been proposed by Jornsten and Nisberg (1986).

7.4 APPROXIMATE ALGORITHMS

As seen in Section 7.1, determining whether an instance of GAP (or MINGAP) has
a feasible solution is an NP-complete problem. It follows that, unless P = AP,
these problems admit no polynomial-time approximate algorithm with fixed worst-
case performance ratio, hence also no polynomial-time approximation scheme.

The following polynomial-time algorithm (Martello and Toth, 1981c) provides
approximate solutions to GAP. Let f;; be a measure of the “desirability” of assigning
item j to knapsack i. We iteratively consider all the unassigned items, and determine
the item j* having the maximum difference between the largest and the second
largest f;; (i € M); j* is then assigned to the knapsack for which fj;+ is a maximum.
In the second part of the algorithm the current solution is improved through local
exchanges. On output, if feas = “no”, no feasible solution has been determined;
otherwise the solution found, of value z", is stored in y; = (knapsack to which item
j is assigned), j = 1,...,n.

procedure MTHG:
input: n.m. (pi). wyj). (¢;). (fij);
output: z".(y)), feas;

begin
M ={l..... m};
U:={1,....n}
comment: initial solution;
feas = “yes”
fori:=1tomdoc =c;;
2" =0
while U# @ and feas = “yes” do
begin
d* = —oxc;
for eachj € U do

begin
Fi={ieM: w; <G}
if F; = @ then feas := “no”
else

7.4 Approximate algorithms 207
begin

i"=argmax { f;:i €F;};

if ;;\{i'"} =@ then d := +oc

else d :=f,; —maxy{ f; :i € F;};

if d > d” then
begin
d* =d,
i* =i
jt=i
end
end
end;
if feas = “yes” then
begin
yje =i
Zh =z +pi‘j‘v
Ci» 1=Ci» — Wirj»;
U:=U\{j"}
end

end;
comment: improvement;
if feas = “yes” then
forj :=1ton do

begin
i"=yj;
A= {py i e M\{i'}. wy <Ti};
if A # @ then
begin
let pirj = max A;
if p;; > p;i; then
begin
yj = i
2=zt — ppj +pinj;
Cit (=Cjr + Wi,
E,u = E,‘u - W,'//J
end
end
end

end.

Procedure MTHG can be implemented efficiently by initially sorting in
decreasing order, for each item j, the values f; (i € M) such that w; < T; (= ¢;).
This requires O (nm log m) time, and makes immediately available, at each iteration
in the inner loop, the pointers to the maximum and the second maximum element
of {fj : i € F;}. Hence the main while loop performs the O(n) assignments
within a total of O(n?) time. Whenever an item is assigned, the decrease in T;»
can make it necessary to update the pointers. Since, however, the above maxima
can only decrease during execution, a total of O (n?) operations is required by the

208

algorithm for these checks and updatings. By finally observing that the exchange
phase clearly takes O(nm) time, we conclude that the overall time complexity of

MTHG is O (nmlogm + n?).

Computational experiments have shown that good results can be obtained using

the following choices for f;;:

(a) fij = p; (with this choice the improvement phase can be skipped);

®) fij = pij /wys

© fij = —wi;
) fy = —wi/ci.
Example 7.3

Consider the instance of GAP defined by

n =8;
m =3;
27 12
34 34
21 13
(W,'j) = (20 8
16 16

12 16 24
37 9 36
20 9 19
9 5 17
18 25 6
18 24 11

31
25
19

15
6
11

7 Generalized assignment problem

13
34);
34

18

Let us consider execution of MTHG with f; =

algorithm gives

hence

jr=4
j* =
j* =
jr=1
jr=2
j*=6
jt=T
jt=5

2 d”
1 d”
1d* =
1 d* =
2 d”
2 d”
s d”
1dr =

24 26
6);(c,~)= (25

34

=19, w=1,¢, =21,

=12, yg

9, 3
=+0oc, y;
=8 »
=5 ¥
=11, ¥y

4, ys

=2,7,

=191, (y)=(. 2. 1. 1. 1. 2. 1. 2), @) = (0.

The second phase performs the exchanges

=19;
=12;
= 18;
=11;

5. 18).

).

—wj;. The first phase of the

7.5 Reduction algorithms 209

j=2iy2 =3,C_’2 =13,C_’3 =2;
j =5:y5 =2,E| = 7,52 =7;

so the solution found is

M =232, (y)=(G. 3. 1. 1.2. 2. 1. 2).J

A Fortran implementation of MTHG, which determines the best solution
obtainable with choices (a)-(d) for f;;, is included in the present volume. A more
complex approximate algorithm, involving a modified subgradient optimization
approach and branch-and-bound, can be found in Klastorin (1979).

Mazzola (1989) has derived from MTHG an approximate algorithm for the
generalization of GAP arising when the capacity constraints (7.2) are non-linear.

7.5 REDUCTION ALGORITHMS

The following algorithms (Martello and Toth, 1981c) can be used to reduce the
size of an instance of GAP. Let (y;) define a feasible solution (determined, for
example, by procedure MTHG of the previous section) of value z” = Z/"':l Py, .-

The first reduction algorithm receives in input the upper bound value U, of
Section 7.2.1 and the corresponding values i(j) = arg max {p; : i € M, w; <¢;}
(j € N). The algorithm fixes to O those variables x; which, if set to 1, would
decrease the bound to a value not greater than z”. (We obviously assume z" < Up.)
If, for some j, all x;; but one, say x;.;, are fixed to 0, then x;-; is fixed to 1. We
assume that, on input, all entries of (x;) are preset to a dummy value other than 0
or 1. On output, k;) (J € N) has the value |{x; : i € M, x; =0}/, and T; gives
the residual capacity of knapsack i (i € M); these values are used by the second
reduction algorithm. We also assume that, initially, ¢; = ¢; for all i € M. If, for
some j, all x; are fixed to 0, the feasible solution (y;) is optimal, hence the output
variable opt takes the value “yes”.

procedure MTRG1:
input: n.m. (p;j). wy). (@).z". Uo. (i (j)). (xi);
output: (x;). (k). (C;), opt ;
begin
opt := “no”,
Jj=0;
while j < n and opt = “no” do
begin
J=j+ 1
kj0 =0
fori :=1tomdo
if 2" > Uy — pi(j) j +pij or wy >T; then

210 7 Generalized assignment problem

begin
Xjj == 0;
kP =kP+1
end
elsei* =1i;
if k;) =m — 1 then
begin
Xi*j = 1,
Ci» = E,’t — Wi»j
end
else if k = m then opt := “yes”

end
end.

The time complexity of MTRGI is clearly O(nm). When the execution fixes
some variable to 1, hence decreasing some capacity c¢;, further reductions can be
obtained by reapplying the procedure. Since n variables at most can be fixed to 1,
the resulting time complexity is O (n%m).

The second reduction algorithm receives in input (x;;), (k;)), (¢i), the upper bound
value U of Section 7.2.2 and, for each problem KP? (i € M), the corresponding
solution (%; i,...,%i,) and optimal value z;. Computation of the upper bounds of
Section 7.2.2,

ui(} = current upper bound on the solution value of KP,»2 if x; =0;

u;; = current upper bound on the solution value of KP/ if x; = 1,

is then used to fix to Xj; variables x; which, if set to 1 — %;, would give an
upper bound not greater than z". We assume that MTRG1 is first iteratively run,
then U, and the solutions to problems KP? are determined using the reductions
obtained. Consequently, the new algorithm cannot take decisions contradicting
those of MTRGI. It can, however, fix to 1 more than one variable in a column, or to
0 all the variables in a column. Such situations imply that the current approximate
solution is optimal, hence the output variable opt takes the value “yes”.

procedure MTRG2: .
input: n.m. (p;). w;). @).2". Uyp. (z). (&) (x;)- *;
output: (x;), opt;

begin
opt = “no”;
Jj=1
repeat
if k> < m — 1 then
begin
kl1:=0;

fori:=1tomdo
if Xjj # 0 then

7.5 Reduction algorithms 211

if w; > c; then

begin
x; =0
kO =k0+1
end ! !
else .
if % =0 and z" > Ug — z +u} then
begin
x; =0
kj0 = ij +1
end
else
begin
if k<1 =0theni* :=1;
|ffc,J =1 and z” > UO —Z; +u2 then
if k1=0thenkl:=1
else opt := “yes”
end;

if opt = “no” then
if k' =m —1 or k1=1then

begin
for /i :=1tom do x; :=0;
Xi=j = 1;
Ci» = Cir — Wirj;
k) =m—1
end
else
if k? = m then opt = “yes”
end;
ji=j+1
untilj > n or opt="yes”

end.

If uj) and uj; are computed through any of the O (n) methods of Sections 22 and

2.3, the time complexity of MTRG2 is O(mn?). In this case too, when a variable
has been fixed to 1, a new execution can produce further reductions.

Example 7.3 (continued)
Using the solution value z# = 232 found by MTHG and the upper bound value
Uy =263, MTRGI gives
j =7:x27 =0,x37=0, hence k¥ =2, s0
xi7 =1,0, =21

j =8: X1.8=O.

212 7 Generalized assignment problem

Solving KP? (i = 1,2,3) for the reduced problem, we get
001 110 @ © 93\
&) = (0 00011 @ 1), (zi)= (95), Uy =256,
110000 @O 68
where fixed x; values are circled. Executing MTRG2 we have
J=1:x1=0,x,=0,hence x3; =1, c3 = 18;
j =4: Xp4 = 0, X34 = 0, hence x| 4 = 1,c, = 16.

The execution of the Martello and Toth (1981c) branch-and-bound algorithm
(see Section 7.3) follows. Computation of U, and Us for the root node gives

N°=@. N> ={5}, M>(5)={1,2}
“?5 = 89, “35 =85; Is =4, Uy =252;
Us = 245.

The branching scheme is shown in Figure 7.2. Since j* = 5, we generate nodes
1 and 2, and compute the corresponding bounds.

Uo=232=z"

Uo=232=z" Uo=229<z" U,=218<z"

Figure 7.2 Decision-tree for Example 7.3

Node 1:(%2,) =(0,0,1,0,0,0,0, 1), 2o =71, Ug =232 = z".
Node 2 : (%, ;) =(0,0,0,1,0,1,1,0),z, =88, U = 251;

N® = {3}, N> ={6}, M>©)={1, 2}

uly =69, w), =718, uly;=>54, Iy =14;

u?‘é =175, ugﬁ =96, [=0;

7.6 Computational experiments 213

U, =237,
Up = U, = 263 (unchanged).

The highest penalty is /3 = 14, hence j* = 3 and nodes 3, 4, 5 are generated.

Node 3 : (% ;) =(0,0,1,1,0,0,1,0), z;, =69, Ugy=232=z".
Node 4 : (£ ;) =(0,0, 1,0, 1,0,0,0), z, =73, Uy = 229< z".
Node 5: (%3,) =(1,0,1,0,0,0,0,0), z3 =54, Uy =237;

N® ={2}, N> ={6}, M>(©)= {1, 2}

ul, =69, ul, =95 ul,=-~, Lh=0;
ule =69, ud¢ =75 lo=19;
U, =218 < z".

The approximate solution (y;) = (3, 3, 1, 1, 2, 2, 1, 2), of value z" = 232, is
thus optimal. []

7.6 COMPUTATIONAL EXPERIMENTS

Tables 7.1 to 7.4 compare the exact algorithms of Section 7.3 on four classes
of randomly generated problems. For the sake of uniformity with the literature
(Ross and Soland (1975), Martello and Toth (1981c¢), Fisher, Jaikumar and Van
Wassenhove (1986)), all generated instances are minimization problems of the
form (7.5), (7.2), (7.3), (7.4). All the algorithms we consider except the Ross
and Soland (1975) one, solve maximization problems, so the generated instances
are transformed through (7.7), using for ¢ the value

I =maX,em, jeN {(,’,'j} +1.
The classes are

(a) wy; uniformly random in [5, 25],
¢;j uniformly random in [1, 40],
¢ =9n/m)+04 max,'eM{ZjeNl witfori=1,...,m
(where N, is defined as in Section 7.2.1);

(b) wj; and ¢;; as for class (a),
¢i=0709n/m)+04 max,eM{ZjeNl wihfori=1,...,m;

(c) w; and ¢;; as for class (a),
¢i =08 Z;=1 wi/m fori=1,...,m;

7 Generalized assignment problem

214

Cl 801°1 £ 0s1°0 9 L1T°0 4! 44\ 01 P00 0¢
8% LE]'T L 061°0 0ze 66L9 Iy 8620 61 LSOO 0c
L L8E0 € YLO0 € 9600 L L90°0 01 L10°0 01
I 6900 I 1L0°0 9 17440 I SLOO S1 S¥0'0 0¢
Sl ¥00'1 S 001°0 £6¢ LT6'S 91 210 81 S£0'0 0c
I 6100 [8100 I S00°0 I 9100 [4 9000 0l
C €870 [4 980°0 123 (6)680°01 C 0900 S 8100 0¢
C 41XV [4 w00 el oLl [4 8¢0°0 01 0200 0T
1 500 I 200 [4 0100 I 100 € €000 o1
SOPON swt], SOpON s, SIPON aun], SOPON surgp, SOPON owi], u
NIOLA ALIDIN Afd DI Sy

sudjqoid (] I9A0 SIPOU JO sIequINU dFeIdAY/souIn IFRIGAY ‘SPUOIIS UL 0F8/0006 dH "(B) 19 Ble(

'L S1qeL

215

7.6 Computational experiments

€69 (L8508 sz6 (DS19'08 8cv (DTE6'18 0S6S (1)SLO'89 ¥S8EE (©)08SPL Of
vv6 (©)€TLSL 155 SSLHT €h0T (£)1€8°T6 11€2 96561 v616 (6)9E0'LI 0T
L 6€L°T €€ $95°0 011 v60°T 6 vSr0 65T v1€0 01
8011 (9166778 €001 (2)SSL'06] dwiy v789 (9Tr8'€9 T679s (1)$69'€6 Of
€68 (DIET6E 68v (LOgS'TY | dwp 865 (LLSYTE ¥ (Ov0s'sy 0T
It zigl 1€ 6550 69 $76°0 S 8270 91 LST0 01
Nw] dwp] dwiy iy dwn ity dwn nwity Swn 0€
1€ (9EL5°69 0£9 (8)879°6Y vIL (91S6°6L zior 181 LO66 906€1 0T
9z €6L°0 vl TIE0 S1 91t'0 43 €21°0 £6 630°0 01
SIpPON wn], SOpON Juurg, SOPON sy, S9pON swi], SOpON sy, u
NfOLN ALIDLIN Afd OLN sy

swa[qoid (] 1940 S3poU JO s1qUINU SFEIOAY/SOWI 9FLIGAY "SPUOIIS UL ()8/0006 dH (q) 198 BIeq 'L JIqEL

7 Generalized assignment problem

216

| dwn nwi| oum i own nw own nun| sum (i3
s (L)9EY 68 141 88°LY] swn [4%%! 869°C1 gzele (91919 0C
91¢ 1889 0oL 80L'1 S61 82°0'Y 9T¢ ¥6L°0 £6¢ YLV O 01
0¢8 (OPLELY 156 (D6st'16] swn veey (Lozs' Ly T19zs (1)0L9°T6 0¢
9Z8 (89t 1¢€ 1239 (8)69L7€€ jtug] swn 901 (6)S127°81 LeLze (99Ly Ly 0C
61 6560 8¢ 9LS0 6 8Y9°I a4 €vTo)74 SYT0 01
6861 (2)08598 €68 (D096 jruf] swmgy 79¢el (De9ees 07989 (DZv1'86 0¢
Y191 (DLIT Y 09L (D1LY'8Y Wil (1)STS96 88LY LIL'81 LEIEI 809°L1 0¢
14% 9¢1°1 §C LOS°0 (44 §LSO 0§ 9L1°0 121 0110 01
SOpPON aur, SOpON s, SIpON au], SOpPON o], SOPON s, u

NIOLW ACADLIN Afd DI Sd

swajqoid ()] 19A0 SIPOU JO SIAqUINU IFRIIAY/SIWIN) 9TRISAY ‘SPU0IIS Ul ()$8/0006 dH °

(9) 1ws BlRQ €L 8L

217

7.6 Computational experiments

HUCHEELCH g s oy iy Quuy iy suny 0¢
iy s iy wn I owry eLL (9eoTie iy dwiy (174
€9 I8¢ 89 1274 801 LL91 €L 86¥°0 L69 0180 ol
iy swn g suny nuary own L9279 (1D000'L6 iy swim 0¢
108 (©)181°16 9.8 (OrT0°S6 nur swn L8S1 06891 iy sy 114
8¢ 14744 I 0L8°0 08 996'0 8v 0s¢°0 SLS 1760 01
9L01 (DTOL'S6 Syl (DI189'L6 ity duiy 0£z8 (€)T8s6L iy swiy 0¢
06¢ (142 Ye sovlt (LETI'T9 9ce (9)608'98 SLTT eyl 1zecy SLSOS 114
4! 09L°0 4 $9¢°0 0¢ $$T°0 0¢ 891°0 91 0s1'0 01
SOpON sup, SPON wiy, S3PON sy, SOPON sy, SOPON iy, u
NIOIN AfIDIN Afd DIN Sy

swa[qold ()| J2A0 SIpOU JO sIdquunu

aFeroAy/saul} 9FeIdAY "SPUOIIS Ul OHR/0006 dH "(P) 198 eIk +°L 91qel

218 7 Generalized assignment problem

(d) wy; uniformly random in [1, 100],
¢;; uniformly random in [wy;. wy; + 20],
¢i =08 Z;':l wi/mfori=1,...,m.

Problems of class (a) have been proposed by Ross and Soland (1975) and generally
admit many feasible solutions. Problems of classes (b), (c) and (d) have tighter
capacity constraints; in addition, in problems of class (d) a correlation between
profits and weights (often found in real-world applications) has been introduced.

The entries in the tables give average running times (expressed in seconds) and
average numbers of nodes generated in the branch-decision tree. A time limit of
100 seconds was imposed on the running time spent by each algorithm for the
solution of a single instance. For data sets for which the time limit occurred,
the corresponding entry gives, in brackets, the number of instances solved within
100 seconds (the average values are computed by also considering the interrupted
instances). The cases where the time limit occurred for all the instances are denoted
as “time limit”. The following algorithms have been coded in Fortran IV and run
on an HP 9000/840 computer, using option “-0” for the Fortran compiler:

RS = Algorithm of Ross and Soland (1975);
MTG = Algorithm of Martello and Toth (1981c) as described in Section 7.3;
FJV = Algorithm of Fisher, Jaikumar and Van Wassenhove (1986);

MTGFJV = Algorithm MTG with upper bound min (U;, U3) (see Sections 7.2.2,
7.2.3) computed at each node of the branch-decision tree;

MTGIN = Algorithm MTG with upper bound min (U, U,,U,) (see Sections
7.2.1,7.2.2,7.2.4) computed at each node of the branch-decision tree.

For all the algorithms, the solution of the 0-1 single knapsack problems was
obtained using algorithm MT1 of Section 2.5.2.

For the computation of Uy, needed by MTGIN, the number of iterations in the
subgradient optimization procedure was limited to 50—as suggested by the authors
(Jornsten and Nisberg, 1986)—for the root node, and to 10 for the other nodes.
The Lagrangian multipliers were initially set to

n

l1ij=17=anZZpijv ieEM,jEN

i=l j=1

(as suggested by the authors) for the root node, and to the corresponding values
obtained at the end of the previous computation for the other nodes. (Different
choices of the number of iterations and of the initial values of the multipliers
produced worse computational results.) The step used, at iteration k£ of the
subgradient optimization procedure, to modify the current y; values was that
proposed by the authors, i.e.

7.6 Computational experiments 219

k 14
= =
k+1

The tables show that the fastest algorithms are RS for the “easy” instances of
class (a), and MTG for the harder instances (b), (c), (d). Algorithms MTGFJV and
MTGIN generate fewer nodes than MTG, but the global running times are larger
(the computation of U3 and U4 being much heavier than that of U, and U;), mainly
for problems of classes (b), (c) and (d).

Algorithm FJV is much worse than the other algorithms for all data sets,
contradicting, to a certain extent, the results presented for the same classes of
test problems in Fisher, Jaikumar and Van Wassenhove (1986). This could be
explained by observing that such results were obtained by comparing executions
on different computers and using different random instances. In addition, the current
implementation of MTG incorporates, for the root node, the computation of upper
bound Us;.

Table 7.5 gives the performance of the Fortran IV implementation of approximate
algorithm MTHG (Section 7.4) on large-size instances. The entries give average
running times (expressed in seconds) and, in brackets, upper bounds on the average
percentage errors. The percentage errors were computed as 100 (U —z")/U , where
U =min (U, U,, Us, U,). Only data sets (a), (b) and (c) are considered, since the
computation of U for data set (d) required excessive running times. Errors of value
0.000 indicate that all the solutions found were exact. The table shows that the
running times are quite small and, with few exceptions, practically independent

Table 7.5 Algorithm MTHG. HP 9000/840 in seconds. Average times (average percentage
errors) over 10 problems

m n Data set (a) Data set (b) Data set (c)
50 0.121(0.184) 0.140(5.434) 0.136(6.822)

5 100 0.287(0.063) 0.325(4.750) 0.318(5.731)

200 0.887(0.029) 0.869(4.547) 0.852(6.150)

500 2.654(0.012) 3.860(5.681) 3.887(6.145)

50 0.192(0.016) 0.225(3.425) 0.240(6.243)

10 100 0.457(0.019) 0.521(5.160) 0.550(5.908)
200 1.148(0.004) 1.271(4.799) 1.334(5.190)

500 3.888(0.006) 5.139(5.704) 5.175(5.553)

50 0.393(0.062) 0.399(1.228) 0.438(6.479)

20 100 0.743(0.002) 0.866(1.189) 0.888(5.187)
200 1.693(0.008) 2.011(2.140) 2.035(4.544)

500 2.967(0.000) 7.442(3.453) 7.351(4.367)

50 0.938(0.000) 0.832(0.125) 0.876(2.024)

50 100 0.728(0.005) 1.792(0.175) 2.016(4.041)
200 3.456(0.002) 3.849(0.296) 4.131(3.248)

500 2.879(0.000) 12.613(0.517) 12.647(3.198)

220 7 Generalized assignment problem

of the data set. For n = 500 and data set (a), the first execution of MTHG (with
fii = pij) almost always produced an optimal solution of value z" = Uy, so the
computing times are considerably smaller than for the other data sets. The quality
of the solutions found by MTHG is very good for data set (a) and clearly worse for
the other data sets, especially for small values of m. However, it is not possible to
decide whether these high errors depend only on the approximate solution or also
on the upper bound values. Limited experiments indicated that the error computed
with respect to the optimal solution value tends to be about half that computed
with respect to U'.

3
Bin-packing problem

8.1 INTRODUCTION

The Bin-Packing Problem (BPP) can be described, using the terminology of
knapsack problems, as follows. Given n items and n knapsacks (or bins), with

w; = weight of item j,
¢ = capacity of each bin,

assign each item to one bin so that the total weight of the items in each bin does
not exceed ¢ and the number of bins used is a minimum. A possible mathematical
formulation of the problem is

minimize z =Zy,< (8.1)
i=1

subject to ijx,»,» <cy, 1€N={l...,n}, (8.2)
j=1
Zx,-,— =1, jEN, (8.3)
i=1
y;i =0or 1, i €N, (8.4)
xj=0orl, i €EN,jJEN, (8.5)

where
1 if bin i is used;
= {O otherwise,
1 if item j is assigned to bin i/;
= {O otherwise.

We will suppose, as is usual, that the weights w; are positive integers. Hence,
without loss of generality, we will also assume that

221

222 8 Bin-packing problem

¢ is a positive integer, (8.6)

w; <c forjeN. 8.7

If assumption (8.6) is violated, ¢ can be replaced by [c|. If an item violates
assumption (8.7), then the instance is trivially infeasible. There is no easy way,
instead, of transforming an instance so as to handle negative weights.

For the sake of simplicity we will also assume that, in any feasible solution, the
lowest indexed bins are used, i.e. y; > y;4; fori=1,...,n — 1.

Almost the totality of the literature on BPP is concerned with approximate
algorithms and their performance. A thorough analysis of such results would require
a separate book (the brilliant survey by Coffman, Garey and Johnson (1984), to
which the reader is referred, includes a bibliography of more than one hundred
references, and new results continue to appear in the literature). In Section 8.2 we
briefly summarize the classical results on approximate algorithms. The remainder of
the chapter is devoted to lower bounds (Section 8.3), reduction procedures (Section
8.4) and exact algorithms (Section 8.5), on which very little can be found in the
literature. Computational experiments are reported in Section 8.6.

8.2 A BRIEF OUTLINE OF APPROXIMATE ALGORITHMS

The simplest approximate approach to the bin packing problem is the Next-Fit (NF)
algorithm. The first item is assigned to bin 1. Items 2,...,n are then considered by
increasing indices: each item is assigned to the current bin, if it fits; otherwise, it
is assigned to a new bin, which becomes the current one. The time complexity of
the algorithm is clearly O(n). It is easy to prove that, for any instance / of BPP,
the solution value NF(I) provided by the algorithm satisfies the bound

NF(I) <2 z(I), (8.8)

where z (/) denotes the optimal solution value. Furthermore, there exist instances for
which the ratio NF(I)/z(I) is arbitrarily close to 2, i.e. the worst-case performance
ratio of NF is r(NF) = 2. Note that, for a minimization problem, the worst-case
performance ratio of an approximate algorithm A is defined as the smallest real
number r(A) such that

A(l)

—— < r(A) for all instances 1,
z(I)

where A(/) denotes the solution value provided by A.

A better algorithm, First-Fit (FF), considers the items according to increasing
indices and assigns each item to the lowest indexed initialized bin into which it
fits; only when the current item cannot fit into any initialized bin, is a new bin

8.2 A brief outline of approximate algorithms 223

introduced. It has been proved in Johnson, Demers, Ullman, Garey and Graham
(1974) that

FF() < % 2(I)+2 (8.9)

for all instances / of BPP, and that there exist instances /, with z(/) arbitrarily
large, for which

FF({) > 1—(7) z(I) - 8. (8.10)

Because of the constant term in (8.9), as well as in analogous results for other
algorithms, the worst-case performance ratio cannot give complete information on
the worst-case behaviour. Instead, for the bin packing problem, the asymptotic
worst-case performance ratio is commonly used. For an approximate algorithm A,
this is defined as the minimum real number r> (A) such that, for some positive
integer £,

Al
_((7"; < r°(A) for all instances [satisfying z(/) > k;
z

it is then clear, from (8.9)—(8.10), that < (FF) = %A

The next algorithm, Best-Fit (BF), is obtained from FF by assigning the current
item to the feasible bin (if any) having the smallest residual capacity (breaking
ties in favour of the lowest indexed bin). Johnson, Demers, Ullman, Garey and
Graham (1974) have proved that BF satisfies the same worst-case bounds as FF
(see (8.9)—(8.10)), hence »>(BF) = %.

The time complexity of both FF and BF is O (nlogn). This can be achieved by
using a 2-3 tree whose leaves store the current residual capacities of the initialized
bins. (A 2-3 tree is a tree in which: (a) every non-leaf node has 2 or 3 sons; (b)
every path from the root to a leaf has the same length / (c) labels at the nodes
allow searching for a given leaf value, updating it, or inserting a new leaf in O (/)
time. We refer the reader to Aho, Hopcroft and Ullman (1983) for details on this
data structure.) In this way each iteration of FF or BF requires O (logrn) time, since
the number of leaves is bounded by ».

Assume now that the items are sorted so that

Wi > wp > .2 Wy, 8.11)

and then NF or FF, or BF is applied. The resulting algorithms, of time complexity
O (nlogn), are called Next-Fit Decreasing (NFD), First-Fit Decreasing (FFD) and
Best-Fit Decreasing (BFD), respectively. The worst-case analysis of NFD has been
done by Baker and Coffman (1981); that of FFD and BFD by Johnson, Demers,
Ullman, Garey and Graham (1974), starting from an earlier result of Johnson (1973)
who proved that

FFD() < %1 () +4 (8.12)

224 8 Bin-packing problem

Table 8.1 Asymptotic worst-case performance ratios of bin-packing algorithms

Algorithm Time complexity re r1°72 rf73 rf7 4
NF O(n) 2.000 2.000 1.500 1.333...
FF O (nlogn) 1.700 1.500 1.333... 1250
BF O(nlogn) 1.700 1.500 1.333... 1.250

NED O (nlogn) 1691... 1424... 1302... 1234...
FFD O(nlogn) 1.222... 1.183... 1.183... 1.150
BFD O (nlogn) 1222... 1.183... 1.183... 1150

for all instances /. The results are summarized in Table 8.1 (taken from Coffman,
Garey and Johnson (1984)), in which the last three columns give, for o = 1, 1, 1,
the value r3~ of the asymptotic worst-case performance ratio of the algorithms
when applied to instances satisfying min;<;<, {w;} < ac.

8.3 LOWER BOUNDS

Given a lower bounding procedure L for a minimization problem, let L(/) and z(/)
denote, respectively, the value produced by L and the optimal solution value for
instance /. The worst-case performance ratio of L is then defined as the largest
real number p(L) such that

L
L > p(L) for all instances 1.
z(I)

8.3.1 Relaxations based lower bounds

For our model of BPP, the continuous relaxation C (BPP) of the problem, given
by (8.1)—(8.3) and

OS)GSI, leNs
0<x; <1, i €N,j €N,

can be immediately solved by the values x; = 1, x;; =0 (j # i) and y; =w; /c for
i € N. Hence

z(C(BPP)) = Zwi/c, (8.13)

i=1

8.3 Lower bounds 225

so a lower bound for BPP is
L = Zwl-/c . (8.14)
j=1

Lower bound L; dominates the bound provided by the surrogate relaxation
S(BPP, w) given, for a positive vector (;) of multipliers, by

n
minimize z = g Vi
i=1

subject to Z T Zw,-x,j <c Z Ti Vi (8.15)
i=1 Jj=1 1=1
(8.3).(8.4).(8.5).
First note that we do not allow any multiplier, say 77, to take the value zero,
since this would immediately produce a useless solution x;; = 1 for all j € N. We

then have the following

Theorem 8.1 For any instance of BPP the optimal vector of multipliers for
S(BPP,) is m; = k (k any positive constant) for all i € N .

Proof. Let 7= arg min {7; : i € N}. a =7y, and suppose that (y;*) and (x;;) define
an optimal solution to S(BPP, 7). We can obtain a feasible solution of the same

value by setting, for each j € N, xJ; =1 and xj =0 for i # 7. Hence S(BPP. 7) is
equivalent to the problem

n
minimize g Vi
i=1

. n n
. «
subject to E TV > — E w;,
¢
i=l j=1

yi=0orl,i €N,

i.e., to a special case of the 0-1 knapsack problem in minimization form, for which
the optimal solution is trivially obtained by re-indexing the bins so that

ﬂlzﬂzz...Zﬂ'n (Ea)
and setting y; =1 fori <s=min {{ € N : ZLI 7, > (afc) 27:1 w;}, yi =0 for

i > 5. Hence the choice 7; = « (= k, any positive constant) for all / € N produces
the maximum value of s, i.e. also of z(S(BPP . 7)). [

226 8 Bin-packing problem

Corollary 8.1 When n; =k > Oforalli € N, z(S(BPP.m))=z(C(BPP)).
Proof. With this choice of multipliers, S(BPP, w) becomes

n
minimize E yi

i=1

n n
subject to ij <c Zy,-,
j=1 i=1

yvi=0orl, i€N,
whose optimal solution value is 3", w; /c. []

Lower bound L, also dominates the bound provided by the Lagrangian relaxation
L(BPP, p) defined, for a positive vector (y4;) of multipliers, by

n n n
minimize Zy,» + Z Ui ijxij —cyi (8.16)
i=] i=1 j=1

subject to (8.3), (8.4), (8.5).
(Here again no multiplier of value zero can be accepted.)

Theorem 8.2 For any instance of BPP the optimal choice of multipliers for
L(BPP,p)is p; =1/c foralli €N.

Proof. We first prove that, given any vector (y;), we can obtain a better (higher)
objective function value by setting, for all i € N, y; = p7, where 7 = arg min {pi:
i € N}. In fact, by writing (8.16) as

n n n
minimize Z(l —cp)yi + ZW, Z,uixij,
i=1 j=1 =1

we see that the two terms can be optimized separately. The optimal (x;) values are
clearly x; = O for i#7 and x;; = 1, for all j € N. It follows that, setting y; = y; for
all i € N, the first term is maximized, while the value of the second is unchanged.

Hence assume g, = k for all i € N (k any positive constant) and let us determine
the optimal value for k. L(BPP . i) becomes

minimize (1 —ck)y, +k Y _w; (8.17)

i=1 j=1

subjectto y; =0orl, i €N,

8.3 Lower bounds 227
and its optimal solution is

(a) yi=0foralli € N, hence z(LBPP,p)) =k 3y w;, if k < 1/
(b) yi =1foralli €N, hence z(L(BPP,u))=n — k(cn — Z]';l w)), if k > 1/c.

In both cases the highest value of the objective function Zj'.':l w; /c is provided by
k=1/c.O0
Corollary 8.2 When p; =k =1/c for all i € N, z(L(BPP, p)) = z(C (BPP)).
Proof. Immediate from (8.17) and (8.13). []

A lower bound dominating L, can be obtained by dualizing in a Lagrangian

fashion constraints (8.3). Given a vector (;) of multipliers, the resulting relaxation,
L(BPP .)), can be written as

minimize > " yi+ Y Axg | = YA (8.18)
subject to (8.2), (8.4), (8.5),
which immediately decomposes into n independent and identical problems (one
for each bin). By observing that for any /, y; will take the value 1 if and only if
x; =1 for at least one j, the optimal solution is obtained by defining
J<={jeN:) <0}

and solving the 0-1 single knapsack problem

maximize z()\)= Z (—=X)g;

jes<

subject to Z wiq; <c,
jer<

gi=0orl,jeJs<.

If z()) > 1 then, for all i € N, we have y; = 1 and x; = g; (with ¢; = 0 if
J € N\J<) forj € N; otherwise we have y; = x;; =0 for all /.j € N. Hence

2(L(BPP,))) = min (0,n(1 —z(A) — Y _ X;.

j=1

228 8 Bin-packing problem

It is now easy to see that, with the choice); = —w; /c forall j € N, the resulting
bound coincides with L;. The objective function of the knapsack problem is in fact
(3jes< Wigi)/c, with J< = N, so z()) < 1 and z(L(BPP.))) = Siwije =
z(C (BPP)).

Better multipliers can be obtained by using subgradient optimization techniques.
Computational experiments, however, gave results worse than those obtained with
the bounds described in the following sections.

8.3.2 A stronger lower bound

We first observe that the worst-case performance ratio of L; can easily be
established as r(L;) = % Note, in fact, that in any optimal solution (x;) of
value z, at most one bin (say the zth) can have Z;’:l wix; < ¢ /2 since, if
two such bins existed, they could be replaced by a single bin. Hence Z;":l w; >
Z,:ll Yo wixy > (z — 1)e/2, from which z < [2 i wj/c] and, from (8.14),
Lifz > % To see that the ratio is tight, it is enough to consider the series of
instances with w; = k + 1 for all j € N and ¢ = 2k, for which z = n and
Ly = [n(k +1)/2k], so the ratio L;/z can be arbitrarily close to 1 for k sufficiently
large.

Despite its simplicity, L; can be expected to have good average behaviour for
problems where the weights are sufficiently small with respect to the capacity,
since in such cases the evaluation is not greatly affected by the relaxation of the
integrality constraints. For problems with larger weights, in which few items can
be allocated, on average, to each bin, Martello and Toth (1990b) have proposed
the following better bound.

Theorem 8.3 Given any instance I of BPP, and any integer o . 0 < a < ¢/2, let

Ji={j €N :w; >c—a},
L={jeEN:c—a>w >c/2},
Js={j €N :¢/2>w >al},

then

= (J _) .
L(a)=|J1|+121+max<0,’72’€13wl d 2.|C Z’“ZW’)D (8.19)

C

is a lower bound of z(I).

8.3 Lower bounds 229

Proof. Each item in J; U J, requires a separate bin, so |J;| + |J2| bins are needed
for them in any feasible solution. Let us relax the instance by replacing N with
(J1 UJ2 U J3). Because of the capacity constraint, no item in J3 can be assigned to
a bin containing an item of J;. The total residual capacity of the |J;| bins needed
for the items in J; is € = [J2/c — 3~ ;, w;. In the best case ¢ will be completely
filled by items in J3, so the remaining total weight w = Z,‘ 5, Wi — ¢, if any, will
require [w/c] additional bins. []

Corollary 8.3 Given any instance I of BPP,

Ly =max {L(a):0 < a < ¢/2, o integer} (8.20)
is a lower bound of z(I).
Proof. Obvious. []

Lower bound L, dominates L;. In fact, for any instance of BPP, using the value
a =0, we have, from (8.19),

. . J
L(0) = 0+ |J2] + max ((), [Ml)

c

= |J2‘ + max (OL| - |J2|),

hence L, > L(0) = max (|J2|.L)).
Computing L, through (8.20) would require a pseudo-polynomial time. The same
value, however, can be determined efficiently as follows.

Theorem 8.4 Let V be the set of all the distinct values w; < ¢ /2. Then

n if vV =0,
L=
max {L(a): a € V } otherwise.

Proof. If V = @ the thesis is obvious from (8.19). Assuming V # @, we prove that,
given a; < ap, if a; and a; produce the same set J3, then L(a;) < L(ap). In
fact: (a) the value |Jy| + |J,| is independent of « (b) the value (| J2|c — ZjEJz w;)
produced by «; is no less than the corresponding value produced by a5, since set
J, produced by a; is a subset of set J, produced by «;. Hence the thesis, since
only distinct values w; < ¢/2 produce, when used as «, different sets J3, and each
value w; dominates the values w; — 1..... w;.1 + 1 (by assuming that the weights

satisfy (8.11)). [

230 8 Bin-packing problem

Corollary 8.4 [If the items are sorted according to decreasing weights, Ly can be
computed in O(n) time.

Proof. Let
jr=min {j € N :w; < c/2};

from Theorem 8.4, L, can be determined by computing L(w;) for j = j*, j* +
1,...,n, by considering only distinct w; values. The computation of L(w;-) clearly
requires O (n) time. Since |J;|+|J>| is a constant, the computation of each new L(w;)
simply requires to update |J,|, Zje 5, Wy and Zje 5, ;- Hence all the updatings
can be computed in O(n) time since they correspond to a constant time for each

j=ji*+1,....n.0

The average efficiency of the above computation can be improved as follows.
At any iteration, let L3 be the largest L(w;) value computed so far. If |J;|+|J2| +
[(Z;':j. wi — (|J2le = 3 e, wi)/c] < Lj, then (see point (b) in the proof of
Theorem 8.4) no further iteration could produce a better bound, so L, = L3.

Example 8.1
Consider the instance of BPP defined by

n =9,
(w;) = (70, 60, 50, 33, 33, 33, 11, 7, 3),
¢ = 100.

An optimal solution requires 4 bins for item sets {1, 7, 8, 9}, {2, 4}, {3, 5} and
{6}, respectively.
From (8.14),

Ly =[300/100] = 3.
In order to determine L, we compute, using (8.19) and Corollary 8.4,

L(50) = 2 + 0 + max (0,[(50 — 0)/100]) = 3;

L(33) =1+ 1+ max (0,[(149 — 40)/100]) = 4;

since at this point we have 1+ 1+ [(170 — 40)/100] = 4, the computation can be
terminated with L, = 4. []

The following procedure efficiently computes L,. It is assumed that, on input,
the items are sorted according to (8.11) and w, < ¢/2. (If w, > ¢ /2 then, trivially,
L, = n = z.) Figure 8.1 illustrates the meaning of the main variables of the
procedure.

8.3 Lower bounds 231

A\
Wy
| |
wi> S w < §
|
|
|
1 |
|
L
%..
1 j/ j* j// n j
SJ2 SJ3

SJ
Figure 8.1 Main variables in procedure L2

procedure L2:
input: n. (w)). c;

output: L,;
begin
N:={l..... n};

J¥=min{j €N :w; <c/2};
if j* = 1then Ly := [} 77 w;/c]

else
begin
CJ12:=j* — 1 (comment : CJ 12 = |J,| + | J2));
SI* =370 Wi

j'=min{j €N :j <j*andw; < c—wj.}(j' ==j* if no such w;);
CJ2:=j* —j' (comment: CJ2=|J3]);
$J2:= Y17 w (comment 1 /2=, w);

jl/ :=j*.
SJ3:= Wju;
Wpyt =0,

while Wjng| = Wjn do

232 8 Bin-packing problem

begin
jll :=jl/ + 1’
SJ3:=S8J3+wju
end (comment : SJ3 =5, w;);
L, =CJ12;
repeat
Ly :=max(L,.CJ 12+ [(SJ3+S8J2)/c — CJ2]);
jl/ :=jll + 1’
if j// < n then
begin
SJ3:= SJ3+W]'H;
while Wiigl = Wyn do
begin
j// :=jll + 1'
SJ3:=8J3 +Wj»/
end;
Whlle]/ > 1 and Wi S C— Wjn do
begin
j/ i=j/ —1:
CJ2:=CJ2+1;
SJ2:=82+wpy
end
end
until j/ > nor CJ 12+ [(SJ* +SJ2)/c — CJ2] < L,
end
end.

The worst-case performance ratio of L, is established by the following
Theorem 8.5 r(L;) = 3.

Proof. Let I be any instance of BPP and z its optimal solution value. We prove
that L, > L(0) > %z. Hence, let « =0,ie. J1 =@, J,={j €N :w; >¢/2},J3 =
N\J,. If J3 = @, then, from (8.19), L(0) = |J2| = n = z. Hence assume J3 # @. Let
I denote the instance we obtain by relaxing the integrality constraints on x;; for
all j € J3and i € N. It is clear that L(0) is the value of the optimal solution to 7,
which can be obtained as follows. |J,| bins are first initialized for the items in J».
Then, for each item j € J3, let i* denote the lowest indexed bin not completely
filled (if no such bin, initialize a new one) and c¢(i*) < c¢ its residual capacity. If
w, < c¢(i*) then item j is assigned to bin /% otherwise item j is replaced by two
items j;.j» with w; = c(i*) and w;, = w; —wj, item j is assigned to bin /* and the
process is continued with item j,. In this solution L(0) — 1 items at most are split
(no splitting can occur in the L(O)th bin). We can now obtain a feasible solution
of value Z > z to I by removing the split items from the previous solution and
assigning them to new bins. By the definition of J3, at most [(L(0) — 1)/2] new
bins are needed, so Z < L(0) + |L(0)/2], hence 2 L(0) > z.

To prove that the ratio is tight, consider the series of instances with n even,

8.4 Reduction algorithms 233

wij =k+1(k > 2)forj =1,...,n and ¢ = 3k. We have z = n/2 and
Ly, =Lk +1) = [n(k +1)/(3k)], so ratio L,/z can be arbitrarily close to % for k
sufficiently large. []

It is worthy of note that lower bounds with better worst-case performance
can easily be obtained from approximate algorithms. We can use, for example,
algorithm BFD of Section 8.2 to produce, for any instance /, a solution of value
BFD(I). This solution (see Johnson, Demers, Ullman, Garey and Graham (1974))
satisfies the same worst-case bound as FFD(I), so we trivially obtain a lower bound
(see (8.12))

LBFD(I) = 19—1(BFD(1) — 4, 8.21)

whose worst-case performance is smaller than that of L, for z(/) sufficiently large,
and asymptotically tends to %. Since however BFD(I) is known to be, in general,
close to z(I), the average performance of LBFD is quite poor (as will be seen in
Section 8.6).

8.4 REDUCTION ALGORITHMS

The reduction techniques described in the present section are based on the following
dominance criterion (Martello and Toth, 1990b).

We define a feasible set as a subset F C N such that ZjeF w; < ¢. Given two
feasible sets F; and F,, we say that F| dominates F, if the value of the optimal
solution which can be obtained by imposing for a bin, say i*, the values x;»; = 1
if j € Fy and x;»; =0 if j ¢ Fy, is no greater than the value that can be obtained
by forcing the values x;»; = 1 if j € F, and x;»; =0 if j € F,. A possible way to
check such situations is the following

Dominance Criterion Given two distinct feasible sets F and F,, if a partition
of Fy into subsets Py,...,P; and a subset {ji,...,ji} of F\ exist such that w;, >
Zk€Ph wy for h =1,...,1, then F| dominates F,.

Proof. Completing the solution through assignment of the items in N\F; is
easier than through assignment of the items in N\F,. In fact: (a) Zj(—: MR WS
ZjeN\Fz wj; (b) for any feasible assignment of an item j, € {ji,...,ji} C F there
exists a feasible assignment of the items in P, C F, (while the opposite does not
hold). []

If a feasible set /' dominates all the others, then the items of F can be assigned
to a bin and removed from N. Checking all such situations, however, is clearly
impractical. The following algorithm limits the search to sets of cardinality not
greater than 3 and avoids the enumeration of useless sets. It considers the items
according to decreasing weights and, for each item j, it checks for the existence of a

234 8 Bin-packing problem

feasible set F such that j € F, with | F'| < 3, dominating all feasible sets containing
item j. Whenever such a set is found, the corresponding items are assigned to a
new bin and the search continues with the remaining items. It is assumed that, on
input, the items are sorted according to (8.11). On output, z” gives the number of
optimally filled bins, and, for each j € N,

0 if item j has not been assigned;
b =
bin to which it has been assigned, otherwise.
procedure MTRP:

input: n. (w)).c;
output: z". (b;);

begin
N:={l.... n};
N =@:
z" =0
forj:=1tondo b, :=0;
repeat .
findj =min{h : h € N\N };
letN'=N\{j}={/i.-... Jilwithw;, > ... >wj;
F =0,
find the largest k such that w; + Z:FHM wj, <¢;
if k =0then F :={j}
else
begin
jr=min{h e N twi+w, <c};
if k=1orw;+wj. =cthenF :={j.j*}
else if k =2 then
begin
find j,.j, € N', with a < b, such that
wj, + wj, = max {w;, +wj :
Jrds EN".wi+w; +w;, <c};
if wi» > wj;, +w;, then F := {j.j*}
else if w» =w;, and (b —a <2
or wj +wj,_1 +w;,_2 > c)
then £ := {]_ja.j»)
end
end; _
it F=@thenN :=N U {j}
else
begin
zZli=z"+ 1,
foreach i ¢ F dob,=:z";
N :=N\F
end
until N\N =@

end.

8.4 Reduction algorithms 235

At each iteration, k +1 gives the maximum cardinality of a feasible set containing
item j. Hence it immediately follows from the dominance criterion that F = {j}
when k =0, and F = {j,j*} when k =1 or w; + wj» = c. When k = 2, (a) if
wj» > wj, +wj, then set {j*} dominates all pairs of items (and, by definition of j*,
all singletons) which can be packed together with j, so {;.j* } dominates all feasible
sets containing j; (b) if w;» = w; and either b—a < 2 or wj+w;, _1+wj,_» > c then
set {j,.j»} dominates all pairs and all singletons which can be packed together
with j.

The time complexity of MTRP is O (n?). In fact, the repeat-until loop is executed
O (n) times. At each iteration, the heaviest step is the determination of j, and jp,
which can easily be implemented so as to require O(n) time, since the pointers r
and s (assuming r < s) must be moved only from left to right and from right to
left, respectively.

The reduction procedure above can also be used to determine a new lower bound
L. After execution of procedure MTRP for an instance / of BPP, let z{ denote
the output value of z”, and /(z]) the corresponding residual instance, defined by
item set {j € N : b; = 0}. It is obvious that a lower bound for / is given by
z{ + L{I(z])), where L(I(z{)) denotes the value of any lower bound for /(z{).
(Note that z{ + L(I(z{)) > L(I).) Suppose now that /(z{) is relaxed in some way
(see below) and MTRP is applied to the relaxed instance, producing the output
value z; and a residual relaxed instance /(z{.z;). A lower bound for / is then
z{ +z5 + L (z] . z;)). Iterating the process we obtain a series of lower bounds of
the form

Ly=z{+z5 +...+LU(z] .25, ...)).

The following procedure computes the maximum of the above bounds, using L,
for L. At each iteration, the current residual instance is relaxed through removal
of the smallest item. It is assumed that on input the items are sorted according to
(8.11).

procedure L3:
input: n. (w)). c;

output: L3;
begin
L3 = 0}
z:=0;
ni=mn,

forj :=1tondow; :=w;;
while 77 > 1 do

begin _
call MTRP giving 7. (w;) and c, yielding z" and (b;);
zw=z+2";
k:=0;

forj :=1to 7% do
if b; =0 then

236 8 Bin-packing problem

begin
k=k+1;
Wy = Wj
end;

=k,
ifmi=0thenl,;:=0
else call L2 giving 77. (w;) and ¢, yielding L;;
Ls :=max(Ls.z +Ly);
7 :=7 — 1 (comment: removal of the smallest item)
end
end.

Since MTRP runs in O (n?) time, the overall time complexity of L3 is O(n?). It
is clear that L3 > Lo.

Note that only the reduction determined in the first iteration of MTRP is valid
for the original instance, since the other reductions are obtained after one or more
relaxations. If however, after the execution of L3, all the removed items can be
assigned to the bins filled up by the executions of MTRP, then we obtain a feasible
solution of value L3, i.e. optimal.

Example 8.2
Consider the instance of BPP defined by

n= 14,
(W) =(99, 94, 79, 64, 50, 46, 43, 37, 32, 19, 18, 7, 6, 3),

¢ = 100.

The first execution of MTRP gives

jo=1:k =0,F={1};

2:k =1,j* =13, F ={2. 13},

J
and F = @ for j > 3. Hence

z=2;(h;))=(1,2,0,0, 0, 0, 0, 0, 0, 0, 0, 0,2,0);
executing L2 for the residual instance we get L, = 4, so

Ly =6.

Item 14 is now removed and MTRP is applied to item set {3, 4,..., 12},
producing (indices refer to the original instance)

8.5 Exact algorithms 237

jo=3:k=1,j*=10,F = {3, 10}
jo=4:k=2j"=9j,=11,j,=12 F = {4, 9};
jo=5:k=2j"=6j,=T.j,=12,F=0;
jo=6:k=2j"=5j,= 7.j,=12.F = {6, 5};
jo=T7:k=2j"=8.j.=8,j,=11,F={7,8,11};
j =12:k=0,F = {12}

numbering the new bins with 3, 4,..., 7 we thus obtain
z=7, (bj)=(1,2,3,4,5,5,6,6,4,3,6,7,2,-);

hence L, = 0 (since 77 = 0) and the execution terminates with L3 = 7.

Noting now that the eliminated item 14 can be assigned, for example to bin 4,
we conclude that all reductions are valid for the original instance. The solution
obtained (with b4 = 4) is also optimal, since all items are assigned. []

8.5 EXACT ALGORITHMS

As already mentioned, very little can be found in the literature on the exact solution
of BPP.

Eilon and Christofides (1971) have presented a simple depth-first enumerative
algorithm based on the following “best-fit decreasing” branching strategy. At any
decision node, assuming that » bins have been initialized, let (¢;,,...,C;,) denote
their current residual capacities sorted by increasing value, and ¢;,,, = cp+1 = ¢ the
capacity of the next (not yet initialized) bin: the branching phase assigns the free
item j* of largest weight, in turn, to bins i,..., .5+, Where s =min {h : 1 <
h<b+1, ¢, +wj» <c}. Lowerbound L; (see Section 8.3.1) is used to fathom
decision nodes.

Hung and Brown (1978) have presented a branch-and-bound algorithm for a
generalization of BPP to the case in which the bins are allowed to have different
capacities. Their branching strategy is based on a characterization of equivalent
assignments, which reduces the number of explored decision nodes. The lower
bound employed is again L;.

We do not give further details on these algorithms, since the computational results
reported in Eilon and Christofides (1971) and Hung and Brown (1978) indicate that
they can solve only small-size instances.

Martello and Toth (1989) have proposed an algorithm, MTP, based on a “first-
fit decreasing” branching strategy. The items are initially sorted according to
decreasing weights. The algorithm indexes the bins according to the order in
which they are initialized. At each decision node, the first (i.e. largest) free item is

238 8 Bin-packing problem

assigned, in turn, to the feasible initialized bins (by increasing index) and to a new
bin. At any forward step, (a) procedures L, and then Lj are called to attempt to
fathom the node and reduce the current problem; (b) when no fathoming occurs,
approximate algorithms FFD, BFD (see Section 8.2) and WFD are applied to
the current problem, to try and improve the best solution so far. (A Worst-Fit
Decreasing (WFD) approximate algorithm for BPP sorts the items by decreasing
weights and assigns each item to the feasible initialized bin (if any) of largest
residual capacity.) A backtracking step implies the removal of the current item j*
from its current bin i*, and its assignment to the next feasible bin (but backtracking
occurs if i * had been initialized by j*, since initializing {* +1 with j* would produce
an identical situation). If z is the value of the current optimal solution, whenever
backtracking must occur, it is performed on the last item assigned to a bin of index
not greater than z — 2 (since backtracking on any item assigned to bin z or z — 1
would produce solutions requiring at least z bins).

In addition, the following dominance criterion between decision nodes is used.
When the current item j* is assigned to a bin i* whose residual capacity ;- is
less than w;» + w,, this assignment dominates all the assignments to i* of items
j > j* which do not allow the insertion of at least one further item. Hence such
assignment “closes” bin i*, in the sense that, after backtracking on j*, no item
Jj€{k >j* : we+w, > C;»} is assigned to i* the bin is “re-opened” when the
first item j > j* for which w; + w, < ;. is considered or, if no such item exists,
when the first backtracking on an item / < j* is performed.

Since at any decision node the current residual capacities ¢; of the bins are
different, the computation of lower bounds L, and L3 must take into account this
situation. An easy way is to relax the current instance by adding one extra item of
weight ¢ — T; to the free items for each initialized bin i, and by supposing that all
the bins have capacity c.

Example 8.3
Consider the instance of MTP defined by

n = 10;
(wj) = (49, 41, 34, 33, 29, 26, 26, 22, 20, 19);
c¢ = 100.

We define a feasible solution through vector (b;), with
b; = bin to which item j is assigned (j =1, ... ,n);
Figure 8.2 gives the decision-tree produced by algorithm MTP. Initially, all lower

bound computations give the value 3, while approximate algorithm FFD gives the
first feasible solution

dominated z=3 (optimal)

(h)=(1.2.3.2.1.2.3.1.3.3)

Lz =4

z=4
(b)=(1.1.2.2.2.3.333.4)

Figure 8.2 Decision-tree for Example 8.3

240 8 Bin-packing problem

z =4,
(b_/) :(17 17 27 2’ 2’ 3’ 37 37 37 4)5

corresponding to decision-nodes 1-10. No second son is generated by nodes 5-9,
since this would produce a solution of value 4 or more. Nodes 11 and 12 are
fathomed by lower bound L,. The first son of node 2 initializes bin 2, so no further
son is generated. The first son of node 13 is dominated by node 2, since in both
situations no further item can be assigned to bin I; for the same reason node 2
dominates the first son of node 15. Node 14 is fathomed by lower bound Lj3. At
node 16, procedure MTRP (called by L3) is applied to problem

n =9,
w;) = (74, 49, 34, 29, 26, 26, 22, 20, 19),
¢ = 100,

and optimally assigns to bin 2 the first and fifth of these items (corresponding to
items 2, 4 and 6 of the original instance). Then, by executing the approximate
algorithm FFD for the reduced instance

(Wj) = (_5 Ty Ty T 29,) 26, 22, 20, 19),
(c;) = (51,0, 66, 100, 100, ...),

where ¢; denotes the residual capacity of bin i/, we obtain
(Ej) = (_3 T T T 1,) 3, 1, 3a 3)7
hence an overall solution of value 3, i.e. optimal. []

The Fortran implementation of algorithm MTP is included in the present volume.

8.6 COMPUTATIONAL EXPERIMENTS

In this section we examine the average computational performance of the lower
bounds (Sections 8.3-8.4) and of the exact algorithm MTP (Section 8.5). The
procedures have been coded in Fortran IV and run on an HP 9000/840 (using
option *“-0” for the compiler) on three classes of randomly generated item sizes:

Class 1: w; uniformly random in [1, 100];
Class 2: w; uniformly random in (20, 100];

Class 3: w; uniformly random in [50, 100].

241

8.6 Computational experiments

(02)000°0 8€0°0 (0000070 1000 (0)$8T'HT 7000 (0)€ST°81 910 0001

(020000 9100 (02)000°0 1000 ()1 221874 1000 (011881 7900 00¢

(02)000°0 S00°0 (02)000°0 1000 (0)€00°v¢ 100°0 (0)e8r61 €200 00t €

(000000 £00°0 (000000 10070 0)T10%C 1000 0191t 0100 001

(020000 100°0 (02)000°0 1000 (0)00£€T 1000 (018T¥C $00°0 0s

91)TE0°0 850°0 ($)891°0 S00°0 (0)S08°t 7000 ©)1¥¥'81 6£1°0 0001

(81)2€0°0 610°0 De6810 €000 (0)8$S°S 1000 (0)905°61 6500 00S

(61)6£0°0 6000 (€1)TSE0 10070 (07809 1000 (©z61°0T TT00 00t [4

(000000 £00°0 (91)90¢€°0 7000 (09t8°9 1000 (O179°€T 110°0 001

(0000070 7000 (81)80€°0 1000 (0)8¢6°L 1000 Or18LT 000 0s

(S1)090°0 1600 (L)6S1°0 LO0O0 oLt £00°0 (O)TSt8l 9¢1°0 0001

(91)8L0°0 €€0°0 TDY61°0 £00°0 (0)L8%'C 000 (()IYAN 1900 00$

(LD6¥1°0 €100 FD16T0 1000 (D6gsT 7000 (0)¥€6°0C 0200 00T 1

(81)961°0 9000 (ITLL8O 1000 0)6rS'e 1000 (0)0€S ¥ 6000 001

(000000 1000 (L1)61S0 1000 (V€179 1000 (0)$LO'8C £00°0 0s

(ydo)u1a 9, Elig) (ydoyura g, Qul], (ado)uis 9 awiy, (1do)u1d 9 iy, u sse[D
&7 adqi1

swisjqoid (7 1940 (pUnoj sanjea uonN|os 10exa) sioud age1uadiad 93eI1oAy / sow a8RIAY "SPUODAS UT 048/0006 dH "001 = O T8 2IAeL

8 Bin-packing problem

242

(000000 9¢0°0 (T19S00 €000 (0)sLL 1T €000 (0)€Te8l Ly1°0 0001

(020000 L10°0 (61)T10°0 000 (0)s€0'CT 2000 01981 Y900 00s

(02)000°0 L000 (81)€90°0 100°0 (0)ss1Te 100°0 (O)zsLel €00 00¢ €

(00)000°0 $00°0 (020000 100°0 0)vreTe 100°0 (0)€0S°1T 0100 001

(000000 000 (020000 100°0 0)sP11T 100°0 (0)80T°ST Y000 0s

(€1)080°0 2900 (8)6€T°0 L000 (0)98¢'1 €00°0 (0)L09°'81 9C1°0 000 [

(L16S00 £c00 (191’0 Y000 (0)901°¢ 1000 (Or0g 61 0900 00§

(61)050°0 6000 (01)085°0 100°0 (0)9zee 1000 (oelcoe 6100 00¢ 4

(6116070 S000 (SDSLYO 100°0 (@iwiLe 10070 (0)188°¢C 6000 001

(81)80¥°0 €000 (S19L6'0 100°0 (0)¥T6'L 100°0 (0158 €000 0s

(81D¥T00 £86°0 (L1)$€0°0 8000 (LDSO1°0 2000 (0)ELS8T 9T1°0 0001

(8DLY00 [4xat (SD9IT0 9000 (ED8ES O 100°0 (O1eLe1 §s0°0 00§

(00000 w00 (L1S91°0 €000 (€1TELO 100°0 (0081°1T 0200 00¢ I

(L1LSEO Y100 ODYLY0 000 (010661 100°0 (0795 8000 001

(00000 S00°0 (000000 100°0 (01)88L'E 100°0 (0)zeg6T Y000 [UY

(1doyurs 9 auy, (1doyuis 9 A, (ydo)ura 9, auwiy, (ado)us 9 au], u sser)
“7 7 a4d1

swarqold () 1940 (PUNOJ sanjeA UOTINOS 10BX) S10119 aFe1uao1ad a8eraAy / sowl) 95BIAAY "SPUODIS UL O#8/0006 dH 021 = D €8 dIqBL

243

8.6 Computational experiments

(000000 9¢0°0 (8)8T€0 $00°0 (0)L89°1 £00°0 (0)LTS 81 €elo 0001

(000000 6100 (1D¥ET0 €000 (0 Jost'e 1000 (065161 190°0 00$

(000000 LOO0 (6)ST9°0 2000 (0)9s8°¢ 100°0 O1L9°0T 1200 002 €

(000000 £00°0 (€1)$99°0 2000 (¥)20¢y 100°0 OLYTET 6000 001

(00)000°0 2000 (L16LS0 1000 (1)168'8 1000 OI16°LT €000 0s

0)eTl 908'6 0Pl S00°0 0 el £00°0 (09181 8CTI'0 0001

(0 €SIl 6€1°1 (0)EsT'1 $00°0 (0)esT'1 2000 (0)LE] 61 650°0 00S

(S)8L60 691°0 (S)8L6°0 $00°0 (0)8L6°0 1000 (0)¥86°0C 0200 007 4

(PDLTLO £b0°0 (FDLTLO 100°0 (FDLTLO 100°0 (0)789°€T 6000 001

(61LITO 1100 (61)LITO 1000 (81)L19°0 100°0 (0)80t°1¢€ #00°0 0S

(020000 110t (000000 600°0 (0200070 £00°0 (0681761 611°0 000 1

(000000 LS80 (02)000°0 $00°0 (02)000°0 2000 (0)L00°0T 9500 00$

(020000 LETO (02)000°0 2000 (0200070 1000 (0)¥86°1C 9100 00¢ I

(020000 6£0°0 (0200070 £00°0 (020000 1000 O)¥£9°ST 600°0 001

(61)0ST°0 1100 (61)0ST0 100°0 (81)887°0 10070 0)Tes' 1€ €000 0s

(ado)ua 9 Bl (ado)uis 9], (1do)uia g awig, (1do)11a 9 auy, u sse|D
&7 alsq1

swajqold (g JoA0 (punoj sanjea uonn[os 10exa) sioud ageiudorad afe1aay / sawn ageIdAy "SPUOIIS UL 0F8/0006 dH "0ST = D '8 SI9BL

244 8 Bin-packing problem

For each class, three values of ¢ have been considered: ¢ = 100, ¢ = 120,
¢ = 150. For each pair (class, value of ¢) and for different values of n (n =
50, 100, 200, 500, 1000), 20 instances have been generated.

In Tables 8.2-8.4 we examine the behaviour of lower bounds LBFD, L1, L2
and L3. The entries give, for each bound, the average computing time (expressed
in seconds and not comprehensive of the sorting time), the average percentage
error and, in brackets, the number of times the value of the lower bound coincided
with that of the optimal solution. LBFD requires times almost independent of
the data generation and, because of the good approximation produced by the
best-fit decreasing algorithm, gives high errors, tending to % when n grows. L,
obviously requires very small times, practically independent of the data generation;
the tightness improves when the ratio ¢/min; {w; } grows, since the computation is
based on continuous relaxation of the problem. L, requires slightly higher times,
but produces tighter values; for class 1 it improves when ¢ grows, for classes 2 and
3 it get worse when ¢ grows. The times required by L3 are in general comparatively
very high (because of the iterated execution of reduction procedure MTRP), and
clearly grow both with n and ¢ the approximation produced is generally very good,
with few exceptions.

Note that the problems generated can be considered “hard”, since few items are
packed in each bin. Using the value ¢ = 1000, L; requires the same times and
almost always produces the optimal solution value.

Table 8.5 gives the results obtained by the exact algorithm MTP for the instances
used for the previous tables. The entries give average running time (expressed in
seconds and comprehensive of the sorting time) and average number of nodes

Table 8.5 Algorithm MTP. HP 9000/840 in seconds. Average times/Average numbers of
nodes over 20 problems

¢ =100 ¢ =120 ¢ =150
Class n Time Nodes Time Nodes Time Nodes
50 0.006 0 0.005 0 0.096 11
100 0.012 1 15.022(17) 3561 0.156 29
1 200 5.391 1114 0.062 6 0.140 10
500 10.236 2805 10.340 887 2.124 28
1000 20.206(16) 2686 6.596 244 8.958 44
50 0.005 0 0.008 1 0.183 61
100 0.012 1 0.030 9 26.599(15) 4275
2 200 0.047 11 0.073 18 69.438(7) 8685
500 0.127 28 10.062 1663 — —
1000 15.524(17) 3896 30.148(14) 4774 — —
50 0.005 0 0.005 0 0.005 0
100 0.010 0 0.010 0 0.010 0
3 200 0.019 0 0.020 0 0.018 0
500 0.049 0 0.050 0 0.051 0
1000 0.102 0 0.104 0 0.105 0

8.6 Computational experiments 245

explored in the branch-decision tree. A time limit of 100 seconds was assigned
to the algorithm for each problem instance. When the time limit occurred, the
corresponding entry gives, in brackets, the number of instances solved to optimality
(the average values are computed by also considering the interrupted instances).
When less than half of the 20 instances generated for an entry was completed,
larger values of n were not considered.

All the instances of Class 3 were solved very quickly, since procedure L3 always
produced the optimal solution. For Class 1 the results are very satisfactory, with
few exceptions. On Class 2, the behaviour of the algorithm was better than on
Class 1 for ¢ = 100, about the same for ¢ = 120, and clearly worse for ¢ = 150.
Worth noting is that in only a few cases the optimal solution was found by the
approximate algorithms used.

Appendix: Computer codes

A.1 INTRODUCTION

The diskette included in the volume contains the Fortran implementations of the
most effective algorithms described in the various chapters. Table A.1 gives,
for each code, the problem solved, the approximate number of lines (including
comments), the section where the corresponding procedure (which has the same
name as the code) is described, and the type of algorithm implemented. Most of the
implementations are exact branch-and-bound algorithms which can also be used to
provide approximate solutions by limiting the number of backtrackings through an
input parameter (notation Exact/Approximate in the table).

Table A.1 Fortran codes included in the volume
Code Problem Lines Section Type of algorithm
MTI1 0-1 Knapsack 280 2.52 Exact
MTIR 0-1 Knapsack 300 2.5.2 Exact (real data)
MT2 0-1 Knapsack 1400 293 Exact/Approximate
MTB2 Bounded Knapsack 190 342 Exact/Approximate
(+1400)
MTU2 Unbounded Knapsack 1100 363 Exact/Approximate
MTSL Subset-Sum 780 423 Exact/Approximate
MTC2 Change-Making 450 5.6 Exact/Approximate
MTCB Bounded Change-Making 380 5.8 Exact/Approximate
MTM 0-1 Multiple Knapsack 670 6.43 Exact/Approximate
MTHM 0-1 Multiple Knapsack 590 6.6.2 Approximate
MTG Generalized Assignment 2300 7.3 Exact/Approximate
MTHG Generalized Assignment 500 7.4 Approximate
MTP Bin Packing 1330 8.5 Exact/Approximate

* MTB2 must be linked with MT2.

247

248 Appendix: Computer codes

All programs solve problems defined by integer parameters, except MT1R which
solves the 0-1 single knapsack problem with real parameters.

All codes are written according to PFORT, a portable subset of 1966 ANSI
Fortran, and are accepted by the PFORT verifier developed by Ryder and Hall
(1981) at Bell Laboratories. The codes have been tested on a Digital VAX 11/780
and a Hewlett-Packard 9000/840.

With the only exception of MTB2 (which must be linked with MT2), the codes
are completely self-contained. Communication to the codes is achieved solely
through the parameter list of a “main” subroutine whose name is that of the code.

The following sections give, for each problem and for each code, the
corresponding comment and specification statements.

A.2 0-1 KNAPSACK PROBLEM
A.21 Code MT1

SUBROUTINE MT1 (N, P, W, C, Z, X, JDIM, JCK,
XX, MIN, PSIGN, WSIGN, ZSIGN)

This subroutine solves the 0-1 single knapsack problem
maximize Z = P(1) X(1) + ... + P(N) X(N)
subject to W) X(D) + ... + WN) X(N) <C,
XJ)=0or1iforl=l,...,N
The program implements the branch-and-bound algorithm described in Section

2.5.2, and derives from an earlier code presented in S. Martello, P. Toth, “Algorithm
for the solution of the 0-1 single knapsack problem”, Computing, 1978.

The input problem must satisfy the conditions

(1) 2 < N < JDIM - I;

(2) P{J), W(J), C positive integers;

(3) max (W(QJ)) < G

4 W +...+ WNN) > C;

S) POHYWI) >PAd+ 1)WJ + 1) forJ=1,...,N-1.

MTI calls 1 procedure: CHMTI.
The program is completely self-contained and communication to it is achieved

solely through the parameter list of MT1.
No machine-dependent constant is used.

Appendix: Computer codes 249

MT1 needs 8 arrays (P, W, X, XX, MIN, PSIGN, WSIGN and ZSIGN) of length
at least N + 1.
Meaning of the input parameters:
N = number of items;
PJ) =profitofitemJ (J=1,..., N);
W{J) =weightofitemJ (J=1,..., N);
C = capacity of the knapsack;
JDIM = dimension of the 8 arrays;
JCK =1 if check on the input data is desired,
= (otherwise.
Meaning of the output parameters:

Z = value of the optimal solution if Z > 0,
error in the input data (when JCK = 1) if Z < O:

condition —Z is violated;

X(J) =1 ifitem J is in the optimal solution,
0 otherwise.

Arrays XX, MIN, PSIGN, WSIGN and ZSIGN are dummy.
All the parameters are integer. On return of MTI all the input parameters are

unchanged.

INTEGER P(UJDIM), W(IDIM), X(JDIM), C, Z
INTEGER XX(JDIM), MIN(JDIM)
INTEGER PSIGN(JDIM), WSIGN(JDIM), ZSIGN(JDIM)

A.2.2 Code MTIR
SUBROUTINE MTIR (N, P, W, C, EPS, Z, X, JDIM, JCK,
XX, MIN, PSIGN, WSIGN, ZSIGN, CRC, CRP)

This subroutine solves the 0-1 single knapsack problem with real parameters
maximize Z = P(1) X(1) + ... + P(N) X(N)

subject to W) X(1) +... + W(N) X(N) <C,
XIH=0orlforJ=1,...,N.

The program implements the branch-and-bound algorithm described in Section
2.5.2, and is a modified version of subroutine MT]I.

250 Appendix: Computer codes

The input problem must satisfy the conditions

(1) 2 < N < JDIM - 1;

(2) P(J), W(J), C positive reals;

(3) max (W) < G

@ W)+ ...+ W(N) > C;

S) POHYWD >PAd+ DH/WJ+ D) forJ=1,...,N-1.

MTIR calls 1 procedure: CHMTIR.

The program is completely self-contained and communication to it is achieved
solely through the parameter list of MTIR.
No machine-dependent constant is used.

MTIR needs 10 arrays (P, W, X, XX, MIN, PSIGN, WSIGN, ZSIGN, CRC and
CRP) of length at least N + 1.

Meaning of the input parameters:
N = number of items;
P(J) =profitofitemJ J=1,..., N);
W({J) =weightof itemJ (J =1,..., N);
C = capacity of the knapsack;

EPS = tolerance (two positive values Q and R are considered equal
if ABS(Q — R)/max (Q, R) < EPS);

JDIM = dimension of the 10 arrays;

JCK =1 if check on the input data is desired,
0 otherwise.

Meaning of the output parameters:

Z = value of the optimal solution if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:
condition —Z is violated;

X(J) =1 if item J is in the optimal solution,
= 0 otherwise.

Arrays XX, MIN, PSIGN, WSIGN, ZSIGN, CRC and CRP are dummy.

Parameters N, X, JDIM, JCK, XX and ZSIGN are integer. Parameters P, W, C, Z,

Appendix: Computer codes 251

MIN, PSIGN, WSIGN, CRC, CRP and EPS are real. On return of MTIR all the
input parameters are unchanged.

REAL P(JDIM), W(JDIM)

INTEGER X(JDIM)

INTEGER XX(JDIM), ZSIGN(JDIM)

REAL MIN(DIM), PSIGN(JDIM), WSIGN(JDIM), CRC(JDIM), CRP(JDIM)

A2.3 Code MT2

SUBROUTINE MT2 (N, P, W, C, Z, X, JDIM, JFO, JFS, JCK, JUB,
IA1, IA2, A3, IA4, RA)
This subroutine solves the 0-1 single knapsack problem
maximize Z = P(1) X(1) + ... + P(N) X(N)
subject to W) X(1) + ...+ W(N) X(N) < C,
X(J)y=0orlforJ=1,..., N

The program implements the enumerative algorithm described in Section 2.9.3.

The input problem must satisfy the conditions
(1) 2 < N < JDIM - 3;

(2) PAJ), W(J), C positive integers;

(3) max (W(J)) < G

4 WH+...+WN) > C;

and, if JFS =1,

S) POYWA) >PAd+ DH/WJ + 1) forJ=1,...,N - 1.

MT?2 calls 9 procedures: CHMT2, CORE, CORES, FMED, KP0O1M, NEWB,
REDNS, REDS and SORTR.

The program is completely self-contained and communication to it is achieved
solely through the parameter list of MT?2.
No machine-dependent constant is used.

MT?2 needs 8 arrays (P, W, X, IAl, TIA2, IA3, IA4 and RA) of length at least
N + 3.

252 Appendix: Computer codes

Meaning of the input parameters:
N = number of items;
PJ) =profitofitemJ (J=1,..., N);
W(J) = weightofitemJ J =1,..., N);
C = capacity of the knapsack;
JDIM = dimension of the 8 arrays;

JFO =1 if optimal solution is required,
0 if approximate solution is required;

JFS =1 if the items are already sorted according to
decreasing profit per unit weight,

= () otherwise;
JCK =1 if check on the input data is desired,
= () otherwise.
Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < O:
condition —Z is violated;

X(J) =1 if item J is in the solution found,
= 0 otherwise;

JUB = upper bound on the optimal solution value
(to evaluate Z when JFO = 0).
Arrays IA1, 1A2, IA3, A4 and RA are dummy.
All the parameters but RA are integer. On return of MT?2 all the input parameters
are unchanged.

INTEGER P(JDIM), W(JDIM), X(JDIM), C, Z
DIMENSION IA1(JDIM), IA2(JDIM), IA3(JDIM), IA4(JDIM)
DIMENSION RA(JDIM)

A.3 BOUNDED AND UNBOUNDED KNAPSACK PROBLEM
A3.1 Code MTB2
SUBROUTINE MTB2 (N, P, W, B, C, Z, X,

JDIM1, JDIM2, JFO, JFS, JCK, JUB,
ID1, ID2, ID3, ID4, IDS, ID6, ID7, RD8)

Appendix: Computer codes 253

This subroutine solves the bounded single knapsack problem
maximize Z = P(1) X(1) +... + P(IN) X(N)
subject to W) X(D) + ...+ WN) X(N) < C,
0<X(J)<B(J) forJ=1,...,N,
X({J) integer forJ=1,..., N.

The program implements the transformation method described in Section 3.2.

The problem is transformed into an equivalent 0-1 knapsack problem and then
solved through subroutine MT2. The user must link MT2 and its subroutines to
this program.

The input problem must satisfy the conditions

(1) 2 < N<IJDIMI - 1;

(2) PJ), W(), B(J), C positive integers;

(3) max BIHW(Q)) < C;

4) B(HW() + ... + BN)W(N) > C;

(5) 2 < N+ (LOG2(B(1)) + ... + LOG2(B(N))) < JDIM2 - 3;

and, if JFS =1,
©6) POYWJ) >PJd+ DH/WJ+ 1) forJ=1,...,N — 1.
MTB2 calls 4 procedures: CHMTB2, SOL, TRANS and MT2 (external).

Communication to the program is achieved solely through the parameter list of
MTB2.
No machine-dependent constant is used.
MTB2 needs
4 arrays (P, W, B and X) of length at least JDIMI,;
8 arrays (ID1, ID2, ID3, ID4, IDS, ID6, ID7 and RDS) of length at least JDIM2.
Meaning of the input parameters:
N = number of item types;
P(J) = profit of each item of type J J =1,..., N);
W) = weight of each item of type J (J = 1,..., N);
B(J) = number of items of type J available (J = 1,..., N);

254 Appendix: Computer codes

C = capacity of the knapsack;
JDIM1 = dimension of arrays P, W, B, X;

JDIM2 = dimension of arrays ID1, ID2, ID3, ID4, IDS, ID6,
ID7, RDS;

JFO =1 if optimal solution is required,
= (if approximate solution is required;

JFS =1 if the items are already sorted according to decreasing profit per
unit weight (suggested for large B(J) values),

0 otherwise;

1 if check on the input data is desired,

0 otherwise.

JCK

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < O:
condition —Z is violated;

X(J) = number of items of type J in the solution found;

JUB = upper bound on the optimal solution value
(to evaluate Z when JFO = 0).

Arrays ID1, ID2, ID3, ID4, ID5, ID6, ID7 and RD8 are dummy.

All the parameters but RD8 are integer. On return of MTB2 all the input parameters
are unchanged.

INTEGER P(JDIM1), W(JDIM1), BUDIM1), X(JDIM1), C, Z
INTEGER ID1(JDIM2), ID2(JDIM2), ID3(JDIM2), ID4(JDIM2)
INTEGER ID5(JDIM2), ID6(JDIM2), ID7(JDIM2)

REAL RD$(JDIM2)

A3.2 Code MTU2

SUBROUTINE MTU2 (N, P, W, C, Z, X,
JDIM, JFO, JCK, JUB,
PO, WO, XO, RR, PP)

This subroutine solves the unbounded single knapsack problem
maximize Z = P(1) X(1) + ... + P(N) X(N)
subject to W) X(1) + ...+ WN) X(N) < C,
X({J) > 0 and integer for J = 1,..., N.

Appendix: Computer codes 255
The program implements the enumerative algorithm described in Section 3.6.3.

The input problem must satisfy the conditions
(1) 2 < N<JDIM - 1;

(2) PJ), W(J), C positive integers;

(3) max (W(J)) < C.

MTU?2 calls 5 procedures: CHMTU2, KSMALL, MTU1, REDU and SORTR.
KSMALL calls 8 procedures: BLD, BLDF, BLDSI, DETNSI, DETNS2,
FORWD, MPSORT and SORT7.

The program is completely self-contained and communication to it is achieved
solely through the parameter list of MTU2.
No machine-dependent constant is used.

MTU?2 needs 8 arrays (P, W, X, PO, WO, XO, RR and PP) of length at least JDIM.

Meaning of the input parameters:
N = number of item types;
P{J) = profit of each item of type J (J = 1,..., N);
W({J) = weight of each item of type J (J = 1,..., N);
C = capacity of the knapsack;
JDIM = dimension of the 8 arrays;
JFO

1l

1 if optimal solution is required,
0 if approximate solution is required,;

JCK =1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < O:
condition —Z is violated;

X(J) = number of items of type J in the solution found;

JUB = upper bound on the optimal solution value
(to evaluate Z when JFO = 0).

Arrays PO, WO, XO, RR and PP are dummy.

All the parameters but XO and RR are integer. On return of MTU2 all the input
parameters are unchanged.

256 Appendix: Computer codes

INTEGER P(JDIM), W(JDIM), X(JDIM)
INTEGER PO(JDIM), WO(JDIM), PP(JDIM), C, Z
REAL RR(JDIM), XO(JDIM)

A4 SUBSET-SUM PROBLEM
A4.1 Code MTSL

SUBROUTINE MTSL (N, W, C, Z, X, JDN, JDD, ITMM, JCK,
WO, IND, XX, WS, ZS, SUM,
TDI1, TD2, TD3)

This subroutine solves the subset-sum problem
maximize Z = W(1) X(1) + ... + W(N) X(N)
subject to W) X(1) + ...+ WN) X(N) < C,
XJ)y=0orl forJ=1,...,N.

The program implements the mixed algorithm described in Section 4.2.3.

The input problem must satisfy the conditions
(1) 2 < N<IJDN-1I;

(2) W(J), C positive integers;

(3) max (W(])) < C;

4) W) +...+ W(N) > C.

MTSL calls 8 procedures: CHMTSL, DINSM, MTS, PRESP, SORTI, TAB,
UPSTAR and USEDIN.

If not present in the library of the host, the user must supply an integer function
JIAND(I1, I2) which sets JIAND to the bit-by-bit logical AND of I1 and 12.

Communication to the program is achieved solely through the parameter list of
MTSL.
No machine-dependent constant is used.

MTSL needs

2 arrays (W and X) of length at least JDN;
6 arrays (WO, IND, XX, WS, ZS and SUM) of length at least ITMM,;
3 arrays (TDI1, TD2 and TD3) of length at least JDD x 2.

Appendix: Computer codes 257

Meaning of the input parameters:
N = number of items;
W({J) =weightofitemJ (J=1,..., N);
C = capacity;
JDN = dimension of arrays W and X

JDD = maximum length of the dynamic programming lists
(suggested value JDD = 5000);

ITMM = (maximum number of items in the core problem) + 1; ITMM =
JDN in order to be sure that the optimal solution is found. ITMM <
JDN (suggested value ITMM = 91) produces an approximate solution
which is almost always optimal (to check optimality, see whether
Z =0
JCK =1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
error in the input data (when JCK = 1) if Z < 0:
condition —Z is violated;

X(J)

1 if item J is in the solution found,
0 otherwise.

Meaning of the internal variables which could be altered by the user:
IT = length of the initial core problem (suggested value IT = 30);

ID = increment of the length of the core problem
(suggested value ID = 30);

M2 = number of items to be used for the second dynamic programming
list; it must be 2 < M2 < min (31, N — 4) (suggested value M2 =
min (2.5 ALOGI10 (max (W(J))), 0.8 N)). M1, the number of items
to be used for the first dynamic programming list, is automatically
determined;

PERS = value used to determine ¢ according to the formula given in Section
4.2.2 (suggested value PERS = 1.3).

Arrays WO, IND, XX, WS, ZS, SUM, TDI1, TD2 and TD3 are dummy.

All the parameters are integer. On return of MTSL all the input parameters are
unchanged.

258 Appendix: Computer codes

INTEGER W(IDN), X(JDN), C, Z

INTEGER WO(ITMM), IND(ITMM), XX(ITMM)
INTEGER WS(ITMM), ZS(ITMM), SUM(ITMM)
INTEGER TD1(JDD,2), TD2(JDD,2), TD3(JDD,2)

A.5 BOUNDED AND UNBOUNDED CHANGE-MAKING
PROBLEM

AS5.1 Code MTC2
SUBROUTINE MTC2 (N, W, C, Z, X, JDN, JDL, JFO, JCK,
XX, WR, PR, M, L)

This subroutine solves the unbounded change-making problem

minimize Z = X(1) + ... + X(N)

subject to W) X(1) + ... + WEN) X(N) =C,

X{J) > 0 and integer for J =1,..., N.

The program implements the enumerative algorithm described in Section 5.6.
The input problem must satisfy the conditions
(1) 2< N<IJDN-1;
(2) W(J), C positive integers;
(3) max (W(J)) < C.
MTC2 calls 5 procedures: CHMTC2, COREC, MAXT, MTC1 and SORTL

The program is completely self-contained and communication to it is achieved
solely through the parameter list of MTC2.
No machine-dependent constant is used.

MTC2 needs

5 arrays (W, X, XX, WR and PR) of length at least JDN;
2 arrays (M and L) of length at least JDL.

Meaning of the input parameters:
N = number of item types;

W({J) = weight of each item of type J J = 1,..., N);
C = capacity;

JDN = dimension of arrays W, X, XX, WR and PR;

JDL = dimension of arrays M and L (suggested value JDL = max (W({J)) — ;
if the core memory is not enough, JDL should be set to the largest
possible value);

Appendix: Computer codes 259

JFO =1 if optimal solution is required,
= 0 if approximate solution is required
(at most 100000 backtrackings are performed);

JCK =1 if check on the input data is desired,
= 0 otherwise.
Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= no feasible solution exists if Z = 0,
= error in the input data (when JCK = 1) if Z < O:
condition —Z is violated;

X(J) = number of items of type J in the solution found.
Arrays XX, M, L, WR and PR are dummy.
All the parameters are integer. On return of MTC2 all the input parameters are

unchanged.

INTEGER W(DN), X(JDN), C, Z
INTEGER XX(JDN), WR(JDN), PR(JDN)
INTEGER M(JDL), LJDL)

A.5.2 Code MTCB

SUBROUTINE MTCB (N, W, B, C, Z, X, JDN, IDL, JFO, JCK,
XX, WR, BR, PR, M, L)

This subroutine solves the bounded change-making problem
minimize Z = X(1) + ... + X(N)
subject to W) X() + ...+ WN) X(N) = C,
0<XJ)<B{J) forJ=1,...,N,
X({J) integer forJ=1,...,N.

The program implements the branch-and-bound algorithm described in Section 5.8.

The input problem must satisfy the conditions
(1) 2< N<JDN-I;

(2) W(J), B(J), C positive integers;

3) max (W(Q)) < C;

260 Appendix: Computer codes

4 BywJ)y<CforJ=1,....,N;
(5) B(1) W(l) + ...+ B(N) W(N) > C.

MTCB calls 3 procedures: CHMTCB, CMPB and SORTIL.

The program is completely self-contained and communication to it is achieved
solely through the parameter list of MTCB.
No machine-dependent constant is used.
MTCB needs
7 arrays (W, B, X, XX, WR, BR and PR) of length at least JDN;
2 arrays (M and L) of length at least JDL.
Meaning of the input parameters:
N = number of item types;
W(J) = weight of each item of type J J =1,..., N);
B(J) = number of available items of type J (J = 1,..., N);
C = capacity;
JDN = dimension of arrays W, B, X, XX, WR, BR and PR;

JDL = dimension of arrays M and L (suggested value JDL = max (W({J)) — 1;
if the core memory is not enough, JDL should be set to the largest
possible value);

JFO =1 if optimal solution is required,
= 0 if approximate solution is required
(at most 100000 backtrackings are performed);

JCK =1 if check on the input data is desired,
= 0 otherwise.
Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= no feasible solution exists if Z = 0,
= error in the input data (when JCK = 1) if Z < O:
condition —Z is violated;

X(J) = number of items of type J in the solution found.
Arrays XX, M, L, WR, BR and PR are dummy.

All the parameters are integer. On return of MTCB all the input parameters are
unchanged.

Appendix: Computer codes 261

INTEGER W(DN), BUDN), X(JDN), C, Z
INTEGER XX(JDN), WR(JDN), BRUDN), PR(JDN)
INTEGER M(JDL), L(JDL)

A.6 0-1 MULTIPLE KNAPSACK PROBLEM
A.6.1 Code MTM
SUBROUTINE MTM (N, M, P, W, C, Z, X, BACK, JCK, JUB)

This subroutine solves the 0-1 multiple knapsack problem

maximize Z = P(1) (Y(I, 1) + ... + YOM, 1)) +
+
P(N) (Y(I,N) + ... + Y(M, N))

subject to W YA D+...+ WN) YA, N) < CI)
forl=1,..., M,
YLD+...+YM <1 forJ=1,...,N,
YI,))=0o0r1 forI=1,..., M,J=1,...,N.

The program implements the enumerative algorithm described in Section 6.4.3, and
derives from an earlier code presented in S. Martello, P. Toth, “Algorithm 632.
A program for the 0-1 multiple knapsack problem”, ACM Transactions on
Mathematical Software, 1985.

The input problem must satisfy the conditions

(1) 2 < N< MAXN and 1 < M < MAXM, where MAXN and MAXM are
defined by the first two executable statements;

(2) P{J), W(J) and C(I) positive integers;

(3) min (C(I)) > min (WQJ));

(4) max (W(J)) < max (C(D));

(5) max (C(I)) < W(1) +... + W(N);

©6) POH/WI) >PUd+ 1H)/WJ +1) forJ=1,..., N-1;

(HCchH<CA+1) forI=1,..., M-1.

MTM calls 5 procedures: CHMTM, PAR, PI, SIGMA and SKP.
The program is completely self-contained and communication to it is achieved

solely through the parameter list of MTM.
No machine-dependent constant is used.

262 Appendix: Computer codes

MTM needs

5 arrays (C, F, PBL, Q and V) of length at least M;

8 arrays (P, W, X, UBB, BS, XS, LX and LXI) of length at least N;

3 arrays (B, PS and WS) of length at least N + 1;

3 arrays (BB, XC and XL) of length at least M x N;

1 array (BL) of length at least M x (N + 1);

5 arrays (D, MIN, PBAR, WBAR and ZBAR) of length at least N (for internal
use in subroutine SKP).

The arrays are currently dimensioned to allow problems for which M < 10 and
N < 1000. Changing such dimensions also requires changing the dimension of
BS, PS, WS, XS, LX and LXI in subroutine SIGMA, of BB, BL, XL, BS, PS,
WS and XS in subroutine PI, of BB, LX and LXI in subroutine PAR, of D, MIN,
PBAR, WBAR and ZBAR in subroutine SKP. In addition, the values of MAXN
and MAXM must be conveniently defined.

Meaning of the input parameters:
N = number of items;
M = number of knapsacks;
PJ) =profit of item J (J =1,..., N);
W{J) =weight ofitemJ (J =1,..., N);
C(I) = capacity of knapsack I (I =1,..., M);

BACK = -1 if exact solution is required,
= maximum number of backtrackings to be performed,
if heuristic solution is required;

JCK =1 if check on the input data is desired,
= 0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < O:
condition —Z is violated;

X(J) =0 if item J is not in the solution found (Y(I, J) = O for all I),
= knapsack where item J is inserted, otherwise (Y(X{J), J) = 1);

JUB = upper bound on the optimal solution value
(to evaluate Z when BACK > 0 on input).

All the parameters are integer. On return of MTM all the input parameters are
unchanged except BACK (= number of backtrackings performed).

Appendix: Computer codes 263

INTEGER P(1000), W(1000), C(10), X(1000), Z, BACK
INTEGER BB(10,1000), BL(10,1001), XC(10,1000), XL(10,1000)
INTEGER B(1001), UBB(1000), F(10), PBL(10), Q(10), V(10)
INTEGER BS, PS, WS, XS

COMMON /SNGL/ BS(1000), PS(1001), WS(1001), XS(1000)
COMMON /PUB/ LX(1000), LXI(1000), LR, LRI, LUBI

A.6.2 Code MTHM

SUBROUTINE MTHM (N, M, P, W, C, Z, X, DN, JDM, LI, JCK,
CR, MIN, XX, X1, F)

This subroutine heuristically solves the 0-1 multiple knapsack problem

maximize Z = P(1) (Y(I, 1) + ... + YOM, 1)) +
+
PON) (Y(I,N) + ... + Y(M, N))

subject to W() Y 1)+ ...+ WN) Y, N) < C(I)
forI=1,..., M,
YA) +...+YMD <1 forJ=1,..., N,
YIJ)=0or1 forI=1,...,M, J=1,...,N.

The program implements the polynomial-time algorithms described in Section
6.6.2, and derives from an earlier code presented in S. Martello, P. Toth, “Heuristic
algorithms for the multiple knapsack problem”, Computing, 1981.

The input problem must satisfy the conditions

() 2<N<IJDN-land 1 <M< JDM-1;

(2) P{J), W(J) and C(I) positive integers;

(3) min (C(D) > min (WQJ));

(4) max (W(J)) < max (C(D));

(5) max (C(D)) < W(1) +... + W(N);

(6) POHYWJ) > PA+1)/WJ+1) forJ=1,...,N-1;
(7) CI) < CI+1) forI=1,..., M- 1.

MTHM can call 6 subroutines:

CHMTHM to check the input data;

MGR1 or MGR?2 to find an initial feasible solution;
REARR to re-arrange a feasible solution;

IMPR1 and IMPR2 to improve on a feasible solution.

264 Appendix: Computer codes
The user selects the sequence of calls through input parameters.

The program is completely self-contained and communication to it is achieved
solely through the parameter list of MTHM.

The only machine-dependent constant is used to define INF (first executable
statement), which must be set to a large positive integer value.

MTHM needs

6 arrays (P, W, X, MIN, XX and X1) of length at least JDN;
2 arrays (C and CR) of length at least JDM;
1 array (F) of length at least JDM x JDM.

In addition, subroutine MGR2 uses

7 arrays of length 5;
1 array of length 201;
1 array of length 5 x 200.

Subroutine MGR?2 is called only when M < 5 and N < 200.

Meaning of the input parameters:
N = number of items;
M = number of knapsacks;
PJ) =profitofitemJ (J=1,..., N);
W{J) =weightofitemJ (J =1,..., N);
C() = capacity of knapsack I I =1,..., M);
JDN = dimension of arrays P, W, X, MIN, XX and X1;
JDM = dimension of arrays C, CR and F;,

LI =0 to output the initial feasible solution,

1 to also perform subroutines REARR and IMPR1,
2 to also perform subroutines REARR, IMPR1 and IMPR2;

JCK =1 if check on the input data is desired,
= (0 otherwise.

Meaning of the output parameters:

Z. = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < O:
condition —Z is violated;

Appendix: Computer codes 265

X(J) =0 if item J is not in the solution found
(i.e. if Y(I, J) = O for all I),
= knapsack where item J is inserted, otherwise
(ie. if YXXI), D =1).

Arrays CR, MIN, XX, X1 and F are dummy.
All the parameters are integer. On return of MTHM all the input parameters are

unchanged.

INTEGER P(JDN), W(JDN), X(JDN), CUDM), Z
INTEGER MIN(DN), XX(JDN), X1(JDN), CR(JDM)
INTEGER F(JDM, IDM)

A.7 GENERALIZED ASSIGNMENT PROBLEM
A.7.1 Code MTG

SUBROUTINE MTG (N, M, P, W, C, MINMAX,
Z, XSTAR, BACK, JCK, JB)

This subroutine solves the generalized assignment problem

optZ= P(1, 1) X(1,1) + ... + P, N) X(1, N) +
+
PM, 1) XM, 1) + ... + P(M, N) X(M, N)
(where opt = min if MINMAX = 1, opt = max if MINMAX = 2)

subject to W(I, 1) X1, 1) + ... + W(I, N) X(I, N) < C(I)
forI=1,..., M,

X(LHh+...+XM,)=1 forJ=1,..., N,
XILJH=0orl forI=1,....M, J=1,...,N.
The program implements the branch-and-bound algorithm described in Sections
7.3-7.5.
The input problem must satisfy the conditions
(1) 2 < M < JDIMR;

(2) 2 < N < JDIMC (JDIMR and JDIMC are defined by the first two executable
statements);

(3) M < JDIMPC (JDIMPC, defined by the third executable statement, is used for
packing array Y, and cannot be greater than (number of bits of the host) —2; if

266 Appendix: Computer codes

a higher value is desired, subroutines YDEF and YUSE must be re-structured
accordingly);

@) Pd, J), W(, J) and C(I) positive integers;
B) WA,) < CO) for at leastone I, for J = 1,..., N;
6) COH > min (W, J)) forI=1,..., M.

In addition, it is required that

(7) (maximum level of the decision-tree) < JNLEV. (JNLEV is defined by the
fourth executable statement.)

MTG calls 24 procedures: CHMTG, DEFPCK, DMIND, FEAS, GHA, GHBCD,
GHX, GR1, GR2, HEUR, KPMAX, KPMIN, PENO,
PENI1, PREPEN, SKP, SORTI, SORTR, TERMIN,
TRIN, UBFJV, UBRS, YDEF and YUSE.

If not present in the library of the host, the user must supply an integer function
JIAND(I1, 12) which sets JIAND to the bit-by-bit logical AND of I1 and 12. Such
function is used in subroutines YDEF and YUSE.

Communication to the program is achieved solely through the parameter list of
MTG.
No machine-dependent constant is used.

MTG needs

17 arrays (C, DD, UD, Q, PACKL, IP, IR, IL, IF, WOBBL, KQ, FLREP,
DMYR1, DMYR2, DMYR3, DMYR4 and DMYRS) of length at least
M;
25 arrays (XSTAR, XS, BS, B, KA, XXS, IOBBL, JOBBL, BEST, XJJUB, DS,
DMYCI1, DMYC2, DMYC3, DMYC4, DMYC5, DMYC6, DMYC7,
DMYCS8, DMYC9, DMYCI10, DMYC11, DMYCI2, DMYCI13 and
DMYCRI1) of length at least N;
4 arrays (PS, WS, DMYCCI1 and DMYCC2) of length at least N + 1;
6 arrays (E, CC, CS, TYPE, US and UBL) of length at least JNLEV;
7 arrays (P, W, A, X, PAK, KAP and MIND) of length at least M x N;
5 arrays (D, VS, V, LB and UB) of length at least INLEV x M;
1 array (YY) of length at least JINLEV x N;
2 arrays (MASKI1 and ITWO) of length at least JDIMPC.

The arrays are currently dimensioned to allow problems for which

M < 10,
N < 100,
INLEV < 150,

Appendix: Computer codes 267

on a 32-bit computer (so, in the calling program, arrays P and W must
be dimensioned at (10,100)). Changing such limits necessitates changing the
dimension of all the arrays in subroutine MTG and in COMMON /PACK/ (which is
included in subroutines MTG, YDEF and YUSE), as well as the four first executable
statements.

Meaning of the input parameters:

N = number of items;
M = number of knapsacks;

P(, J) = profit of item J if assigned to knapsack I
I=1,....M;J=1,...,N);

W(, J) = weight of item J if assigned to knapsack I
I=1,...,M;J=1,...,N);

C(I) = capacity of knapsack [(I=1,..., M);
MINMAX =1 if the objective function must be minimized,

= 2 if the objective function must be maximized;

BACK = -1 if exact solution is required,
= maximum number of backtrackings to be performed,
if heuristic solution is required;

JCK =1 if check on the input data is desired,

0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= 0 if no feasible solution exists,
= error in the input data (when JCK = 1) if Z < O
condition —Z is violated;

XSTAR(J) = knapsack where item J is inserted in the solution found,;

JB = lower bound (if MINMAX = 1) or upper bound (if
MINMAX = 2) on the optimal solution value
(to evaluate Z when BACK > 0 on input).

All the parameters are integer. On return of MTG all the input parameters
are unchanged, with the following two exceptions. BACK gives the number of
backtrackings performed; P(I, J) is set to O for all pairs (I, J) such that W(I, J) >
CD.

INTEGER P(10,100), W(10,100), C(10), XSTAR(100), Z, BACK
INTEGER DD(10), UD(10), Q(10), PAKL(10), IP(10), IR(10)

268 Appendix: Computer codes

INTEGER IL(10), IF(10), WOBBL(10), KQ(10), FLREP(10)
INTEGER XS(100), BS(100), B(100), KA(100), XXS(100)
INTEGER IOBBL(100), JOBBL(100), BEST(100), XJJUB(100)
REAL DS(100)

INTEGER PS(101), WS(101)

INTEGER E(150), CC(150), CS(150)

INTEGER TYPE(150), US(150), UBL(150)

INTEGER A(10,100), X(10,100)

INTEGER PAK(10,100), KAP(10,100), MIND(10,100)
INTEGER D(150,10), VS(150,10)

INTEGER V(150,10), LB(150,10), UB(150,10)

INTEGER Y

INTEGER DMYR1(10), DMYR2(10), DMYR3(10)
INTEGER DMYR4(10), DMYRS5(10)

INTEGER DMYC1(100), DMYC2(100), DMYC3(100)
INTEGER DMY C4(100), DMYC5(100), DMYC6(100)
INTEGER DMYC7(100), DMYC8(100), DMYC9(100)
INTEGER DMYC10(100), DMYC11(100), DMYCI12(100)
INTEGER DMYC13(100)

INTEGER DMYCC1(101), DMYCC2(101)

REAL DMYCR1(100)

COMMON /PACK/ MASK 1(30), ITWO(30), MASK, Y(150,100)

A72 Code MTHG

SUBROUTINE MTHG (N, M, P, W, C, MINMAX,
Z, XSTAR, JCK)

This subroutine heuristically solves the generalized assignment problem

optZ= P(l,) X(,1) + ... + P, N) X(I, N) +
+
PM,) X(M, 1) + ... + P(M, N) X(M, N)

(where opt = min if MINMAX = 1, opt = max if MINMAX = 2)

subject to W(I, 1) X(I, 1) + ... + W, N) X(I, N) < C(I)
forI=1,..., M,

XLDHh+...+ XM,)=1 forJ=1,...,N,
XILHh=0orlforI=1,....M, J=1,...,N.

The program implements the polynomial-time algorithms described in Section 7.4.

The input problem must satisfy the conditions

Appendix: Computer codes 269

(1) 2 < M < JDIMR;
(2) 2 < N < JDIMC (JDIMR and JDIMC are defined by the first two executable
statements);

(3) P, J), W(, J) and C(I) positive integers;
@ WA, J) < CO foratleastone I, forJ=1,..., N;
5) €I > min (W, J)) forl=1,..., M.

MTHG calls 6 procedures: CHMTHG, FEAS, GHA, GHBCD, GHX and TRIN.

Communication to the program is achieved solely through the parameter list of
MTHG.
No machine-dependent constant is used.

MTHG needs

6 arrays (C, DMYRI, DMYR2, DMYR3, DMYR4 and DMYRS) of length at
least JDIMR;

7 arrays (XSTAR, BEST, DMYCI1, DMYC2, DMYC3, DMYC4 and DMYCR1)
of length at least-JDIMC;

3 arrays (P, W and A) of length at least JDMR x JDIMC.

The arrays are currently dimensioned to allow problems for which

M < 50,
N < 500

(so, in the calling program, arrays P and W must be dimensioned at (50,500)).
Changing such limits necessitates changing the dimension of all the arrays in
subroutine MTHG, as well as the first two executable statements.
Meaning of the input parameters:

N = number of items;

M = number of knapsacks;

P(I, J) = profit of item J if assigned to knapsack I
I=1,....,M;J=1,..., Ny

W(, J) = weight of item J if assigned to knapsack I
I=1,....,M;J=1,...,N);

C(I) = capacity of knapsack [(I = 1,..., M);

MINMAX =1 if the objective function must be minimized,
= 2 if the objective function must be maximized,

JCK =1 if check on the input data is desired,
= (otherwise.

270 Appendix: Computer codes

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= 0 if no feasible solution is found,
= error in the input data (when JCK = 1) if Z < O:
condition —Z is violated;

XSTAR(J) = knapsack where item J is inserted in the solution found.
All the parameters are integer. On return of MTHG all the input parameters are
unchanged, but P(I, J) is set to O for all pairs (I, J) such that W(I, J) > C(I).

INTEGER P(50,500), W(50,500), C(50), XSTAR(500), Z
INTEGER BEST(500)

INTEGER A(50,500)

INTEGER DMYR 1(50), DMYR2(50), DMYR3(50)
INTEGER DMYR4(50), DMYR5(50)

INTEGER DMYC1(500), DMYC2(500), DMYC3(500)
INTEGER DMY C4(500)

REAL DMYCR1(500)

A.8 BIN-PACKING PROBLEM
A8.1 Code MTP

SUBROUTINE MTP (N, W, C, Z, XSTAR,
JDIM, BACK, JCK, LB,
WR, XSTARR, DUM, RES, REL, X, R, WA,
WB, KFIX, FIXIT, XRED, LS, LSB, XHEU)

This subroutine solves the bin packing problem

minimize Z = Y(1) + ...+ Y(N)

subject to WXL D+...+ WN) XTI, N) < CY(D)
forI=1,..., N,

X(L,LH+...+XM =1 forJ=1,... N,
YD) =0orl forl=1,...,N,
XL J)=0orl forI=1,...,N, J=1,...,N

(i.e., minimize the number of bins of capacity C needed to allocate N items of size
W(1),..., WN)).

The program implements the branch-and-bound algorithm described in Section 8.5.

Appendix: Computer codes 271

The input problem must satisfy the conditions
(1) 2 < N < JDIM;

(2) W(J) and C positive integers;

B wJd)y<C forJ=1,...,N;

@ WO >wWJd+1) forJ=1,...,N-1.

In the output solution (see below) the Z lowest indexed bins are used.

MTP calls 14 procedures: CHMTP, ENUMER, FFDLS, FIXRED, HBFDS,
INSERT, LCL2, L2, L3, MWFDS, RESTOR,
SEARCH, SORTI2 and UPDATE.

Communication to the program is achieved solely through the parameter list of
MTP.
No machine-dependent constant is used.
MTP needs
17 arrays (W, XSTAR, WR, XSTARR, DUM, RES, REL, X, R, WA, WB,
KFIX, FIXIT, XRED, LS, LSB and XHEU) of length at least JDIM.
Meaning of the input parameters:
N = number of items;
W{J) = weight of item J;
C = capacity of the bins;
JDIM = dimension of the 17 arrays;

BACK = -1 if exact solution is required,
= maximum number of backtrackings to be performed. if heuristic
solution is required;
JCK =1 if check on the input data is desired,

0 otherwise.

Meaning of the output parameters:

Z = value of the solution found if Z > 0,
= error in the input data (when JCK = 1) if Z < 0:
condition —Z is violated;

XSTAR(J) = bin where item J is inserted in the solution found;

LB = lower bound on the optimal solution value
(to evaluate Z when BACK > 0 on input).

272 Appendix: Computer codes
All the arrays except W and XSTAR are dummy.

All the parameters are integer. On return of MTP all the input parameters are
unchanged except BACK, which gives the number of backtrackings performed.

INTEGER W(JDIM), XSTAR(JDIM), C, Z, BACK
INTEGER WR(JDIM), XSTARR(JDIM), DUM(JDIM)
INTEGER RES(JDIM), REL(JDIM), X(JDIM), R(JDIM)
INTEGER WA(JDIM), WB(JDIM), KFIX(JDIM)
INTEGER FIXIT(JDIM), XRED(JDIM), LS(JDIM)
INTEGER LSD(DIM), XHEU(JDIM)

Glossary

O(f(n)) order of f(n)

[S| cardinality of set §

r(A) worst-case performance ratio of algorithm A

£(A) worst-case relative error of algorithm A

p(B) worst-case performance ratio of bound B

la] largest integer not greater than a

[a] smallest integer not less than a

zZ(P) optimal solution value of problem P

C(P) continuous relaxation of problem P

L(P, X) Lagrangian relaxation of problem P through multiplier A
S(P,) surrogate relaxation of problem P through multiplier 7
i(mod j) i—|ifj]j () positive integers)

arg max {s,,..., s,,} index k such thats, > s, fori=1,...,n

max {s,...,5,} Sarg max {s1 o s}

arg max, {s,,..., s,,} arg max ({s,, el s,,} / {sarg max {5t o s} })

max, {sy, ..., $,} Sarg maxa {51 . 51}

arg min, min, arg min,, min, arec immediate extensions of the above

273

Bibliography

A.V. Aho, J.E. Hopcroft, J.D. Ullman (1983). Data Structures and Algorithms, Addison-
Wesley, Reading, MA.

J.H. Ahrens, G. Finke (1975). Merging and sorting applied to the 0-1 knapsack problem.
Operations Research 23, 1099-1109.

L. Aittoniemi (1982). Computational comparison of knapsack algorithms, Presented at XlIth
International Symposium on Mathematical Programming, Bonn, August 23-27.

L. Aittoniemi, K. Oehlandt (1985). A note on the Martello-Toth algorithm for cne-
dimensional knapsack problems. European Journal of Operational Research 20, 117.

R.D. Armstrong, D.S. Kung, P. Sinha, A.A. Zoltners (1983). A computational study of
a multiple-choice knapsack algorithm. ACM Transactions on Mathematical Software 9,
184-198.

G. d’Atri (1979). Analyse probabiliste du probleéme du sac-a-dos. Thése, Université de Paris
VI

G. d’Atri, C. Puech (1982). Probabilistic analysis of the subset-sum problem. Discrete
Applied Mathematics 4, 329-334.

D. Avis (1980). Theorem 4. In V. Chvital. Hard knapsack problems, Operations Research
28, 1410-1411.

L.G. Babat (1975). Linear functions on the N-dimensional unit cube. Doklady Akademiia
Nauk SSSR 222, 761-762.

A. Bachem, M. Grotschel (1982). New aspects of polyhedral theory. In B. Korte (ed.),
Modern Applied Mathematics, Optimization and Operations Research, North Holland,
Amsterdam, 51-106.

B.S. Baker, E.G. Coffman Jr. (1981). A tight asymptotic bound for next—fit—decreasing bin
packing. SIAM Journal on Algebraic and Discrete Methods 2, 147-152.

E. Balas (1967). Discrete programming by the filter method. Operations Research 15, 915—
957.

E. Balas (1975). Facets of the knapsack polytope. Mathematical Programming 8, 146-164.

E. Balas, R. Jeroslow (1972). Canonical cuts on the unit hypercube. SIAM Journal of Applied
Mathematics 23, 61-69.

E. Balas, R. Nauss, E. Zemel (1987). Comment on ‘some computational results on real 0-1
knapsack problems’. Operations Research Letters 6, 139.

E. Balas, E. Zemel (1978). Facets of the knapsack polytope from minimal covers. SIAM
Journal of Applied Mathematics 34, 119-148.

E. Balas, E. Zemel (1980). An algorithm for large zero-one knapsack problems. Operations
Research 28, 1130-1154.

R.S. Barr, G.T. Ross (1975). A linked list data structure for a binary knapsack algorithm.
Research Report CCS 232, Centre for Cybernetic Studies, University of Texas.

R. Bellman (1954). Some applications of the theory of dynamic programming—a review.
Operations Research 2, 275-288.

R. Bellman (1957). Dynamic Programming, Princeton University Press, Princeton, NJ.

R. Bellman, S.E. Dreyfus (1962). Applied Dynamic Programming, Princeton University
Press, Princeton, NJ.

R.L. Bulfin, R.G. Parker, C.M. Shetty (1979). Computational results with a branch and

275

276 Bibliography

bound algorithm for the general knapsack problem. Naval Research Logistics Quarterly
26, 41-46.

A.V. Cabot (1970). An enumeration algorithm for knapsack problems. Operations Research
18, 306-311.

G. Carpaneto, S. Martello, P. Toth (1988). Algorithms and codes for the assignment prob-
lem. In B. Simeone, P. Toth, G. Gallo, F. Maffioli, S. Pallottino (eds), Fortran Codes for
Network Optimization, Annals of Operations Research 13, 193-223.

L. Chalmet, L. Gelders (1977). Lagrange relaxation for a generalized assignment-type
problem. In M. Roubens (ed.), Advances in Operations Research, North-Holland,
Amsterdam, 103-109.

S.K. Chang, A. Gill (1970a). Algorithmic solution of the change-making problem. Journal
of ACM 17, 113-122.

S.K. Chang, A. Gill (1970b). Algorithm 397. An integer programming problem.
Communications of ACM 13, 620-621.

L. Chang, J.F. Korsh (1976). Canonical coin-changing and greedy solutions. Journal of ACM
23, 418-422.

N. Christofides, A. Mingozzi, P. Toth (1979). Loading problems. In N. Christofides, A. Min-
gozzi, P. Toth, C. Sandi (eds), Combinatorial Optimization, Wiley, Chichester, 339-369.

V. Chvital (1980). Hard knapsack problems. Operations Research 28, 402-411.

E.G. Coffman Jr., M.R. Garey, D.S. Johnson (1984). Approximation algorithms for bin-
packing—an updated survey. In G. Ausiello, M. Lucertini, P. Serafini (eds), Algorithm
Design for Computer System Design, Springer, Vienna, 49-106.

J. Cord (1964). A method for allocating funds to investment projects when returns are subject
to uncertainty. Management Science 10, 335-341.

H. Crowder, E.L. Johnson, M.W. Padberg (1983). Solving large-scale zero-one linear
programming problems. Operations Research 31, 803-834.

G.B. Dantzig (1957). Discrete variable extremum problems. Operations Research 5, 266—
277.

A. De Maio, C. Roveda (1971). An all zero-one algorithm for a certain class of transportation
problems. Operations Research 19, 1406-1418.

R.S. Dembo, P.L. Hammer (1980). A reduction algorithm for knapsack problems. Methods
of Operations Research 36, 49-60.

B.L. Dietrich, L.F. Escudero (1989a). More coefficient reduction for knapsack-like
constraints in 0-1 programs with variable upper bounds. IBM T.J. Watson Research Center.
RC-14389, Yorktown Heights (NY).

B.L. Dietrich, L.F. Escudero (1989b). New procedures for preprocessing 0-1 models with
knapsack-like constraints and conjunctive and/or disjunctive variable upper bounds. IBM
T.J. Watson Research Center. RC-14572, Yorktown Heights (NY).

K. Dudzinski, S. Walukiewicz (1984a). Upper bounds for the 0-1 knapsack problem. Report
MPD-10-49/84, Systems Research Institute, Warsaw.

K. Dudzinski, S. Walukiewicz (1984b). A fast algorithm for the linear multiple-choice
knapsack problem. Operations Research Letters 3, 205-209.

K. Dudzinski, S. Walukiewicz (1987). Exact methods for the knapsack problem and its
generalizations. European Journal of Operational Research 28, 3-21.

M.E. Dyer (1984). An O(n) algorithm for the multiple-choice knapsack linear program.
Mathematical Programming 29, 57-63.

M.E. Dyer, N. Kayal, J. Walker (1984). A branch and bound algorithm for solving the
multiple-choice knapsack problem. Journal of Computational and Applied Mathematics
11, 231-249.

S. Eilon, N. Christofides (1971). The loading problem. Management Science 17, 259-267.

B. Faaland (1973). Solution of the value-independent knapsack problem by partitioning.
Operations Research 21, 332-337.

D. Fayard, G. Plateau (1975). Resolution of the 0-1 knapsack problem: comparison of
methods. Mathematical Programming 8, 272-307.

Bibliography 277

D. Fayard, G. Plateau (1982). An algorithm for the solution of the 0-1 knapsack problem.
Computing 28, 269-287.

M. Fischetti (1986). Worst-case analysis of an approximation scheme for the subset-sum
problem. Operations Research Letters 5, 283-284.

M. Fischetti (1989). A new linear storage, polynomial time approximation scheme for the
subset-sum problem. Discrete Applied Mathematics (to appear).

M. Fischetti, S. Martello (1988). A hybrid algorithm for finding the kth smallest of n
elements in O(n) time. In B. Simeone, P. Toth, G. Gallo, F. Maffioli, S. Pallottino (eds),
Fortran Codes for Network Optimization, Annals of Operations Research 13, 401-419,

M. Fischetti, P. Toth (1988). A new dominance procedure for combinatorial optimization
problems. Operations Research Letters 7, 181-187.

M.L. Fisher (1980). Worst-case analysis of heuristic algorithms. Management Science 26,
1-17.

M.L. Fisher (1981). The Lagrangian relaxation method for solving integer programming
problems. Management Science 27, 1-18.

M.L. Fisher, R. Jaikumar, L.N. Van Wassenhove (1986). A multiplier adjustment method
for the generalized assignment problem. Management Science 32, 1095-1103.

J.C. Fisk, M.S. Hung (1979). A heuristic routine for solving large loading problems. Naval
Research Logistics Quarterly 26, 643-650.

A.M. Frieze (1986). On the Lagarias-Odlyzko algorithm for the subset sum problem. SIAM
Journal on Computing 15, 536-539.

M.R. Garey, D.S. Johnson (1975). Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal on Computing 4, 397-411.

MR. Garey, D.S. Johnson (1978). “Strong” NP-completeness results: motivation, examples
and implications. Journal of ACM 25, 499-508.

MR. Garey, D.S. Johnson (1979). Computers and Intractability.: a Guide to the Theory of
NP-Completeness, Freeman, San Francisco.

R.S. Garfinkel, G.L. Nemhauser (1972). Integer Programming, John Wiley and Sons, New
York.

G.V. Gens, E.V. Levner (1978). Approximation algorithms for scheduling problems. /zvestija
Akademii Nauk SSSR, Engineering Cybernetics 6, 38—43.

G.V. Gens, E.V. Levner (1979). Computational complexity of approximation algorithms
for combinatorial problems. In J. Be¢var (ed.), Mathematical Foundations of Computer
Science 1979, Lecture Notes in Computer Science 74, Springer, Berlin, 292-300.

G.V. Gens, E.V. Levner (1980). Fast approximation algorithms for knapsack type problems.
In K. Iracki, K. Malinowski, S. Walukiewicz (eds), Optimization Techniques, Part 2,
Lecture Notes in Control and Information Sciences 23, Springer, Berlin, 185-194.

A. Geoffrion (1969). An improved implicit enumeration approach for integer programming.
Operations Research 17, 437-454.

P.C. Gilmore, R.E. Gomory (1961). A linear programming approach to the cutting stock
problem 1. Operations Research 9, 849-858.

P.C. Gilmore, R.E. Gomory (1963). A linear programming approach to the cutting stock
problem II. Operations Research 11, 863-888.

P.C. Gilmore, R.E. Gomory (1965). Multi-stage cutting stock problems of two and more
dimensions. Operations Research 13, 94-120.

P.C. Gilmore, R.E. Gomory (1966). The theory and computation of knapsack functions.
Operations Research 14, 1045-1074.

F. Glover (1965). A multiphase dual algorithm for the zero-one integer programming
problem. Operations Research 13, 879-919.

F. Glover, D. Klingman (1979). A o(n log n) algorithm for LP knapsacks with GUB
constraints. Mathematical Programming 17, 345-361.

A.V. Goldberg, A. Marchetti-Spaccamela (1984). On finding the exact solution to a zero-one
knapsack problem. Proc. 16th Annual ACM Symposium Theory of Computing, 359-368.

E.S. Gottlieb, M.R. Rao (1988). Facets of the knapsack polytope derived from disjoint and

278 Bibliography

overlapping index configurations. Operations Research Letters 7, 95-100.

E.S. Gottlieb, M.R. Rao (1989a). The generalized assignment problem: valid inequalities
and facets. Mathematical Programming (to appear).

E.S. Gottlieb, M.R. Rao (1989b). (1,k)-configuration facets for the generalized assignment
problem. Mathematical Programming (to appear).

H. Greenberg (1985). An algorithm for the periodic solutions in the knapsack problem.
Journal of Mathematical Analysis and Applications 111, 327-331.

H. Greenberg (1986). On equivalent knapsack problems. Discrete Applied Mathematics 14,
263-268.

H. Greenberg, I. Feldman (1980). A better-step-off algorithm for the knapsack problem.
Discrete Applied Mathematics 2, 21-25.

H. Greenberg, R.L. Hegerich (1970). A branch search algorithm for the knapsack problem.
Management Science 16, 327-332.

M.M. Guignard, S. Kim (1987). Lagrangean decomposition: A model yielding stronger
Lagrangean bounds. Mathematical Programming 39, 215-228.

M.M. Guignard, K. Spielberg (1972). Mixed-integer algorithms for the (0,1) knapsack
problem. IBM Journal of Research and Development 16, 424-430.

P.L. Hammer, E.L. Johnson, U.N. Peled (1975). Facets of regular 0-1 polytopes.
Mathematical Programming 8, 179-206.

D. Hartvigsen, E. Zemel (1987). On the complexity of lifted inequalities for the knapsack
problem. Report 740, Department of Managerial Economics and Decision Sciences,
Northwestern University, Evanston, Illinois.

D.S. Hirschberg, C.K. Wong (1976). A polynomial-time algorithm for the knapsack problem
with two variables. Journal of ACM 23, 147-154.

E. Horowitz, S. Sahni (1974). Computing partitions with applications to the knapsack
problem. Journal of ACM 21, 277-292.

T.C. Hu (1969). Integer Programming and Network Flows, Addison-Wesley, New York.

T.C. Hu, M.L. Lenard (1976). Optimality of a heuristic solution for a class of knapsack
problems. Operations Research 24, 193-196.

P.D. Hudson (1977). Improving the branch and bound algorithms for the knapsack problem.
Queen’s University Research Report, Belfast.

M.S. Hung, J.R. Brown (1978). An algorithm for a class of loading problems. Naval Research
Logistics Quarterly 25, 289-297.

M.S. Hung, J.C. Fisk (1978). An algorithm for O-1 multiple knapsack problems. Naval
Research Logistics Quarterly 24, 571-579.

O.H. Ibarra, C.E. Kim (1975). Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of ACM 22, 463-468.

G.P. Ingargiola, J.F. Korsh (1973). A reduction algorithm for zero-one single knapsack
problems. Management Science 20, 460—463.

G.P. Ingargiola, J.F. Korsh (1975). An algorithm for the solution of 0-1 loading problems.
Operations Research 23, 1110-1119.

G.P. Ingargiola, J.F. Korsh (1977). A general algorithm for one-dimensional knapsack
problems. Operations Research 25, 752-759.

D.S. Johnson (1973). Near-optimal bin packing algorithms. Technical Report MAC TR-109,
Project MAC, Massachusetts Institute of Technology, Cambridge, MA.

D.S. Johnson (1974). Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256-278.

D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, R.L. Graham (1974). Worst-case
performance bounds for simple one-dimensional packing algorithms. SIAM Journal on
Computing 3, 299-325.

S.C. Johnson, B.W. Kernighan (1972). Remarks on algorithm 397. Communications of ACM
15, 469.

K. Jornsten, M. Nisberg (1986). A new Lagrangian relaxation approach to the generalized
assignment problem. European Journal of Operational Research 27, 313-323.

Bibliography 279

R. Kannan (1980). A polynomial algorithm for the two-variables integer programming
problem. Journal of ACM 27, 118-122.

S. Kaplan (1966). Solution of the Lorie-Savage and similar integer programming problems
by the generalized Lagrange multiplier method. Operations Research 14, 1130-1136.
R.M. Karp (1972). Reducibility among combinatorial problems. In R.E. Miller, J.W.
Thatcher (eds), Complexity of Computer Computations, Plenum Press, New York, 85—

103.

R.M. Karp, JK. Lenstra, C.J.H. McDiarmid, A.H.G. Rinnooy Kan (1985). Probabilistic
analysis. In M. O’hEigeartaigh, J.K. Lenstra, A.H.G. Rinnooy Kan (eds), Combinatorial
Optimization: Annotated Bibliographies, Wiley, Chichester, 52—88.

T.D. Klastorin (1979). An effective subgradient algorithm for the generalized assignment
problem. Computers and Operations Research 6, 155-164.

D.E. Knuth (1973). The Art of Computer Programming, Vol. 3, Sorting and Searching,
Addison-Wesley, Reading, MA.

P.J. Kolesar (1967). A branch and bound algorithm for the knapsack problem. Management
Science 13, 723-735.

N.W. Kuhn (1955). The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83-97.

J.C. Lagarias, A.M. Odlyzko (1983). Solving low-density subset sum problems. Proc. 24th
Annual IEEE Symposium Foundations of Computer Science, 1-10.

B.J. Lageweg, J.K. Lenstra (1972). Algoritmend voor knapzack problemen. Report BN
14/72, Stichting Mathematisch Centrum, Amsterdam.

M. Lauriere (1978). An algorithm for the 0-1 knapsack problem. Mathematical Programming
14, 1-10.

E.L. Lawler (1976). Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &
Winston, New York.

E.L. Lawler (1979). Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research 4, 339-356.

E.V. Levner, G.V. Gens (1978). Discrete Optimization Problems and Approximation
Algorithms. Moscow, CEMI (Russian).

G.S. Lueker (1975). Two NP-complete problems in nonnegative integer programming.
Report Ne. 178, Computer Science Laboratory, Princeton University, Princeton, NJ.

G.S. Lueker (1982). On the average difference between the solutions to linear and integer
knapsack problems. In R.L. Disney, T.J. Ott (eds), Applied Probability—Computer
Science: the Interface, Vol. I, Birkhauser, Basel, 489-504.

N. Maculan (1983). Relaxation Lagrangienne: le probléme du knapsack 0-1. INFOR
(Canadian Journal of Operational Research and Information Processing) 21, 315-327.
M.J. Magazine, J.L. Nemhauser, L.E. Trotter Jr. (1975). When the greedy solution solves a

class of knapsack problems. Operations Research 23, 207-217.

M.J. Magazine, O. Oguz (1981). A fully polynomial approximate algorithm for the O-1
knapsack problem. European Journal of Operational Research 8, 270-273.

A. Marchetti-Spaccamela, C. Vercellis (1987). Efficient on-line algorithms for the knapsack
problem. In T. Ottman (ed.), Automata, Languages and Programming, Lecture Notes in
Computer Science 267, Springer, Berlin, 445-456.

S. Martello, P. Toth (1977a). An upper bound for the zero-one knapsack problem and a
branch and bound algorithm. European Journal of Operational Research 1, 169-175.

S. Martello, P. Toth (1977b). Computational experiences with large-size unidimensional
knapsack problems. Presented at the TIMS/ORSA Joint National Meeting, San
Francisco.

S. Martello, P. Toth (1977c). Solution of the bounded and unbounded change-making
problem. Presented at the TIMS/ORSA Joint National Meeting, San Francisco.

S. Martello, P. Toth (1977d). Branch and bound algorithms for the solution of the general
unidimensional knapsack problem. In M. Roubens (ed.), Advances in Operations Research,
North-Holland, Amsterdam, 295-301.

280 Bibliography

S. Martello, P. Toth (1978). Algorithm for the solution of the 0-1 single knapsack problem.
Computing 21, 81-86.

S. Martello, P. Toth (1979). The O0-1 knapsack problem. In N. Christofides,
A. Mingozzi, P. Toth, C. Sandi (eds), Combinatorial Optimization, Wiley, Chichester,
237-279.

S. Martello, P. Toth (1980a). Solution of the zero-one multiple knapsack problem. European
Journal of Operational Research 4, 276-283.

S. Martello, P. Toth (1980b). Optimal and canonical solutions of the change-making problem.
European Journal of Operational Research 4, 322-329.

S. Martello, P. Toth (1980c). A note on the Ingargiola—Korsh algorithm for one-dimensional
knapsack problems. Operations Research 28, 1226-1227.

S. Martello, P. Toth (1981a). A bound and bound algorithm for the zero-one multiple
knapsack problem. Discrete Applied Mathematics 3, 275-288.

S. Martello, P. Toth (1981b). Heuristic algorithms for the multiple knapsack problem.
Computing 27, 93-112.

S. Martello, P. Toth (1981c). An algorithm for the generalized assignment problem. In
J.P. Brans (ed.), Operational Research ’81, North-Holland, Amsterdam, 589-603.

S. Martello, P. Toth (1984a). A mixture of dynamic programming and branch-and-bound
for the subset-sum problem. Management Science 30, 765-771.

S. Martello, P. Toth (1984b). Worst-case analysis of greedy algorithms for the subset-sum
problem. Mathematical Programming 28, 198-205.

S. Martello, P. Toth (1985a). Approximation schemes for the subset-sum problem: survey
and experimental analysis. European Journal of Operational Research 22, 56-69.

S. Martello, P. Toth (1985b). Algorithm 632. A program for the 0-1 multiple knapsack
problem. ACM Transactions on Mathematical Software 11, 135-140.

S. Martello, P. Toth (1987). Algorithms for knapsack problems. In S. Martello, G. Laporte,
M. Minoux, C. Ribeiro (eds), Surveys in Combinatorial Optimization, Annals of Discrete
Mathematics 31, North-Holland, Amsterdam, 213-257.

S. Martello, P. Toth (1988). A new algorithm for the 0-1 knapsack problem. Management
Science 34, 633-644.

S. Martello, P. Toth (1989). An exact algorithm for the bin packing problem. Presented at
EURO X, Beograd.

S. Martello, P. Toth (1990a). An exact algorithm for large unbounded knapsack problems.
Operations Research Letters (to appear).

S. Martello, P. Toth (1990b). Lower bounds and reduction procedures for the bin packing
problem. Discrete Applied Mathematics (to appear).

J.B. Mazzola (1989). Generalized assignment with nonlinear capacity interaction.
Management Science 35, 923-941.

M. Meanti, A.H.G. Rinnooy Kan, L. Stougie, C. Vercellis (1989). A probabilistic analysis
of the multiknapsack value function. Mathematical Programming (to appear).

H. Miiller-Merbach (1978). An improved upper bound for the zero-one knapsack problem:
a note on the paper by Martello and Toth. European Journal of Operational Research 2,
212-213.

R.A. Murphy (1986). Some computational results on real 0-1 knapsack problems. Operations
Research Letters 5, 67-71.

R.M. Nauss (1976). An efficient algorithm for the O-1 knapsack problem. Management
Science 23, 27-31.

R.M. Nauss (1978). The 0-1 knapsack problem with multiple choice constraints. European
Journal of Operational Research 2, 125-131.

A. Neebe, D. Dannenbring (1977). Algorithms for a specialized segregated storage problem.
Technical Report 77-5, University of North Carolina.

G.L. Nemhauser, L.E. Trotter (1974). Properties of vertex packing and independence system
polyhedra. Mathematical Programming 6, 48—-61.

Bibliography 281

G.L. Nemhauser, Z. Ullmann (1969). Discrete dynamic programming and capital allocation.
Management Science 15, 494-505.

G.L. Nemhauser, L.A. Wolsey (1988). Integer and Combinatorial Optimization, Wiley,
Chichester.

M.W. Padberg (1975). A note on zero-one programming. Operations Research 23, 833-837.

M.W. Padberg (1979). Covering, packing and knapsack problems. Annals of Discrete
Mathematics 4, 265-287.

M.W. Padberg (1980). (1,k)-configurations and facets for packing problems. Mathematical
Programming 18, 94-99.

C.H. Papadimitriou, K. Steiglitz (1982). Combinatorial Optimization, Prentice-Hall,
Englewood Cliffs, NJ.

G. Plateau, M. Elkihel (1985). A hybrid algorithm for the 0-1 knapsack problem. Methods
of Operations Research 49, 277-293.

W.R. Pulleyblank (1983). Polyhedral combinatorics. In A. Bachem, M. Grétschel, B. Korte
(eds), Mathematical Programming: the State of the Art-Bonn 1982, Springer, Berlin, 312—
345.

A.H.G. Rinnooy Kan (1987). Probabilistic analysis of algorithms. In S. Martello, G. Laporte,
M. Minoux, C. Ribeiro (eds), Surveys in Combinatorial Optimization, Annals of Discrete
Mathematics 31, North-Holland, Amsterdam, 365-384.

G.T. Ross, R.M. Soland (1975). A branch and bound algorithm for the generalized
assignment problem. Mathematical Programming 8, 91-103.

B.F. Ryder, A.D. Hall (1981). The PFORT verifier. Computer Science Report 2, Bell
Laboratories.

S. Sahni (1975). Approximate algorithms for the O-1 knapsack problem. Journal of ACM
22, 115-124.

S. Sahni, T. Gonzalez (1976). P-complete approximation problems. Journal of ACM 23,
555-565.

H.M. Salkin (1975). Integer Programming, Addison-Wesley, New York.

H.M. Salkin, C.A. de Kluyver (1975). The knapsack problem: a survey. Naval Research
Logistics Quarterly 22, 127-144,

A. Schrijver (1986). Theory of Linear and Integer Programming, Wiley, Chichester.

P. Sinha, A.A. Zoltners (1979). The multiple-choice knapsack problem. Operations Research
27, 503-515.

V. Srinivasan, G.L. Thompson (1973). An algorithm for assigning uses to sources in a
special class of transportation problems. Operations Research 21, 284-295.

U. Suhl (1978). An algorithm and efficient data structures for the binary knapsack problem.
European Journal of Operational Research 2, 420-428.

M.M. Syslo, N. Deo, J.S. Kowalik (1983). Discrete Optimization Algorithms with Pascal
Programs, Prentice-Hall, Englewood Cliffs, NJ.

K. Szkatula, M. Libura (1987). On probabilistic properties of greedy-like algorithms for the
binary knapsack problem. Report 154, Instytut Badan Systemowych, Polska Akademia
Nauk, Warsaw.

H.A. Taha (1975). Integer Programming, Academic Press, New York.

B.N. Tien, T.C. Hu (1977). Error bounds and the applicability of the greedy solution to the
coin-changing problem. Operations Research 25, 404—418.

G. Tinhofer, H. Schreck (1986). The bounded subset sum problem is almost everywhere
randomly decidable in O(n). Information Processing Letters 23, 11-17.

M. Todd (1980). Theorem 3. In V. Chvatal. Hard knapsack problems, Operations Research
28, 1408-1409.

P. Toth (1976). A new reduction algorithm for 0-1 knapsack problems. Presented at the
ORSA/TIMS Joint National Meeting, Miami.

P. Toth (1980). Dynamic programming algorithms for the zero-one knapsack problem.
Computing 25, 29-45.

282 Bibliography

G.P. Veliev, K.Sh. Mamedov (1981). A method of solving the knapsack problem. USSR
Computational Mathematics and Mathematical Physics 21, 75-81.

A. Verebriusova (1904). On the number of solutions of indefinite equations of the first degree
with many variables. Mathematicheskii Shornik 24, 662-688.

P.R.C. Villela, C.T. Bornstein (1983). An improved bound for the 0-1 knapsack problem.
Report ES31-83, COPPE-Federal University of Rio de Janeiro.

H.M. Weingartner (1963). Mathematical Programming and the Analysis of Capital Budgeting
Problems, Prentice-Hall, Englewood Cliffs, NJ.

H.M. Weingartner (1968). Capital budgeting and interrelated projects: survey and synthesis.
Management Science 12, 485-516.

H.M. Weingartner, D.N. Ness (1967). Methods for the solution of the multi-dimensional 0-1
knapsack problem. Operations Research 15, 83-103.

L.A. Wolsey (1975). Faces of linear inequalities in 0-1 variables. Mathematical Programming
8, 165-178.

J.W. Wright (1975). The change-making problem. Journal of ACM 22, 125-128.

E. Zemel (1978). Lifting the facets of zero-one polytopes. Mathematical Programming 15,
268-277.

E. Zemel (1980). The linear multiple choice knapsack problem. Operations Research 28,
1412-1423.

E. Zemel (1984). An O (n) algorithm for the linear multiple choice knapsack problem and
related problems. Information Processing Letters 18, 123—128.

E. Zemel (1988). Easily computable facets of the knapsack polytope. Report 713, Department
of Managerial Economics and Decision Sciences, Northwestern University, Evanston,
Illinois.

A.A. Zoltners (1978). A direct descent binary knapsack algorithm. Journal of ACM 25,
304-311.

Author index

Note: listing in references section is indicated by bold page numbers.

Aho, A. V., 15, 18, 223, 275

Ahrens, J. H., 29, 39, 43, 107, 129, 130,
275

Aittoniemi, L., 88, 275

Armstrong, R. D, 80, 275

d’Atri, G., 56, 126, 275

Avis, D., 128, 275

Babat, L. G., 56, 275

Bachem, A., 74, 275

Baker, B. S., 223, 275

Balas, E., 14, 17, 47, 57, 58, 59, 60, 62,
68, 75, 76, 163, 275

Barr, R. S., 30, 275

Bellman, R., 37, 275

Bornstein, C. T., 22, 282

Brown, J. R., 237, 278

Bulfin, R. L., 88, 275

Cabot, A. V., 96, 276

Carpaneto, G., 191, 276

Chalmet, L., 191, 276

Chang, L., 145, 276

Chang, S. K., 142, 143, 145, 151, 276
Christofides, N., 168, 237, 276
Chvatal, V., 128, 276

Coffman, E. G., Jr., 222, 223, 275, 276
Cord, J., 276

Crowder, H., 13, 276

Dannenbring, D., 168, 280

Dantzig, G. B., 14, 16, 37, 162, 276
DeMaio, A., 191, 276

Dembo, R. S., 47, 276

Demers, A., 10, 223, 233, 278

Deo, N., 5, 32, 281

Dietrich, B. L., 13, 106, 276
Dreyfus, S. E., 275

Dudzinski, K., 5, 23, 24, 26, 80, 276
Dyer, M. E., 80, 276

283

Eilon, S., 237, 276
Elkihel, M., 36, 116, 281
Escudero, L. F., 13, 106, 276

Faaland, B., 107, 276

Fayard, D., 22, 30, 47, 48, 60, 68, 276,
277

Feldman, I., 96, 278

Finke, G., 29, 39, 43, 107, 129, 130, 275

Fischetti, M., 102, 122, 124, 176, 277

Fisher, M. L., 9, 20, 197, 206, 213, 218,
219, 277

Fisk, J. C., 179, 185, 277

Frieze, A. M., 128, 277

Garey, M. R,, 6, 8, 10, 177, 178, 222,
223, 233, 276, 277, 278

Garfinkel, R. S., 5, 96, 277

Gelders, L., 191, 276

Gens, G. V., 56, 125, 126, 131, 277, 279

Geoffrion, A., 163, 277

Gill, A., 142, 143, 145, 151, 276

Gilmore, P. C., 14, 88, 95, 96, 146, 277

Glover, F., 80, 81, 158, 277

Goldberg, A. V., 57, 59, 277

Gomory, R. E., 14, 88, 95, 96, 146, 277

Gonzalez, T., 10, 281

Gottlieb, E. S., 76, 191, 277, 278

Graham, R. L., 10, 223, 233, 278

Greenberg, H., 29, 88, 96, 278

Grotschel, M., 74, 275

Guignard, M. M., 30, 201, 278

Hall, A. D., 248, 281

Hammer, P. L., 47, 75, 276, 278
Hartvigsen, D., 77, 278

Hegerich, R. L., 29, 88, 278
Hirschberg, D. S., 92, 278

Hopcroft, J. E., 15, 18, 223, 275
Horowitz, E., 29, 32, 39, 43, 68, 278

284

Hudson, P. D., 22, 278

Hung, M. S., 163, 168, 179, 184, 185,
237, 277, 278

Hu, T. C., 5, 95, 96, 142, 144, 145, 278,
281

Ibarra, O. H., 14, 53, 54, 56, 95, 125, 278
Ingargiola, G. P., 14, 45, 88, 91, 176,
184, 278

Jaikumar, R., 197, 206, 213, 218, 219,
277

Jeroslow, R., 75, 275

Johnson, D. S, 6, 8, 10, 14, 120, 131,
177, 178, 222, 223, 233, 276, 277,
278

Johnson, E. L., 13, 75, 276, 278

Johnson, S. C., 145, 278

Jornsten, K., 201, 203, 206, 218, 278

Kannan, R, 92, 279

Kaplan, S., 279

Karp, R. M., 6, 10, 50, 279

Kayal, N., 80, 276

Kernighan, B. W., 145, 278

Kim, C. E., 14, 53, 54, 56, 95, 125,
278

Kim, S., 201, 278

Klastorin, T. D., 209, 279

Klingman, D., 80, 277

de Kluyver, C. A, 5, 281

Knuth, D. E., 107, 279

Kolesar, P. J., 14, 29, 279

Korsh, J. F., 14, 45, 88, 91, 145, 176,
184, 276, 278

Kowalik, J. S, 5, 32, 281

Kuhn, N. W., 191, 279

Kung, D. S., 80, 275

Lagarias, J. C., 126, 279

Lageweg, B. J,, 30, 279

Lauriere, M., 30, 48, 279

Lawler, E. L., 56, 95, 125, 126, 131, 191,
279

Lenard, M. L., 95, 144, 278

Lenstra, J. K., 10, 30, 50, 279

Levner, E. V., 56, 125, 126, 131, 277,
279

Libura, M., 57, 281

Lueker, G. S., 56, 92, 137, 279

Maculan, N., 20, 279
Magazine, M. J., 56, 95, 142, 143, 279
Mamedov, K. Sh., 30, 282

Author index

Marchetti-Spaccamela, A., 57, 59, 277,
279

Martello, S., 5, 14, 20, 22, 24, 32, 36, 48,
60, 61, 68, 85, 88, 91, 93, 96, 98,
100, 101, 102, 107, 109, 116, 118,
119, 121, 122, 131, 135, 139, 145,
146, 149, 154, 159, 162, 168, 169,
170, 172, 175, 176, 179, 180, 182,
184, 185, 191, 195, 204, 206, 209,
212,213, 218, 228, 233, 237, 248,
261, 263, 276, 277, 279, 280

Mazzola, J. B., 209, 280

McDiarmid, C. J. H,, 10, 50, 279

Meanti, M., 57, 280

Mingozzi, A., 168, 276

Miiller-Merbach, H., 23, 280

Murphy, R. A, 47, 280

Nisberg, M., 201, 203, 206, 218,
278

Nauss, R., 47, 275

Nauss, R. M., 32, 68, 80, 280

Neebe, A., 168, 280

Nembhauser, G. L., 5, 74, 76, 88, 96, 277,
280, 281

Nembhauser, J. L., 95, 142, 143, 279

Ness, D. N., 282

QOdlyzko, A. M., 126, 279
Oehlandt, K., 88, 275
Oguz, O., 56, 279

Padberg, M. W., 13, 76, 276, 281

Papadimitriou, C. H., 5, 281

Parker, R. G., 88, 275

Peled, U. N., 75, 278

Plateau, G., 22, 30, 36, 47, 48, 60, 68,
116, 276, 277, 281

Puech, C., 126, 275

Pulleyblank, W. R., 74, 281

Rao, M. R,, 76, 191, 277, 278

Rinnooy Kan, A. H. G., 10, 50, 57, 279,
280, 281

Ross, G. T., 30, 163, 192, 193, 197, 204,
213, 218, 275, 281

Roveda, C., 191, 276

Ryder, B. F., 248, 281

Sahni, S., 10, 29, 32, 39, 43, 50, 68, 71,
121, 278, 281

Salkin, H. M,, 5, 281

Schreck, H., 128, 281

Schrijver, A., 5, 74, 281

Author index

Shetty, C. M., 88, 275
Sinha, P., 80, 275, 281
Soland, R. M., 163, 192, 193, 197, 204,
213, 218, 281
Spielberg, K., 30, 278
Srinivasan, V., 191, 281
Steiglitz, K., 5, 281
Stougie, L., 57, 280
Suhl, U, 32, 281
Syslo, M. M., 5, 32, 281
Szkatula, K., 57, 281

Taha, H. A., 5, 281

Thompson, G. L., 191, 281

Tien, B. N., 142, 145, 281

Tinhofer, G., 128, 281

Todd, M., 128, 281

Toth, P., 5, 14, 20, 22, 24, 32, 36, 38, 39,
44, 45, 48, 60, 61, 68, 85, 88, 91,
93, 96, 98, 100, 101, 107, 109, 116,
118, 119, 121, 122, 131, 135, 139,
145, 146, 149, 154, 159, 162, 168,
169, 170, 172, 175, 179, 180, 182,
184, 185, 191, 195, 204, 206, 209,
212, 213, 218, 228, 233, 237, 248,
261, 263, 276, 277, 279, 280, 281

285

Trotter, L. E., 76, 280
Trotter, L. E., Jr.,, 95, 142, 143, 279

Ullman, J. D, 10, 15, 18, 223, 233, 275,
278
Ullmann, Z., 88, 281

Van Wassenhove, L. N., 197, 206, 213,
218, 219, 277

Veliev, G. P., 30, 282

Vercellis, C., 57, 279, 280

Verebriusova, A., 107, 282

Villela, P. R. C., 22, 282

Walker, J., 80, 276

Walukiewicz, S., 5, 23, 24, 26, 80,
276

Weingartner, H. M., 282

Wolsey, L. A., 5, 74, 75, 76, 281, 282

Wong, C. K., 92, 278

Wright, J. W., 146, 151, 282

Zemel, E., 14, 17, 47, 57, 58, 59, 60, 62,
68, 76, 77, 80, 275, 278, 282

Zoltners, A. A., 32, 60, 80, 275, 281,
282

Subject index

Note: abbreviations used in the text and in this index:

BCMP = Bounded Change-Making Problem
BKP = Bounded Knapsack Problem

BPP = Bin-Packing Problem

CMP = Change-Making Problem

GAP = Generalized Assignment Problem
KP = 0-1 Knapsack Problem

MCKP = Multiple-Choice Knapsack Problem
MKP = (0-1 Multiple Knapsack Problem
SSpP = Subset-Sum Problem

UEMKP = Unbounded Equality Constrained Min-Knapsack Problem

UKP

Additional constraints, bounds from,
20-23
ADJUST procedure, 198-200
example using, 200
Ahrens—Finke (dynamic programming)
algorithm, 107
computational experiments using, 129
Approximate algorithms
BKP solved using, 86-87
BPP solved using, 222-224
GAP solved using, 206-209
KP solved using, 50-57
computational experiments
involving, 71-74
MKEP solved using, 177-182
SSP solved using, 117-128
computational experiments for,
130-136
UKP solved using, 93-95
Assignment problems see Generalized
Assignment Problem; LEGAP;
MINGAP; XYGAP
Asymptotic worst-case performance ratio,
223
AVIS problem, 129

Balas—Zemel algorithm, 58-60
computational experiments using, 70

= Unbounded Knapsack Problem

287

Best-Fit (BF) algorithm, 223, 224
Best-Fit Decreasing (BFD) algorithm,
223-224, 238
Bibliography, 275
Binary knapsack problem see 0-1
Knapsack Problem (KP)
Binary tree, upper bound of KP, 26
Bin-Packing Problem (BPP), 5, 221-245
approximate algorithms used, 222-224
worst-case performance ratio of, 222,
223
continuous relaxation of, 224
definition of, 221
Fortran-coded algorithm used, 247,
270-272
Lagrangian relaxation of, 226-227
lower bounds for, 224-233
worst-case performance ratio for,
224, 228, 232
NP-hardness of, 9
reduction algorithms used, 233-237
relaxations-based lower bounds for,
224-228
computational experiments using,
241-244
relaxations of, 224-227
stronger lower bound for, 228-233
surrogate relaxation of, 225-226

288

Bound-and-bound algorithm, 171
MKEP solved using, 172-176
Bound-and-bound method, 170-172
Bounded Change-Making Problem
(BCMP), 153-156
branch-and-bound algorithm used, 155
computational experiments for solution
of, 156
continuous relaxation of, 153-154
definition of, 153
Fortran-coded algorithm used, 247,
259-261
greedy algorithm used, 155
lower bound for, 154
Bounded Knapsack Problem (BKP), 3,
81-91
approximate algorithms used, 86-87
branch-and-bound algorithms used,
88-89
computational experiments for solution
of, 89-91
definition of, 81
dynamic programming used, 88
exact algorithms used, 87-89
Fortran-coded algorithm used, 247,
252-254
NP-hardness of, 6
recursive formulae for, 7
special case of, 91-103
transformation into KP, 82-84
upper bounds of, 84-86
Branch-and-bound algorithms
BCMP solved using, 155
BKP solved using, 88-89
CMP solved using, 146-149
compared with dynamic programming
algorithms, 70
GAP solved using, 204-206
Greenberg—Hegerich approach, 29, 30
Kolesar algorithm, 29
KP solved using, 14, 26-27, 29-36
MKP solved using, 168-170
Branch-and-bound tree, upper bound of
KP, 27
BZ algorithm, 60
BZC algorithm, 58-59

Canonical inequalities, 75
Canonical vectors, 142
CDC-Cyber 730 computer
CMP experiments run on, 151
KP experiments run on, 68-71
MKP experiments run on, 183, 184,
185

Subject index

SSP experiments run on, 129, 130,
132-134
Change-Making Problem (CMP), 4,
137-156
BCMP as generalization of, 153
branch-and-bound algorithms used,
146-149
computational experiments for solution
of, 151-153
definition of, 137
dynamic programming used, 145-146
exact algorithms used, 145-149
Fortran-coded algorithms used, 247,
258-259
greedy algorithms used, 140-142
large-size problems, 149-151
lower bounds for, 138—-140
NP-hardness of, 7
recursive formulae for, 8
Combinatorial Optimization, 13
Computational experiments
BCMP-solving algorithm, 156
BKP-solution algorithms, 89-91
CMP-solution algorithms, 151-153
Fayard—Plateau algorithm used, 70
GAP-solving algorithms, 213-220
KP-solution algorithms, 67-74
MKP-solving algorithms, 182—187
SSP-solution algorithms, 128-136
UKP-solution algorithms, 102-103
Continuous Knapsack Problem, 16
solutions of, 17, 19
Continuous relaxations, 11

BCMP, 153-154
BPP, 224

GAP, 192

KP, 16-17
MKP, 160-162

CORE algorithm, 63-64, 72
Core problem
KP, 14, 57
SSP, 116
UKP, 98
Critical item
finding in nominated time, 17-19, 25
meaning of term, 16
CRITICAL_ ITEM algorithm, 18
BCMP solved using, 155
Critical ratio, definition of, 17

Dantzig bound, 17, 24, 45, 59, 162, 197
Decision-trees

BPP lower bounds, 239

HS algorithm, 33

Subject index

MTT1 algorithm, 37
MTCI algorithm, 149
MTM algorithm, 175
MTRGT! algorithm, 212
MTS algorithm, 115
MTUI algorithm, 99
MTU?2 algorithm, 102
Depth-first algorithm, meaning of term,

Depth-first branch-and-bound algorithms,
168

GAP solved using, 204-206

Diophantine equation, SSP related to,
105

Dominance criteria, MCKP, 78-80
Dominated states

elimination of, 3942

meaning of term, 39
DP1 algorithm, 39

compared with DP2, 44

example using, 42
DP2 algorithm, 41-42

compared with DP1, 44

example using, 42, 44

states of, 42, 44
DPS algorithm, 109
Dudzinski—-Walukiewicz bound, 24
Dynamic programming

algorithms compared with branch-and-

bound algorithms, 70

BKP solved using, 88

CMP solved using, 145-149

combined with tree-search to solve

SSP, 109-116

knapsack problems first solved by, 14

KP solved using, 3645

meaning of term, 37-38

SSP solved using, 106—109

Exact algorithms
BKP solved using, 87-89
CMP solved using, 145-149
GAP solved using, 204-206
KP solved using, 57-67
computational experiments
involving, 6871
large-size CMP solved using, 149-151
large-size UKP solved using, 98,
100-102
MKP solved using, 167-176
SSP solved using, 106—-117
computational experiments
involving, 129-130
UKP solved using, 95-98

289

Fayard—Plateau algorithm, 60-61
computational experiments using, 70
First-Fit Decreasing (FFD) algorithm,
223-224, 238, 240
First-Fit (FF) algorithm, BBP solved
using, 222-223, 224
Fisher—Jaikumar—Van Wassenhove
algorithm, GAP solved using,
computational experiments for,
214-218
Fisher—Jaikumar—Van Wassenhove bound,
197, 200-201
FPDHR reduction algorithm, 47
FS(k) algorithm, 124
compared with MTSS(k) algorithm,
125
Fully polynomial-time approximation
schemes, 10, 14
computational inferiority of, 72
KP solved using, 53-57
not possible for MKP, 178
SSP solved using, 125-126

Generalized Assignment Problem (GAP),
4, 189-220
approximate algorithms used, 206-209
branch-and-bound algorithms used,
204-206
computational experiments for solution
of, 213-220
definition of, 189
exact algorithms used, 204-206
Fortran-coded algorithms used, 247,
265-270
Lagrangian relaxation of, 193-194
minimization version of, 190
NP-hardness of, 8
reduction algorithms used, 209-213
relaxation of capacity constraints for,
192-195
relaxation of semi-assignment
constraints for, 195-197
relaxations of, 192-204
upper bounds of, 192-204
Gens-Levner algorithm see GL(¢)
algorithm
GL(¢) algorithm, 125-126
computational experiments using,
131-134
example using, 126, 127
Glossary, 272
GREEDY algorithm, 28-29
Greedy algorithms, 28
BCMP solved using, 155

290

Greedy algorithms (cont.)
classes of knapsack problems solved
by, 142-145
CMP solved using, 140-142
computational experiments
involving, 151
KP solved using, 27-29
MKP solved using, 166-167
SSP solved using, 117-119
GREEDYB algorithm, 8687
computational experiments using,
89-91
GREEDYS algorithm, 179
use in MTHM, 180, 181
GREEDYU algorithm, 95
GREEDYUM algorithm, 141
BCMP solved using, 155
example using, 141
GS algorithm, 118, 50

Heuristic procedures used
Balas—Zemel algorithm for KP, 59
Martello—Toth algorithm for GAP,

206-208, 268-270
Martello-Toth algorithm for MKP,
180-182, 263-265
Horowitz—Sahni branch-and-bound
algorithm, 30-32
compared with Martello-Toth
algorithm, 32-34
computational experiments using,
69
notations used, 30
Horowitz—Sahni dynamic programming
algorithm, 43
example using, 43
states of, 43

HP 9000/840 computer
BKP experiments run on, 89-91
BPP experiments run on, 240-244
CMP experiments run on, 152, 156
GAP experiments run on, 214-220
KP experiments run on, 71-73
MKP experiments run on, 185, 186
SSP experiments run on, 130
UKP experiments run on, 103

HS algorithm, 30-31
decision-tree of, 33
example using, 32

Hung-Fisk branch-and-bound algorithms
branching strategy for, 168
computational experiments using, 183,

184
MKEP solved using, 168

Subject index

Ibarra-Kim polynomial-time approximate
algorithm, 53
see also 1K(¢) algorithm
IBM-7094 computer, BKP solved on, 88
IK(¢) algorithm, 53-54
example using, 55
KP solved using, 54-55
SSP solved using, 125
IKR algorithm, 46
compared with Martello-Toth
algorithm, 48
example using, 4647
time complexity of, 47
IKRM algorithm, 176
computational experiments using, 183,
184
time complexity of, 177
Ingargiola—Korsh algorithm
BKP solved using, 89-90
computational experiments using,
89-90
Ingargiola—Korsh reduction algorithms,
45-46, 176
see also IKR algorithm; IKRM
algorithm
Integer Linear Programming problem, 13
Investments, knapsack problem solution
for, 1

J(k) algorithm, 120, 122
compared with procedure MTSS(K),
122-123
computational experiments using,
131-135
example using, 121
Johnson algorithm see J(k) algorithm

Knapsack polytope, 74-77
0-1 Knapsack Problem (KP), 2, 13-80
approximate algorithms used, 50-57
BKP as generalization of, 81
BKP transformed into, 82-84
bounds from additional constraints,
20-23
bounds from partial enumeration,
24-27
branch-and-bound algorithms used, 29
continuous relaxation of, 16-17
definition of, 13
dynamic programming used, 3645
exact algorithms used, 57-67
Fortran-coded algorithms used, 247,
248-252
fractions handled for, 14

Subject index

with Generalized Upper Bound (GUB)
Constraints, 77

greedy algorithms used, 27-29

improved bounds of, 20-27

Lagrangian relaxation of, 19-20

bounds from, 23-24

linear programming relaxation of,
16-17

minimization version of, 15

solution of, 29

nonpositive values handled for, 14

NP-hardness of, 6

probabilistic result for, 56-57

reasons for study of, 13

recursive formulae for, 7

reduction algorithms used, 45-50

relaxations of, 16-20

SSP as special case of, 105

upper bounds of, 1620

see also Bounded Knapsack Problem;
Multiple Knapsack Problem;
Multiple-Choice Knapsack
Problem; Unbounded Knapsack
Problem

Knapsack problems

literature reviews on, 5

meaning of term, 1-2

terminology used, 2-5

L1 lower bound (for BPP), 225-228
computational experiments using,
241-244
L2 algorithm, 231-232
example using, 236
main variables in, 231
worst-case performance ratio of,
232-233
L3 algorithm, 235-236
computational experiments using,
241-244
example using, 236, 240
Lagrangian relaxations, 11
bounds from, 23-24
BPP, 226-227
GAP, 193-194
KP, 23-24
MKP, 162-165
Large-size CMP, algorithm for, 149-151
Large-size KP, algorithms for, 57-67
Large-size SSP, algorithm for, 116-117
Large-size UKP, algorithm for, 98,
100-102
Lawler (polynomial-time approximation)
scheme, 125, 126

291

computational experiments using,
131-134
LBFD algorithm
BPP lower bound using, 233
computational experiments using,
241-244
LEGAP, 190-191
Linear Min-Sum Assignment Problem,
191
0-1 Linear Programming Problem (ZOLP)
algorithm for solution of, 171
definition of, 170
lower bound on, 171
Linear programming relaxation, KP,
16-17
LISTS algorithm, 110-111
example using, 111
Lower bounds, 9
BCMP, 154
BPP, 224-233
CMP, 138-140
ZOLP, 171
LOWER procedure, 173

Martello-Toth algorithms
GAP solved using, 204-206, 212
computational experiments for,
214-218
Martello-Toth bound, 195, 197
Martello-Toth branch-and-bound
algorithm, 32-36
branching strategy for, 169
compared with Horowitz—Sahni
algorithm, 32-34
computational experiments using, 183,
184
Fortran implementation of, 248
MKP solved using, 168—170
Martello-Toth exact algorithm, 61-67
Martello-Toth polynomial-time algorithm
Fortran implementation of, 263-265
MKP solved using, 179-182
Martello-Toth reduction algorithm, 48
compared with Ingargiola—Korsh
algorithm, 48
MINGAP, 190
Minimal covers, meaning of term, 75
MNT algorithm, 144-145
example using, 145
MT1 algorithm, 34-36
computational experiments using, 69,
70
decision-tree of, 37
example using, 36

292

MT!1 algorithm (cont.)
Fortran implementation of, 247,
248-249
MT1’ algorithm, 64
MTIR algorithm, 247, 249-251
MT2 algorithm, 66-67
computational experiments using, 70,
71
Fortran implementation of, 247,
251-252
heuristic version of, 72
MTB2 algorithm
computational experiments using,
89-91
Fortran implementation of, 247,
252-254
MTC]1 algorithm, 147-148
computational experiments using,
151-153
decision-tree for, 149
example using, 149
MTC2 algorithm, 150
computational experiments using, 152
Fortran implementation of, 247,
258-259
MTCB algorithm, 155
computational experiments using, 156
Fortran implementation of, 247,
259-261
MTG algorithm
computational experiments using,
214-217
development of, 205-206
Fortran implementation of, 247,
265-268
MTGS algorithm, 118, 121
MTGSM algorithm, 123-124
example using, 124
MTHG algorithm, 206-207
computational experiments using,
219-220
example using, 208
Fortran implementation of, 247,
268-270
MTHM algorithm, 180181
computational experiments using,
185-187
example using, 182
Fortran implementation of, 247,
263-265
MTM algorithm, 173-174
computational experiments using,
183-186
decision-tree for, 175

Subject index

example using, 175
Fortran implementation of, 247,
261-263
modified version of, 176
MTP algorithm, 237-238
computational experiments using,
244-245
decision-tree produced by, 239
example using, 238-240
Fortran implementation of, 247,
270-272
MTR algorithm, 48-49
computational experiments using,
69
example using, 49
MTR’ algorithm, 64-65
MTRG]! algorithm, 209-210
decision-tree when used, 212
example using, 211-213
MTRP algorithm, 234
example using, 236, 240
time complexity of, 237
MTS algorithm, 113-114
decision-tree for, 115
example using, 115
MTSL algorithm, 116117
computational experiments using,
129-130
Fortran implementation of, 129-130
MTSS(k) algorithm, 121-122
compared with procedure J(k),
122-123
computational experiments using,
131-136
example using, 123
worst-case performance ratio of, 122
MTUI algorithm, 96-97
computational experiments using, 103
decision-tree for, 99
example using, 98
MTU2 algorithm, 100
computational experiments using, 103
decision-tree for, 102
example using, 101
Fortran implementation of, 247,
254-255
Miiller-Merbach bound, 23
Multiple-Choice Knapsack Problem
(MCKP), 3, 77-80
0-1 Multiple Knapsack Problem (MKP),
157-187
approximate algorithms used, 177-182
branch-and-bound algorithms used,
168-170

Subject index

computational experiments for solution
of, 182-187
continuous relaxation of, 160-162
definition of, 157
exact algorithms used, 167-176
Fortran-coded algorithms used, 247,
261-265
greedy algorithms used, 166-167
Lagrangian relaxation of, 162-165
LEGAP as generalization of, 191
NP-hardness of, 8
polynomial-time approximation
algorithms used, 179-182
reduction algorithms used, 176-177
relaxations of, 158-165
surrogate relaxation of, 158-162
upper bounds of
techniques to obtain, 158-165
worst-case performance of, 165-166
Multiple knapsack problems, see also
Bin-Packing Problem (BPP);
Generalized Assignment Problem
(GAP); 0-1 Multiple Knapsack
Problem (MKP)
Multiplier adjustment method, GAP upper
bound determined by, 197-201

Nauss exact algorithm, computational
experiment using, 69

Next-Fit Decreasing (NFD) algorithm,
223-224

Next-Fit (NF) algorithm, 222, 224

NP-hard problems, 6-9

(1,k)-configuration, 76
One-point theorem, 144

Partial enumeration, KP bounds from, 24
Performance of algorithms, 9
Polynomial-time approximation schemes,
10, 14
KP solved using, 50-53
computational experiments, 71-74
MKP solved using, 179-182
SSP solved using, 120-125
computational experiments, 131-136
Polytope, meaning of term, 74
Probabilistic analysis, 10
KP, 56-57
SSP, 126, 128
Problems
AVIS, 129
computational experiments using,
129
EVEN/ODD, 128

293

computational experiments using,
129, 133
TODD, 128
computational experiments using,
129, 134
Procedures
ADJUST, 198-200
example using, 200
BOUND AND BOUND, 171
BZ, 60
BZC, 58-59
CORE, 63-64, 72
CRITICAL. ITEM, 18
BCMP solved using, 155
DPI, 39
compared with DP2, 44
example using, 42
DP2, 41-42
compared with DP1, 44
example using, 42, 44
states of, 42
DPS, 109
example using, 83-84
GL(¢), 125-126
computational experiments using,
131-134
example using, 126, 127
GREEDY, 28-29
SSP solved using, 117
GREEDYB, 86-87
computational experiments using,
89-91
GREEDYS, 179
use in MTHM, 180, 181
GREEDYU, 95
GREEDYUM, 141
BCMP solved using, 155
example using, 141
GS, 50, 118
H, 59
HS, 30-31
decision-tree of, 33
example using, 32
IK(¢), 53-54
dynamic programming phase of, 53,
55
example using, 55
greedy phase of, 54, 56
SSP solved using, 125
IKR, 46
example using, 46-47
IKRM, 176
computational experiments using,
183, 184

294

IKRM (cont.)

time complexity of, 177
J(k), 120, 122
compared with procedure MTTS

(K), 122-123
computational experiments using,
131-135
example using, 121
L2, 231-232
computational experiments using,
241-244

example using, 236
main variables in, 231
worst-case performance ratio of,
232-233
L3, 235-236
computational experiments using,
241-244
example using, 236, 240
LISTS, 110-111
example using, 111
LOWER, 173
MNT, 144-145
example using, 145
MT1, 34-36
computational experiments using, 69,
70
decision-tree of, 37
example using, 36
Fortran implementation of, 247,
248-249
MT1’, 64
MTIR, 247, 249-251
MT2, 66-67
computational experiments using, 70,
71
Fortran implementation of, 247,
251-252
heuristic version of, 72
MTCI, 147-148
computational experiments using,
151-153
decision-tree for, 149
example using, 149
MTC2, 150
computational experiments using,
152
Fortran implementation of, 247,
258-259
MTCB, 155
computational experiments using,
156
Fortran implementation of, 247,
259-261

Subject index

MTGS, 118, 121
MTGSM, 123-124
example using, 124
MTHG, 206-207
computational experiments using,
219-220
example using, 208
Fortran implementation of, 247,
268-270
MTHM, 180-181
computational experiments using,
185-187
example using, 182
Fortran implementation of, 247,
263-265
MTM, 173-174
computational experiments using,
183-186
decision-tree for, 175
example using, 175
Fortran implementation of, 247,
261-263
modified version of, 176
MTR, 48-49
computational experiments using, 69
example using, 49
MTR’, 64-65
MTRGI, 209-210
decision-tree when used, 212
example using, 211-213
MTRG?2, 210-211
MTRP, 234
example using, 236, 240
time complexity of, 237
MTS, 113-114
decision-tree for, 115
example using, 115
MTSL, 116-117
computational experiments using,
129-130
Fortran implementation of, 247,
256-257
MTSS(k), 121-122
compared with procedure J(k),
122-123
computational experiments using,
131-136
example using, 123
worst-case performance ratio of, 122
MTUI, 96-97
computational experiments using,
103
decision-tree for, 99
example using, 98

Subject index

MTU2, 100
computational experiments using,
103
decision-tree for, 102
example using, 101
Fortran implementation of, 247,
254-255
R, 59
RECI, 38-39
REC2, 40-41
dynamic programming algorithm
using, 41-42
example using, 44
RECS, 108
S(k), 51
example using, 52
TBOI, 83
UPPER, 172-173
Pseudo-polynomial algorithm, 7
Pseudo-polynomial transformation, 8

RECI procedure, 38-39
REC2 procedure, 4041
dynamic programming algorithm using,
41-42
example using, 44
Recognition problem, 6
RECS procedure, 108
Reduction algorithms
BPP solution involving, 233-237
GAP solution involving, 209-213
KP solution involving, 45-50
MKP solution involving,
176-177
Reduction procedures
Balas—Zemel method use of, 59
first used, 14
References listed, 275
Relaxations, 11
BCMP, 153-154
BPP, 224-227
GAP, 192-204
KP, 16-20
MKP, 158-165
see also Continuous relaxations;
Lagrangian relaxations; Surrogate
relaxations
Ross—Soland algorithm, GAP
computational experiments using,
214-218
Ross—Soland bound, 193, 197, 201

Sahni polynomial-time approximation
scheme, 51, 53, 56

295

computational experiments using,
72-73
Sequential lifting procedure, 76
Simultaneous lifting procedure, 76
Single knapsack problems
see Bounded Change-Making Problem;
Bounded Knapsack Problem;
Change-Making Problem,;
Multiple-Choice Knapsack
Problem; Subset-Sum Problem;
Unbounded Equality Constrained
Min—Knapsack Problem;
Unbounded Knapsack Problem
S(k) algorithm, 51
examples using, 52
see also Sahni polynomial-time
approximation scheme
States
meaning of term, 38
procedure DP2, 42
Stickstacking Problem, 105
see also Subset-Sum Problem (SSP)
Subset-Sum Problem (SSP), 3, 105-136
approximate algorithms used, 117-128
computational experiments for,
130-136
computational experiments for solution
of, 128-136
core problem of, 116
definition of, 105
dynamic programming used, 106-109
exact algorithms used, 106-117
computational experiments for,
® 129-130
Fortran-coded algorithm used, 247,
256-257
fully polynomial-time approximation
schemes used, 125-126
greedy algorithm used, 117-119
hybrid algorithm used, 109-116
large-size problems solved, 116-117
NP-hardness of, 6
polynomial-time approximation
schemes used, 120-125
computational experiments
involving, 131-136
probabilistic result for, 126, 128
recursive formulae for, 7
Surrogate relaxations, 11
BPP, 225-226
MKP, 158-162

TBOI algorithm, 83
example using, 83-84

296

Terminology, 2-5
TODD problem, 128, 129, 133
Toth dynamic programming algorithm, 44
computational experiments using, 69
Tree-search, combined with dynamic
programming to solve SSP, 109-116

Unbounded Change-Making Problem, 4
Fortran-coded algorithms used, 247,
258-259
see also Change-Making Problem
(CMP)
Unbounded Equality Constrained Min-
Knapsack Problem (UEMK), 141
Unbounded Knapsack Problem (UKP), 3,
91-103
approximate algorithms used, 93-95
computational experiments for solution
of, 102-103
core problem of, 98
definition of, 91-92
exact algorithms used, 95-98
Fortran-coded algorithm used, 247,
254-255
large-size problems, 98, 100-102
minimization form of, UEMK
containing, 141
upper bounds of, 92-94
Upper bounds, 11
BKP, 84-86
GAP, 192-204

Subject index

KP, 16-20
MKP
techniques to obtain, 158-165
worst-case performance of, 165-166
UKP, 92-94
UPPER procedure, 172-173

Value Independent Knapsack Problem,
105
see also Subset-Sum Problem (SSP)
Variable splitting method, GAP relaxed
by, 201-204

Worst-case analysis, 9-10
Worst-case performance ratio
BPP algorithms, 222
BPP lower bounds, 224, 228, 232
definition of, 9
L2 algorithm, 232-233
MKP upper bounds, 165-166
MTSS(k) algorithm, 122
Worst-case relative error, 10
Worst-Fit Decreasing (WFD) algorithm,
238
Wright algorithm, 146
computational experiments using,
151

XYGAP, 201

Zoltners algorithm, 60

